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Abstract
Purpose Presurgical orthopedic plates are widely used for the treatment of cleft lip and palate, which is the most common
craniofacial birth defect. For the traditional plate fabrication, an impression is taken under airway-endangering conditions,
which recent digital alternatives overcome via intraoral scanners. However, these alternatives demand proficiency in 3D
modeling software in addition to the generally required clinical knowledge of plate design.
Methods We address these limitations with a data-driven and fully automated digital pipeline, endowed with a graphical
user interface. The pipeline adopts a deep learning model to landmark raw intraoral scans of arbitrary mesh topology and
orientation, which guides the nonrigid surface registration subsequently employed to segment the scans. The plates that are
individually fit to these segmented scans are 3D-printable and offer optional customization.
Results With the distance to the alveolar ridges closely centered around the targeted 0.1mm, our pipeline computes tightly
fitting plates in less than 3min. The plates were approved in 12 out of 12 cases by two cleft care professionals in a printed-
model-based evaluation. Moreover, since the pipeline was implemented in clinical routine in two hospitals, 19 patients have
been undergoing treatment utilizing our automated designs.
Conclusion The results demonstrate that our automated pipeline meets the high precision requirements of the medical setting
employed in cleft lip and palate care while substantially reducing the design time and required clinical expertise, which could
facilitate access to this presurgical treatment, especially in low-income countries.

Keywords Presurgical orthopedic plates · Cleft lip and palate · Automated digital design · Orthopedic treatment · Mesh
landmark detection · Geometry processing

Introduction

Cleft lip and palate is the most common craniofacial birth
defect with a prevalence of approximately 1 in 700 live
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births worldwide [1]. Presurgical orthopedic (PSO) treat-
ment is commonly used to narrow the cleft and align the
alveolar segments over the course of a few months by insert-
ing an individually designed plate into the neonate’s mouth,
which keeps the tongue out of the cleft. As such, PSO treat-
ment facilitates the surgeries and can decrease their number
[2]. Additionally, the treatment reportedly facilitates feed-
ing, improves the facial appearance by reducing the nasal
deformity, and helps develop early normal phonology [3].

Since its introduction in the 1950s, PSO treatment has
evolved into various types of therapies involving orthopedic
devices ranging from active to passive plates.Whereas active
plates, such as nasoalveolar molding devices [4], apply exter-
nal forces to jointly mold the nose and lip while directing the
alveolar segments into the ideal position, passive plates sim-
ply bridge the cleft space and prevent tongue pressure on the
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cleft edges, which causes the cleft to gradually narrow on its
own (passively), solely due to the change in the intraoral bal-
ance of forces [3]. Conventionally, these plates are fabricated
using plaster casts which are obtained from physical imprints
taken within the first weeks after birth [2]. This impression-
taking is resource intensive requiring highly specialized
personnel, still bearing risks for respiratory obstruction [6].
Recent digital alternatives adopt intraoral scanners to replace
this risky impression-taking and employ 3D printing to allow
for a fully digital workflow [7–10]. However, some of these
digital workflows point out the complexity of the employed
3Dsoftware,which therefore requires professional operators,
and emphasized the importance of developing automated
methods [9]. Grill et al. [11] first address this automation
by offering a graphical user interface (GUI) called Rapid-
NAM that is clinically analyzed for unilateral (UCLP) and
later extended by Schiebl et al. [12] to bilateral (BCLP) cleft
lip and palate cases. RapidNAM aligns the input scans by
minimizing least squares objectives and segments the alveo-
lar ridges based onmaximumheights and empirically defined
area thresholds. Given this segmentation, RapidNAM fits
ellipses and polynomials to model the alveolar arches and
premaxilla in order to compute a series of NAM plates
in 10–15min targeting a healthy anatomy. Since the initial
alignment and segmentation do not always succeed and some
plates contain artifacts from the input scan, Schiebl et al. con-
clude that their software should be used semi-automatically
rather than automatically [12].

We propose an alternative method for segmentation and
alveolar cleft bridging based on deep learning and nonrigid
surface registration to remove such potential artifacts and
to avoid the inherent limitations of segmentation based on
alveolar ridge heights and empirically defined thresholding.
Additionally, we focus on the passive plate type employed in
[13] rather than NAM devices. Although the recommended
inputs to our pipeline are 3D intraoral scans, scanned plaster
casts are equally supported. The raw input scan is auto-
matically landmarked via DiffusionNet [14] in a two-stage
process to increase the prediction accuracy on arbitrarily ori-
ented meshes. The landmarks are employed in the initial
alignment of the given mesh scan with its corresponding
template as well as in the subsequent registration, which
yields a segmentation of the input mesh via the regions
pre-segmented on the template. Based on this segmentation,
a well-fitting plate is computed automatically via several
mesh processing steps mainly comprising cleft filling and
volumization using a custom curvature-selective Laplacian
smoothing algorithm.We demonstrate the accurate landmark
prediction on UCLP and BCLP cases as well as the proper fit
and clinical feasibility of the automatically computed plates,
which are fabricated with a 3D printer at the point-of-care.
The resulting workflow is time- and resource-efficient, offers
increased infant safety, and is accessible to doctors via a

custom GUI. Our main contributions can be summarized as
follows:

• A novel and fully automated pipeline for presurgical
orthopedic plate computation with generic applicability
to both unilateral and bilateral types of cleft lip and palate.

• Substantial speed-up and facilitation of the digital design
process compared to the state-of-the-art.

• A 3D deep-learning-based landmark prediction applied
to palatal scans of arbitrary mesh topology and ori-
entation using two sequential neural networks for an
increased precision.

• Validation of our pipeline’s medical applicability via a
study based on printed models, where 12 out of 12 plates
were approved by two cleft care specialists, and via a
preliminary clinical evaluation, where 19 patients have
started treatment with our automated designs.

Materials andmethods

Wepresent anAI-drivenmethod and a fully automatedwork-
flow for the computation of presurgical orthopedic plates
given a unilateral (UCLP) or bilateral (BCLP) cleft lip and
palate scan as input. An overview of the pipeline is illustrated
in Fig. 1.We also refer the reader to our supplementary mate-
rial for additional implementation details (Online Resource
1) and for a visual summary of our software (OnlineResource
2).

Segmentation

We employ a deep-learning-based landmark prediction and
a subsequent surface registration to segment a palate scan
of arbitrary mesh topology and orientation, thus eliminating
any laborsome manual preprocessing steps.

Landmarking

We collected a dataset comprising 283 UCLP and 114 BCLP
scans of patients mostly aged between 0 and 8 months. Old
plaster cast imprints were digitized via 3D scanning, whereas
new patient data were captured with an intraoral scanner.1

For each cleft type, we modeled a template as an average of
multiple palatal meshes of the corresponding cleft type and
annotated themwith a set of 10 landmarksLt , as illustrated in
Fig. 2. To initially guide the template registration via sparse
correspondences (cf. “Registration” section), we manually
applied the same landmark annotation scheme Lg to each
scan in our dataset. As such manual landmarking is slow and
requires the involvement of an experienced user, we then

1 Intraoral Scanner i500 (Medit Corp., Korea).
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Fig. 1 Visualization of our pipeline given a unilateral cleft lip and palate
intraoral scan as input. The landmarks are automatically extracted from
neural segmentation map predictions. They initially guide the nonrigid
surface registration of a template that bridges over the scan’s alveolar
cleft, as marked in yellow between the two anterior pink landmarks.

This registration yields a segmentation of the input scan, thus enabling
the automated plate computation, which comprises filling of the cleft
palate area (central region colored in red) and volumizing the surface
to be 3D-printable

Fig. 2 Template designs for the cleft types UCLP (left), isolated palate
(middle), andBCLP (right). Each templatewasmodeled as an averageof
multiple palatal meshes of the corresponding cleft type and landmarked
in an equal fashion as the input scans

trained the recent DiffusionNet model from Sharp et al. [14]
on a subset of our data to predict these landmark positions
on arbitrary cleft lip and palate meshes. Hence, new input
scans can be processed efficiently and fully automatically by
our pipeline. Since Sharp et al. do not discuss the problem of
landmarking, we adopt the DiffusionNet extension from [15]
and represent each landmark as a sparse vertex segmentation
map, but we change the fall-off around each landmark to the
following continuous exponential:

si, j = exp(−0.5‖l j − vi‖2), (1)

where si, j ∈ [0, 1] denotes the segmentation value for ver-
tex vi on the input scan given landmark l j ∈ Lg . The
3D positions are defined in (mm). Such smooth functions
essentiallymodel artificial probabilitymaps for the landmark
positions, which facilitates training compared to one-hot user
annotations that are inherently imprecise; cf. Fig. 1 for a visu-
alization of the segmentation maps.

Unlike [15], we trained a DiffusionNet model with ran-
domized rotations to support input meshes of arbitrary orien-
tation. The model uses the 3D vertex coordinates vi as input
features without additional color information. The actual
landmark positions Lp1 are extracted from the model pre-
diction via an argmax operation over the vertex dimension.
Additionally, we compute the model’s prediction certainty

P1 by normalizing its output to [0, 1] range. For an arbi-
trarily oriented input mesh, this first model prediction forms
the course initialization for our second prediction step. The
input mesh is aligned with the template of its correspond-
ing cleft type via weighted Procrustes analysis [16] applied
between the template landmarks Lt and the predicted land-
marks Lp1 weighted by their prediction probability P1. A
second model is then applied to the aligned mesh for a more
accurate landmark prediction. This secondmodelwas trained
on the same dataset with the difference that the meshes were
all pre-aligned using our manual landmark annotations Lg

and varied only by a limited azimuthal range of ±0.2 rad
around the z-axis during training. The fact that the model
was trained on this limited rotation range makes it more
precise in its prediction Lp2 and corresponding probability
P2, but still robust enough towards small alignment errors
caused by the less precise landmark prediction Lp1 of the
first model. For the UCLP and BCLP cleft types, separate
models were trained with the mean squared error (MSE) loss
on 80% of their corresponding dataset until they converged
on the remaining test data after approximately 500 epochs,
which took less than a day on an NVIDIA RTX 2080 TI. All
models utilize the default parameters proposed for segmen-
tation purposes by Sharp et al. [14], except for the dropout
percentage set to 0.2. We provide more training details in the
supplementary (Online Resource 1), and present the results
in the “Experiments and results” section.

Registration

Having aligned the input scans with their corresponding tem-
plate, we apply the nonrigid iterative closest point (NICP)
registration algorithm introduced by Amberg et al. [17] in
order to determine a dense correspondence between the tem-
plate and each input scan. This algorithm iteratively deforms
the template to minimize its distance to the input scan while
considering multiple constraints, including an optional land-
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mark term to initially guide the registration with the sparse
correspondences defined between the landmarksLt andLp2 .
We extend this constraint with a per-landmark weighting
given by the prediction probabilityP2 from the DiffusionNet
model. Additionally, a stiffness constraint ensures a mod-
erately uniform triangle distribution where local holes are
filled, and since the template has a fixed vertex topology, the
input scans are all effectively resampled to the template’s
resolution. We adopt the NICP implementation from Booth
et al. [18] with the main adjustment that only the alveolar
ridges (colored in green in Fig. 1) are registered instead of
the whole template in order to shift the registration focus
towards the area relevant for the contact region of the plate.
The remaining regions are registered in a subsequent cycle
with the alveolar ridges serving as a fixed constraint. Further-
more, to bridge over the alveolar cleft for UCLP cases, we
modeled an additional template averaged over a set of iso-
lated cleft palate scans that exhibit a healthy alveolar ridge
(cf. Fig. 2), and we annotated the UCLP alveolar cleft region
on it to be excluded from deforming towards the input scan
while still serving as a stiff constraint during optimization.
After registration, this region consequently simulates a corre-
spondinghealthy alveolar ridge structure insteadof following
the course of the alveolar cleft. For NAM plates, the same
procedure could be adopted to cover the premaxilla in BCLP
scans by bridging over both alveolar clefts. Figure1 visual-
izes this alveolar bridging for our passive UCLP plates in
the region colored in yellow between the two most anterior
landmarks. Finally, the dense correspondence computation
automatically yields a segmentation of the input scan, since
the various regions pre-segmented on the template represent
the corresponding structures of the scan after its registration.
This segmentation, also visualized in Fig. 1, enables the auto-
mated mesh processing required for the plate computation
described next.

Plate computation

A plate is computed automatically with the registered scan
data via a cleft filling and a volumization step.

Cleft filling

The cleft is eventually closed with surgery. To narrow the
cleft presurgically, the ideal plate is designed such that it
covers the alveolar ridges closely. In the cleft palate region,
however, the design should rather keep a considerable gap to
the cleft tissue, allowing for inwards growth, while simulat-
ing the curved shape of a healthy palate to offer the tongue as
much room as possible [19]. Hence, after cutting out a pre-
defined plate area from the registered scan, we imitate such
a healthy palate shape by smoothing the vertices in the cleft
palate region around a sphere that connects the left and right
alveolar ridge and approximates the course of the cleft palate

Fig. 3 High-frequency geometric details are preserved in the plate’s
contact area, while smooth surfaces are achieved in the non-contact cleft
palate region. The colors indicate the signed point-to-plane distance
between the plate and the input scan in (mm)

region. This cleft approximation is constrained to maintain
a user-adjustable safety distance to the cleft tissue with the
empirically determined default value of 2.5mm. The sphere
parameters are computed via an optimization of a constrained
least squares objective, which is described in more detail in
the supplementary (Online Resource 1).

Volumization

The surface with the filled cleft palate region needs to
be volumized to meet the required final plate thickness of
approximately 2mm to avoid instability or breaking in thin
areas. Hence, we developed a curvature-selective smoothing
algorithm, where convex regions are selectively smoothed
out before offsetting the vertices along their normals to avoid
creating large self-intersections. This “convex smoothing”
algorithm, described in more detail in the supplementary
(Online Resource 1), is applied to two copies of the plate
surface. The first copy represents the plate’s contact side
and is offset by 0.1mm to compensate for potentially slight
inaccuracies in the plate’s contact region around the alveo-
lar ridges. The second copy is offset by an additional 2mm
and connected with the first copy via a half-ellipse between
the corresponding boundary points to obtain a smooth border
transition.Together, the connected surfaces formavolumized
meshwith a thickness optionally adjustable in different areas;
e.g., the thickness around the buccal borders (close to the
patient’s cheeks) may be reduced to avoid plate destabiliza-
tion. Other user options include the addition of a ventilation
hole and stimulation elements for possibly improved speech
development [8]. Finally, selective smoothing adjustments of
empirically determined intensity ensure that the plate does
not cause any abrasion in themouth of the infant while avoid-
ing large discrepancies between the original palatal structure
and the plate’s contact region. Figure3 visualizes the contact
side of a sample plate to demonstrate the selectively pre-
served high frequency details in the contact region.

Experiments and results

Our pipeline is implemented in Python and uses Blender
for the GUI, where optionally several parameters can be
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customized, such as the plate thickness or distance to the
palatal cleft (see Online Resource 1). The GUI was tested
and default parameterswere empirically determined in accor-
dance with the requirements specified by multiple cleft
care professionals. We validate our pipeline on our test set
with quantitative measurements and qualitative assessments.
After digital comparisons, medical feedback is incorporated
to assess a set of 3D-printed models. Lastly, we describe the
application of our software in a preliminary clinical evalua-
tion.

Quantitative evaluation

We first evaluate the accuracy of the learning-based land-
mark prediction Lp2 and then analyze the sensitivity of the
landmarks on the resulting geometrical shape of the plate.
The measurements are summarized in Table 1. Our learning-
based approach achieves an average landmark prediction
distance of less than 2mm for both cleft types. We com-
pute the signed point-to-plane distance of the final plates to
their corresponding input scans, with a negative sign refer-
ring to a point on the plate lying inside the input, which
may imply a pressure point. The contact distance distribu-
tion, also visualized in Fig. 3, is closely centered around the
targeted 0.1mm lift-off, regardless whether the landmarks
are positioned manually (Plates w/ manual landmarksLg) or
automatically (Plates w/ learned landmarksLp2 ), suggesting
that the computed plate shapes fit tightly. However, although
these quantitative distance measurements provide a practi-
cal way to assess the landmark prediction accuracy and plate
tightness, the significance of these results might be limited
for clinical usability. Therefore, we provide further evalua-
tion in the following subsections.

Evaluation of printedmodels

We selected 6 UCLP and 6 BCLPmeshes from our test set—
4 plaster cast impressions and 2 intraoral scans for BCLP

Table 1 Landmark prediction distance and signed point-to-plane dis-
tance between our computed plates and their corresponding input mesh
in the contact region

Distance (mm)

Landmark prediction UCLP 1.69 ± 1.85

BCLP 1.70 ± 1.28

Plates w/ manual landmarks Lg UCLP 0.1 ± 0.07

BCLP 0.1 ± 0.12

Plates w/ learned landmarks Lp2 UCLP 0.09 ± 0.15

BCLP 0.09 ± 0.09

The results are solely based on the test data. Plates with manual land-
marks require medical expertise and manual labor, whereas our learned
landmarks result in a fully automated computation

and 3 of both for UCLP. The selection per cleft type was
randomized and confirmed by cleft experts to be a suitable
representation of the variety of possible models. We auto-
matically computed plates for each of the selected models.
In a first step, we digitally compared the Plates w/ manual
landmarks Lg to the Plates w/ learned landmarks Lp2 quali-
tatively by rating a random permutation of the two variants to
avoid any decision bias. No significant preference could be
determined towards the Plates w/ manual landmarksLg , ver-
ifying that our two-stage DiffusionNet setting is sufficiently
accurate for the remaining pipeline. Afterwards, the plates
and their corresponding palate scans were 3D-printed using a
medically-approved biocompatible material2 (USP Class VI
certified). An orthodontist assessed 10 out of 12 (5UCLP and
5 BCLP) printed plates as suitable for use on patients without
any adjustment, whereas the remaining 2 were estimated to
be usable after minor subtractive corrections. Furthermore, a
surgeon assessed all 6 UCLP and 1 BCLP plate as perfectly
fitting and ready for use on patients, whereas the remaining
5 BCLP plates were presumed to be applicable after small
subtractive adjustments in the buccal area and close to the
premaxilla. All 12 printed and assessed plates are presented
in Fig. 4. These experimental results imply that our pipeline is
able to compute reliable plates in a fully automated fashion.

Preliminary clinical evaluation

Following these results, our pipeline has been implemented
in clinical routine at the University Hospital Basel, Switzer-
land and Saveetha Medical College & Hospital, Chennai,
India, where digital intraoral scanning has already reduced
the conventional impression-taking time from over 60min
to less than 20min [10]. Our automated method has further
reduced the time required for the subsequent plate fabrica-
tion, estimated at 45min for hands-on manufacturing on the
plaster cast model and at 35min for manual CAD modeling
time [10], to a maximum of 5min, consisting only of 1–
2min of manual involvement and an automated runtime of
approximately 3min. Moreover, since the manual involve-
ment only requires simple mesh import/export operations,
the platemodeling job,which previously required a plate spe-
cialist to operate complex CAD software, could be assigned
to an assistant, thus saving significant costs during plate fab-
rication. As a result, 19 patients (14UCLP and 5 BCLP) have
started or already finished treatment in the specified hospi-
tals with our automated plates. 9 out of the 19 plates were
grinded for minor adjustments, which is also common for
conventionally fabricated plates, and nasal stents were man-
ually added post-print. None of the plates caused any harmful
pressure points or abrasion. Figure5 shows photographs of
the first patient being treated with our automated plate at

2 Form 3B 3D printer using BioMed Clear Resin (Formlabs, USA).
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Fig. 4 Automatically computed and 3D-printed plates given twelve different intraoral scans and plaster cast impressions—top UCLP, bottom
BCLP. Two cleft care professionals assessed each plate’s suitability based on its shape and its fit on the corresponding palate model

Fig. 5 A UCLP plate is presented along with its use on a patient. From
left to right, we show the printed plate with the nasal stent added post-
print, two close-up shots of the patient’s palatal cleft (one accentuated

by a mirror in the mouth, one with the inserted plate), and finally a
picture of the patient with the inserted plate

the University Hospital Basel. We are planning to conduct a
broader clinical study to evaluate the impact of this new plate
computation software on the overall treatment outcome.

Conclusion and future work

We presented a data-driven pipeline for fully automated
presurgical orthopedic plate computation. Our pipeline con-
siderably speeds up the design time compared to the
state-of-the-art without requiring any user expertise for the
approximately 3min of automated computations. Moreover,
our DiffusionNet [14] adaptation successfully predicts the
required landmarks on meshes of arbitrary orientation with
sufficient precision, and we showed that the subsequent clas-
sical registration allows for domain-specific adjustments,
such as gap bridging. Lastly, two medical experts assessed
12 out of 12 3D-printed plates computed by our pipeline as
usable either immediately or after minor subtractive grind-
ing, and a total of 19 patients with cleft lip and palate are
currently undergoing treatment with our automated plate
designs. These results indicate that our method could be suit-
able for global clinical use, which could facilitate access to
this presurgical treatment, especially in low-income coun-
tries.

As future work, our registration step could be extended
with deep learning to speed it up during inference. Such deep

learning models can additionally serve as a stronger prior
during registration by recognizing more distant correspon-
dences when large deformations are required [20]. Finally,
the customizability of our pipeline could be increased and its
application generalized, which might include an extension to
more cleft types, such as isolated cleft palate andPierreRobin
sequence, and to NAM devices. These and other options to
be added to our pipeline will require feedback from a wider
medical community.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11548-023-02858-
6.
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