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1 Automated Mesh
Landmarking

This section provides more details about our deep-
learning-based 3D landmarking method which
forms the first component of our pipeline
employed to align the raw input scan with the tem-
plate and to initially guide the nonrigid surface
registration. After discussing the related work for
3D mesh landmarking methods (subsection 1.1),
more training details and quantitative results are
provided in subsection 1.2 and 1.3 respectively.

1.1 Related Work

While classical landmarking approaches have
shown promising results on constrained dental
models by using fixed conditions, such as finding
the peak points [1], and 2D-image-based land-
mark training has been thoroughly explored [2],
robust automated landmarking on raw 3D scans
has been lagging behind, as voxels require exces-
sive memory for high resolution inputs and default
neural network architectures are not suited for

topology or representation changes [3]. PointNet
and its variations [4, 5] have pioneered learning
on unstructured 3D data and have already been
successfully applied to landmarking applications
on palate impressions [6], but their accuracy can
be generally lower than that of models consider-
ing the surface connectivity defined by meshes,
and the data amount required for training may be
higher. DiffusionNet [7] is the first model that sup-
ports efficient deep learning on 3D surfaces of arbi-
trary representation, which makes it superior to
other graph-based approaches like MeshCNN [8].
Since Sharp et al. [7] do not discuss the problem
of landmarking, their work is extended in [9] by
defining landmarking as a segmentation problem.
The authors train a global DiffusionNet model in
combination with an ensemble of localized models
on predicting a full vertex segmentation map for
each landmark with only vertices close to the land-
mark marked as non-zero. However, they do not
provide a competitive performance for inputs of
arbitrary orientation and, thus, focus their results
on pre-aligned meshes. Since the computation of
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Fig. 1 We illustrate the reference landmark positions for
a UCLP (left) and BCLP (right) intraorally-scanned mesh
in the top row. For each landmark, DiffusionNet is fed
a separate sparsely activated segmentation channel with
an exponential fall-off around each landmark. The com-
bination of all segmentation channels is illustrated in the
bottom row.

such a pre-alignment generally requires some prior
information about the input, we focus our results
on inputs or arbitrary orientation. We employ an
ensemble of two globally trained models, of which
the first serves for aligning the input meshes to
enable the second model to predict landmarks on
an aligned mesh resulting in a similar precision as
in [9]. Hence, our two-stage model is capable of
processing raw input scans without requiring the
user to provide any prior information.

1.2 Training Details

As described in the main document, our dataset
comprises 283 UCLP and 114 BCLP scans, of
which each was manually annotated with a set of
10 landmarks Lg. Figure 1 illustrates the positions
of these landmarks for a UCLP and BCLP scan
with both alveolar segments being landmarked in
the same following fashion:

1. Most anterior point on top of the crest (pink).
2. Lateral sulcus vertex/canine point on top of the

crest (orange).
3. Crest point marking the appliance’s posterior

end (green).
4. Sulcus point marking the appliance’s posterior

end (light blue).
5. Cleft region/lift-off start on the same horizon-

tal plane as landmark 2 (dark blue).

For BCLP meshes, landmark 3 is moved to
position 4, whereas landmark 4 is moved inwards

horizontally to mark the cleft region/lift-off start.
This landmarking scheme was determined empiri-
cally to optimally guide the nonrigid registration.
Representing the landmark positions Lg as con-
tinuous, sparsely activated segmentation maps si,j
(cf. main document), we train all DiffusionNet
models with random mesh flipping to support
input meshes of varying cleft sides. Additionally,
the first-stage model is trained with fully random-
ized rotations to cover the whole spherical space
of possible input orientations. The second-stage
model, on the other hand, is trained on the pre-
aligned input meshes either without any rotation
randomization or on a limited azimuthal range
of ±0.2 rad around the z-axis. The model uses
3D vertex coordinates (XYZ) as input features
instead of the rotation-invariant 16-component
heat kernel signature (HKS) vector proposed by
Sharp et al. [7], since we observed inferior per-
formance of HKS compared to XYZ, even with
randomized rotations. As the majority of our
dataset comprises uniformly colored plaster cast
scans, we did not observe any benefit from con-
catenating vertex color information to the input
feature vector, as proposed by [9]. However, a
larger set of colored intraoral scans might yield
different results. As already outlined in the main
document, our models use the default parameters
proposed by Sharp et al. [7] for segmentation pur-
poses, except for an added dropout percentage
of 0.2, since no significant benefit was observed
when fine-tuning the hyperparameters. Training
with the mean squared error (MSE) loss using an
80/20 training-test split converged after approxi-
mately 500 epochs, which took less than a day on
an NVIDIA RTX 2080 TI. The number of mesh
triangles required capping at 800 k to stay within
the GPU’s 11GB memory limit.

1.3 Quantitative Evaluation

Our first landmark prediction tests concern
the model’s rotation variance. For this pur-
pose, Table 1 compares the test accuracy of a
model trained on pre-aligned meshes only (Fixed),
i.e., without any rotation randomization, to one
trained on completely random orientations (Ran-
dom). The mean comparison suggests that a Dif-
fusionNet model trained on fixed orientations is
more accurate in its predictions, which is in line
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Table 1 Automated landmark prediction accuracy [mm] on the test set, compared between the Fixed model trained on
a fixed mesh orientation, the rotation-invariant HKS model, and the Random model trained on random orientations. For
each mesh, the Random model’s accuracy was measured for 10 random rotations, yielding the mean and standard
deviation between the different orientations. The mean and standard deviation values were then averaged over all UCLP
and BCLP meshes in the test set, yielding a separate mean and standard deviation for each value. Since the Fixed and
HKS models are not tested on different orientations, they have zero StDev values.

UCLP BCLP

Mean StDev Mean StDev

Fixed 1.58± 1.83 0 1.70± 1.34 0
HKS 5.32± 8.24 0 5.78± 8.53 0
Random 2.01± 1.27 1.23± 1.05 2.11± 1.35 1.12± 1.22

Table 2 Comparison of the prediction accuracy [mm]
between three different model settings applied to 10
random rotations of each test mesh. The first model
corresponds to the Random model from Table 1. The
change in standard deviation is due to the value being
averaged over both, the 10 random rotations and all test
meshes.

UCLP BCLP

Single 2.01± 2.06 2.11± 2.13
Two-Stage-Fixed 1.81± 1.98 1.88± 1.55
Two-Stage-Varied 1.69± 1.85 1.70± 1.28

with the findings from [9]. Moreover, the non-
zero prediction standard deviation of the Random
model, which represents the prediction variation
over different mesh orientations, shows that the
model has not learned to be rotation-invariant
despite having observed approximately 500 dif-
ferent orientations of each mesh during training.
Possibly, the low number of training meshes (283
UCLP and 114 BCLP) is not enough to cover
the large space of 3D random rotations suffi-
ciently densely. Furthermore, we did not manage
to achieve a competitive setting using the HKS
input features, which Sharp et al. [7] proposed to
overcome this issue of rotation variance. Table 1
shows our best setting with HKS input features.
This setting employs a fixed input value threshold-
ing, since we observed that the model predictions
were prone to be disturbed by boundaries and
spikes in the input mesh, possibly due to the
high HKS feature values in these regions. Further
investigations would be required to determine the
optimal input representation for training on this
specific dataset.

Table 2 lists a short ablation study to test our
two-stage model setting, which aims at improving

the prediction accuracy for random input ori-
entations. The results were again averaged over
10 random rotations to eliminate any orienta-
tion bias. The first setting only applies the single
Random model from Table 1 trained on fully ran-
domized rotations. The other two rows report the
results when utilizing this first model’s landmark
prediction Lp1

for a rough alignment via weighted
Procrustes alignment [10], and then in a second
step applying either the model trained on fixed ori-
entations (Two-Stage-Fixed; this second model is
the Fixed model from Table 1), or the other model
trained on meshes with only slight rotation vari-
ations (Two-Stage-Varied). The numbers suggest
that the second-stage model improves the predic-
tion accuracy of the first-stage model on average.
Moreover, the second-stage model seems to bene-
fit from still observing small orientation variations
during training. We believe that this decreases
the model’s overfitting capability and additionally
compensates for the possibly inaccurate alignment
given by the coarser landmark prediction of the
first-stage model. These results from the Two-
Stage-Varied model are comparable to those given
by the Fixed model from Table 1 trained on and
applied to meshes with fixed orientation. This
indicates that the performance decrease caused by
random input orientations can be compensated to
some extent by our proposed two-stage model pre-
diction, although complete rotation invariance is
not achieved.

Finally, we test the intra- and inter-observer
landmarking variance on the same 12 scans we
printed for the model-based study in the main doc-
ument. The scans were landmarked two times on
separate days by the engineer who had already
landmarked the whole dataset for an optimized
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Table 3 Intra- and inter-observer euclidean landmark
distance [mm].

Intra-Observer Inter-Observer

Engineer Surgeon Automated

UCLP 1.09± 0.84 1.95± 0.90 1.53± 0.93
BCLP 1.29± 0.69 1.87± 1.03 1.30± 0.62

registration performance without possessing any
clinical knowledge. Additionally, a cleft surgeon
provided a second set of landmarks, utilizing clini-
cal knowledge to identify the necessary anatomical
key points. These manual landmark positions are
compared to the DiffusionNet predictions (Two-
Stage-Varied from Table 2) in Table 3. The accu-
racy of the predicted landmarks approaches the
intra-observer variance and is consistently better
than that of the cleft surgeon, which indicates that
the model has learned the engineer’s specific land-
marking scheme that may not strictly follow the
anatomical description provided in the previous
subsection.

2 Mesh Offsetting

We discuss the problem of mesh offsetting that
we face during surface volumization and describe
our convex smoothing solution to avoid triangle
self-intersections.

2.1 Background

First, we briefly explain the concept of Laplacian
smoothing as a prerequisite to our convex smooth-
ing algorithm. Then, we describe the general
problem of mesh offsetting and previous related
work.

2.1.1 Laplacian Smoothing

Laplacian smoothing [11, 12] filters out noise and
high-frequency details from a mesh while pre-
serving the low-frequency structure, such as the
general shape, as much as possible. In an iterative
process, each vertex is adjusted towards the aver-
age of its neighbors by applying the forward Euler
step

v
(n+1)
i = v

(n)
i + λ

 1

|Ni|
∑
j∈Ni

v
(n)
j − v

(n)
i

 , (1)

where v
(n)
i refers to the vertex with index i at

iteration n, Ni denotes the set of neighbors of

vertex v
(n)
i , and λ is a scale factor typically cho-

sen in the range (0, 1). Applying more and more
iterations can lead not only to a loss of high fre-
quency, but also to major mesh shrinkage if no
additional constraints are applied. Selective Lapla-
cian smoothing is a common technique where only
a subset of the vertices S ⊂ V is adjusted freely as
in (1) while the boundary vertices that surround
S serve as a constraint to keep the mesh from
shrinking [13]. Likewise, we constrain the Lapla-
cian adjustment vector per vertex to meet our
conditions.

2.1.2 Problem

As illustrated in Figure 2, when offsetting a 1D
function, the offset distance must not exceed the
curvature radius r = 1

k at any point, i.e., the
inverse of the curvature k, to avoid that the offset
function overlaps around this region. On a surface
function, such overlapping may happen in multi-
ple directions. Therefore, the minimum principal
curvature k1 defines the limit of the offsetting dis-
tance. Mesh offsetting describes the problem of
offsetting a general surface, discretized as a mesh,
by an arbitrarily desired distance without caus-
ing any overlaps, i.e., self-intersections, in convex
regions.

2.1.3 Related Work

Early work treated this mesh offsetting problem as
a Minkowski sum of faces, cylinders for edges, and
spheres for vertices. Whereas point-based resam-
pling [14] showed only limited application without
properly discussing self-intersections, curve-based
resampling [15] relied on analytic curve estima-
tion, which requires 2D slicing and is computation-
ally inefficient. Other literature attempted to split
vertices on sharp edges using the multiple nor-
mal directions defined by their surrounding faces
[16], which requires a closed 2D manifold surface.
More recent works represent the surface implicitly
via signed distance functions [17], which allows
resampling the surface at an arbitrary offset dis-
tance without any self-intersections, potentially
with the use of marching cubes [18]. However,
none of these works preserve the mesh topology
of the surface to be offset, which may compli-
cate further automated mesh processing. Hence,
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Fig. 2 In the top row, the left image illustrates the offsetting problem in 2D. The higher the curvature k = 1
r
is, the less

the function can be offset without any overlaps. The middle image shows the orthogonal principal curvatures k1 and k2 (red
and green plane) defining the problem in 3D. The colored spheres represent the discretized neighbors of the central vertex
in white. A standard Laplacian update step would not adjust the central vertex in positive normal direction to reduce k1,
since the green vertices would pull it in the opposite direction. The right image demonstrates how our convex smoothing
algorithm improves this adjustment by projecting the neighbor connection vectors onto the white normal plane and then
onto the k1 plane in the bottom row left image. Finally, the last two images visualize how the vertex is adjusted in positive
normal direction as an average of the neighbors weighted by the magnitude of their corresponding projected connection
vectors.

we developed a novel offsetting algorithm that
reduces the curvature selectively via customized
Laplacian smoothing, enabling preservation of the
original mesh topology.

2.2 Convex Smoothing

Our convex smoothing algorithm globally raises
k1 above the required threshold kt to enable off-
setting a surface by a desired distance. We adopt
libigl’s [18] principal curvature approximation per
vertex [19] for the discretization of a surface via
a triangle mesh M that consists of a set of ver-
tices V and triangles T . The vertices with k1 < kt
are adjusted via weighted Laplacian smoothing,
where the vertex neighbors are weighted accord-
ing to their parallelity with the direction k1 of the
minimum principal curvature. More precisely, the
connection vector vij between the vertex vi and
each neighbor vj ∈ Ni is projected onto the plane
Avi perpendicular to vi’s normal. Afterwards, the
weight wvj of neighbor vj corresponds to the
absolute dot product between this projected and

normalized connection vector v̂j,p and the mini-
mum principal curvature direction k1. Lastly, the
weights of all neighbors wvj

are rescaled to sum
to 1. Figure 2 summarizes this convex smoothing
procedure, and Algorithm 1 specifies the corre-
sponding algorithm. The set of boundary vertices
B is excluded, as the curvature is not well-defined
on the boundary and a proper adjustment of the
remaining vertices is sufficient to eliminate any
self-intersections. Note that, when offsetting the
vertices in the opposite direction, the algorithm
works analogously by reducing the maximum cur-
vature instead of increasing the minimum curva-
ture to ensure that k2 < kt. Since this algorithm
does not require resampling, it preserves the mesh
surface topology and thus also the corresponding
segmentation, which facilitates further automated
processing during the plate computation.
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Algorithm 1 Convex Smoothing Algorithm

Input: Triangle meshM = (V, T )
Output: Convexly smoothed meshM′ = (V ′, T )
1: for iterations do
2: for all vi ∈ V \ B do
3: if k1(vi) < kt then
4: for all vj ∈ Ni do
5: vj,p ← project (vj − vi) to Avi

6: wvj
← | vj,p−vi

∥vj,p−vi∥2
· k1

∥k1∥2
|

7: end for
8: for all vj ∈ Ni do

9: vi ← vi +
wvj∑
j wvj

(vj − vi)

10: end for
11: end if
12: end for
13: end for

3 Palate Sphere
Approximation

As discussed in the main document, the cleft
palate area should be covered by a plate that imi-
tates the round shape of a healthy palate [20].
In this section, we describe the sphere we predict
on top of the cleft palate mesh data to approxi-
mate such a healthy palate. The four parameters
of the sphere are derived via a Voronoi diagram,
which can be used to find the locally largest empty
spheres [21]. The vertices of the input mesh in
the inner cleft palate area are offset by 2.5mm
to ensure that the required safety distance is kept
everywhere. Afterwards, the Voronoi diagram is
constructed on a larger set of constraining points,
which yields a finite set of spheres of which none
penetrates the input mesh. We only consider those
spheres that touch both the left and the right alve-
olar ridge and choose the optimal sphere that min-
imizes the overall distance to all points. Formally,
we thus minimize the constrained least-squares
objective

min
c,r

∑
i∈So

(∥c− vi∥2 − r)2,

s.t. ∥c− vi∥2 ≥ r ∀i ∈ Sc,
∥c− vj∥2 = r ∃j ∈ Sl,
∥c− vk∥2 = r ∃k ∈ Sr,

(2)

where the sphere parameters c, r denote the center
and radius respectively, v denotes a vertex of the
input scan, Sc denotes the constraining set of all

Fig. 3 We show our sphere prediction (gray) as the
solution to our optimization problem defined in (2). The
colored input scan, shown from the posterior, has the left
and right ridge Sl,Sr marked in green, the area So we min-
imize our objective function on marked in blue and green,
and the constraining area Sc marked by all added colors.
The points marked in light blue are offset by 2.5mm in
order to maintain the required safety distance to the inner
cleft palate tissue.

points the sphere must not penetrate, So ⊂ Sc
the set of vertices in the cleft palate region and
both alveolar ridges, and Sl,Sr ⊂ So the points on
the left and right alveolar ridge respectively. The
approximation via largest empty spheres is crucial,
as this problem is generally non-convex. Figure 3
visualizes the concept of this sphere prediction.

4 Implementation Details

We provide details about the implementation of
our pipeline and the corresponding GUI. The
pipeline was implemented in Python 3.9 [22].
Among other packages, the code relies on Open3D
[23] and trimesh [24] for geometry processing,
PyTorch [25] for the landmark prediction, libigl
[18] for the computation of the principal curva-
tures, and Menpo [26] for an efficient implementa-
tion of nonrigid iterative closest point (NICP) [27].
We adjusted the NICP implementation to ensure
efficient Windows compatibility. Additionally, the
whole pipeline only performs CPU computations
to offer maximum flexibility towards different
operating systems and end devices. The GUI, illus-
trated in Figure 4, is implemented in Blender 3.0
[28] and has been tested on several devices running
Windows, Ubuntu, and MacOS (Intel and Apple
Silicon). All packages are automatically installed,
allowing for minimal user installation effort. The
workflow with the GUI comprises importing a
palatal scan, predicting the landmarks for this
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Fig. 4 Captures of our Blender-based GUI. After automatically predicting the landmarks on a UCLP or BCLP mesh, the
plate can be computed, with optional adjustments to the shape including addition of stimulation elements and a ventilation
hole.

scan, optionally adjusting the default parameters
if a different plate thickness is desired or a ven-
tilation or stimulation elements should be added,
and finally computing the plate. Online Resource
2 demonstrates this workflow in a video, where
the pure computations, given a high resolution
intraoral scan as input, take less than 2min on a
14-inch Apple MacBook Pro with an 8-core M1
chip and 16GB RAM. The computation time for
the landmark prediction and the subsequent sur-
face registration may vary depending on the input
size, and machines with a less powerful CPU may
take approximately 3min for the same computa-
tions. However, GPU utilization and optimization
could be implemented to increase the performance
further.
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Alexa, M., Rössl, C., Seidel, H.-P.: Laplacian
surface editing. In: Proceedings of the 2004
Eurographics/ACM SIGGRAPH Symposium
on Geometry Processing. SGP ’04, pp. 175–
184. Association for Computing Machinery,
New York, NY, USA (2004). https://doi.org/
10.1145/1057432.1057456

[13] Tutte, W.T.: How to draw a graph. Proc
London Math Soc s3-13(1), 743–767 (1963).
https://doi.org/10.1112/plms/s3-13.1.743

[14] Chen, Y., Wang, H., Rosen, D.W., Rossignac,
J.: A point-based offsetting method of polyg-
onal meshes. ASME Journal of Computing
and Information Science in Engineering 1, 21
(2005)

[15] Jun, C.-S., Kim, D.-S., Park, S.: A
new curve-based approach to poly-
hedral machining. Computer-Aided
Design 34(5), 379–389 (2002). https:
//doi.org/10.1016/S0010-4485(01)00110-5

[16] Kim, S.-J., Lee, D.-Y., Yang, M.-
Y.: Offset triangular mesh using the
multiple normal vectors of a vertex.
Computer-Aided Design and Applica-
tions 1(1-4), 285–291 (2004). https:
//doi.org/10.1080/16864360.2004.10738269

[17] C.L. Wang, C., Chen, Y.: Thickening

freeform surfaces for solid fabrication. Rapid
Prototyping Journal 19(6), 395–406 (2013).
https://doi.org/10.1108/RPJ-02-2012-0013

[18] Jacobson, A., Panozzo, D., et al.: libigl:
A simple C++ geometry processing library.
https://libigl.github.io/. (accessed 30 June
2022) (2018)

[19] Panozzo, D., Puppo, E., Rocca, L.: Efficient
multi-scale curvature and crease estimation.
2nd International Workshop on Computer
Graphics, Computer Vision and Mathemat-
ics, GraVisMa 2010 - Workshop Proceedings,
pp. 9–16 (2010)

[20] Hohoff, A., Stamm, T., Meyer, U., Wiech-
mann, D., Ehmer, U.: Objective growth mon-
itoring of the maxilla in full term infants.
Arch Oral Biol 51(3), 222–235 (2006). https:
//doi.org/10.1016/j.archoralbio.2005.07.007

[21] Shamos, M.I.: Computational Geome-
try. Yale University, New Haven, CT,
USA (1978). https://doi.org/10.1007/
978-1-4612-1098-6

[22] Van Rossum, G., Drake, F.L.: Python 3 Ref-
erence Manual. CreateSpace, Scotts Valley,
CA (2009)

[23] Zhou, Q.-Y., Park, J., Koltun, V.: Open3D:
A modern library for 3D data processing.
arXiv:1801.09847 (2018)

[24] Dawson-Haggerty et al.: Trimesh. https://
trimsh.org/

[25] Paszke, A., Gross, S., Chintala, S., Chanan,
G., Yang, E., DeVito, Z., Lin, Z., Desmai-
son, A., Antiga, L., Lerer, A.: Automatic
differentiation in pytorch. In: NIPS-W (2017)

[26] Alabort-i-Medina, J., Antonakos, E., Booth,
J., Snape, P., Zafeiriou, S.: Menpo: A com-
prehensive platform for parametric image
alignment and visual deformable models. In:
Proceedings of the 22nd ACM International
Conference on Multimedia. MM ’14, pp. 679–
682. Association for Computing Machinery,
New York, NY, USA (2014). https://doi.org/
10.1145/2647868.2654890

https://doi.org/10.1145/3306346.3322959
https://doi.org/10.1145/3306346.3322959
https://www.ai-for-health.nl/projects/3d-landmark-detection
https://www.ai-for-health.nl/projects/3d-landmark-detection
https://doi.org/10.1007/BF02291478
https://doi.org/10.1007/BF02291478
https://doi.org/10.1061/JMCEA3.0002158
https://doi.org/10.1061/JMCEA3.0002158
https://doi.org/10.1145/1057432.1057456
https://doi.org/10.1145/1057432.1057456
https://doi.org/10.1112/plms/s3-13.1.743
https://doi.org/10.1016/S0010-4485(01)00110-5
https://doi.org/10.1016/S0010-4485(01)00110-5
https://doi.org/10.1080/16864360.2004.10738269
https://doi.org/10.1080/16864360.2004.10738269
https://doi.org/10.1108/RPJ-02-2012-0013
https://libigl.github.io/
https://doi.org/10.1016/j.archoralbio.2005.07.007
https://doi.org/10.1016/j.archoralbio.2005.07.007
https://doi.org/10.1007/978-1-4612-1098-6
https://doi.org/10.1007/978-1-4612-1098-6
https://trimsh.org/
https://trimsh.org/
https://doi.org/10.1145/2647868.2654890
https://doi.org/10.1145/2647868.2654890


Automated Plate Computation for Cleft Lip and Palate – Supplementary 9

[27] Amberg, B., Romdhani, S., Vetter, T.: Opti-
mal step nonrigid icp algorithms for surface
registration. In: IEEE Conf Comput Vis Pat-
tern Recognit (CVPR), pp. 1–8 (2007). https:
//doi.org/10.1109/CVPR.2007.383165

[28] Blender Online Community: Blender - a 3D
Modelling and Rendering Package. Blender
Foundation, Stichting Blender Foundation,
Amsterdam (2018). Blender Foundation.
http://www.blender.org

https://doi.org/10.1109/CVPR.2007.383165
https://doi.org/10.1109/CVPR.2007.383165

	Automated Mesh Landmarking
	Related Work
	Training Details
	Quantitative Evaluation

	Mesh Offsetting
	Background
	Laplacian Smoothing
	Problem
	Related Work

	Convex Smoothing

	Palate Sphere Approximation
	Implementation Details

