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Transformer-based Neural Augmentation of
Robot Simulation Representations
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Abstract—Simulation representations of robots have advanced
in recent years. Yet, there remain significant sim-to-real gaps
because of modeling assumptions and hard-to-model behaviors
such as friction.

In this paper, we propose to augment common simulation rep-
resentations with a transformer-inspired architecture, by training
a network to predict the true state of robot building blocks
given their simulation state. Because we augment building blocks,
rather than the full simulation state, we make our approach
modular which improves generalizability and robustness.

We use our neural network to augment the state of robot actu-
ators, and also of rigid body states. Our actuator augmentation
generalizes well across robots, and our rigid body augmentation
results in improvements even under high uncertainty in model
parameters.

Index Terms—Deep Learning Methods, Simulation and Ani-
mation, Neural Augmentation, Robotics, Dynamics.

I. INTRODUCTION

IN robotics, simulation plays a role of ever-increasing
importance. Yet, even with state-of-the-art techniques, dis-

crepancies between simulations and reality (sim-to-real gaps)
are observed. This is in part due to modeling assumptions (e.g.,
no deformation of rigid bodies, no backlash, no friction), and
in part due to model inaccuracies (e.g., errors in rigid body
mass properties, tolerances during assembly). Actuator drives
may often also implement control loops where the detailed
implementation is undisclosed, making them difficult to model
accurately. While additional verification and characterization
experiments can reduce the sim-to-real gap, this adds com-
plexity and does not scale well. Here, we instead tackle this
problem with a learning-based data-driven approach.

Concretely, we propose a transformer-based architecture
that augments simulation representations of individual build-
ing blocks robots are made of. For each class of building
blocks, we train a separate State Augmentation Transformer
(SAT), taking the time-varying state and interaction forces
with other entities as input. We minimize the sim-to-real
gap with a physics-informed loss that compares augmented
simulation states to measurements taken from physical robots.
As we demonstrate with several examples, the augmented
state consistently improves the prediction quality, both when
augmenting actuator states and rigid body states.
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Our actuator augmentation generalizes well across robots
that are built with the same actuators. Training a single
augmentation for all rigid components of a robot, we show
that our augmentation improves simulation prediction even
under high uncertainty in model parameters. Note that due
to the higher dimensionality of rigid bodies, the rigid body
augmentation does not currently generalize across different
robots.

Succinctly, our technical contributions are:

• a transformer-based neural augmentation of simulation
representations for a large class of robots consisting of
rigid components, mechanical joints, and actuators.

• a modular augmentation approach that interfaces with all
common simulation representations of dynamical systems
and could be extended to other robot building blocks.

Our method enables accurate digital twin representations
of robots, with applications including more accurate state
estimation, and improved closed- and open-loop control. While
we here augment rigid components and actuators, we keep our
formal description general and would expect our method and
modular approach to also extend to other building blocks.

II. RELATED WORK

Our transformer-based augmentation shares similarities with
architectures commonly used in natural language processing
and time series forecasting [21], [26]. We first review related
architectures, followed by a discussion of neural simulation
representations.

1) Neural Architectures for Time Series Forecasting: Re-
current Neural Networks (RNNs) [23] have been applied to
time series forecasting tasks, with Long Short-Term Memory
(LSTM) cells seeing widespread use [6], [16]. However,
their limited short-term memory [5], [22] is insufficient for
simulation augmentation as we demonstrate with a series of
experiments.

Transformers [27] overcome these limitations with an at-
tention mechanism, providing long-term memory. While trans-
formers lead to state-of-the-art performance on problems rang-
ing from natural language [27] to image [10] and audio [3]
processing, we have not seen the use of this architecture
in augmentations of simulation representations. We base our
architecture on the Temporal Fusion Transformer (TFT) pro-
posed by Lim et al. [20]. We confirm that a combination of
short- and long-term memory outperforms an attention-only
architecture, and is well-suited for the problem domain we
consider here.
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Fig. 1. Overview. As input, our processing takes reference motion that is sent to a physical robot, and also a digital model thereof (left). The physical
behavior of the robot results in partial measurements of its time-varying state, while simulations (digital model) provide full state estimates. We first sort
the different components, with their corresponding simulated and measured state, into categories (rigid bodies in green, actuators in blue). We then train
a State Augmentation Transformer (SAT) per category, minimizing a loss that penalizes differences between augmented and measured states (middle). To
apply augmentations to simulations of robots (right), we proceed analogously (reference motion, digital model), unifying the individual augmentations after
evaluation (augmented model). See also the supporting video.

2) Neural Simulation: Differentiable simulation [7], [9],
[12], [13], [17], [25] enables a tight integration of simulation
and data-driven techniques. For example, Geilinger et al. [12]
integrate a differentiable simulator as a last node of a neural
network to train control policies. However, differentiable simu-
lators are not widely available. An advantage of our technique
is that it interfaces with a wide range of standard simulators,
augmenting states of building blocks robots are made of.

Golemo et al. [14] train an RNN to predict differences
between simulated and real-world behavior and integrate it
with the simulator to learn more robust patterns. Although
differentiable simulators allow gradient-based methods for pa-
rameter fitting, they are limited by the underlying approximate
model. Hence, it is impossible to fully close the sim-to-
real-gap. Recently, data-driven methods were introduced to
learn additional nonlinear dynamics, where neural networks
are used to enhance the simulators. Kloss et al. [18] integrate
a neural network to augment the input of an analytic model
into the simulation pipeline. This approach, however, keeps
the simulation within the space of the analytical model and
is therefore still restricted. On the other hand, Ajay et al. [1]
apply a variational RNN [8] as a post-process, allowing the
augmentation to go beyond the expressiveness of an analytic
model. Heiden et al. [15] present a hybrid simulator combining
a physics engine with a neural network to augment simulation
variables. Their approach is trained in an end-to-end fashion,
specializing in specific tasks. In contrast to previous works, we
focus on a decoupled augmentation of simulation states and
show that this modular approach can generalize over different
robots assembled from the same building blocks. Additionally,
our transformer-based model augments the simulation states
while consuming a more extended history of previous states,
mitigating error accumulations over time.

III. OVERVIEW

We consider here the dynamic simulation of robots made
of rigid components which are driven by actuators and may
also be coupled together with mechanical joints.

1) Training: During the training phase (Fig. 1, left), we
send representative reference motions to the physical robot
and its digital model, resulting in partial measurements and
simulations of the time-varying state of the robot.

We then group the building blocks into categories. For most
robots, we define two categories: one for rigid components
(Fig. 1, in green), and one for actuators (in blue). We then train
a separate SAT (middle) for each category, by minimizing a
loss that penalizes differences between augmented simulation
states and corresponding measurements.

2) Evaluation: To augment simulations of the same or a
different physical instance of the same robot performing a
different task or motion (right), we proceed analogously: We
first simulate the robot’s time-varying behavior, then group the
robot’s components into the same categories as defined during
training (digital model). We then evaluate the SATs for each
component separately, resulting in an augmentation of the full
state of the robot at every time step (augmented model).

IV. MODULAR AUGMENTATION OF SIMULATION
REPRESENTATIONS

Before delving into the specifics of our transformer archi-
tecture, we will discuss how we prepare simulation data and
measurements for training.

To allow for generalization, we propose to decompose a
simulation representation into building blocks, then learn an
augmentation for all building blocks of a particular type or
class. To decompose simulation representations, we utilize
that the robot is in an equilibrium at every time step. This
method scales well because we can augment any robot that is
made of the same building blocks. Moreover, the technique is
extensible because we can easily add new SATs for new types
of building blocks.

A. Decomposing Dynamics Simulations of Robots

A dynamic simulation computes the time-varying state of
the robot, along with the forces and torques on each com-
ponent, such that it is in equilibrium at any point in time.
The interactions between components manifest themselves as
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forces and torques at the actuators and joints. To isolate a
component, we, therefore, consider its state along with the
computed time-varying forces and torques acting on it (in
green in Fig. 2).

We here interface with a maximal-coordinate simulation
representation [11], to allow for robots with arbitrary kine-
matics, including series-parallel structures. However, our ap-
proach could also be readily used with a reduced-coordinate
simulation formulation.

The mechanical behavior of an individual building block
can be represented with position and velocity quantities, p(t)
and v(t), uniquely describing its state s(t). For rigid bodies,
the position quantities are the pose of the body, and the
velocity quantities consist of its linear and angular velocities.
For actuators, we are interested in the position and velocity
of the output shaft, whose state is fully described with a 2D
vector.

Building blocks are coupled with a set of constraints C,
implementing the degrees of freedom of mechanical joints and
actuators. For rigid components, the constraint forces fC(t) =
CT
pλ, with Lagrange multipliers λ(t), enable the decoupled

simulation of the building block.
Succinctly, in this work, we seek to learn an augmentation

∆s(t) of the time-varying states s(t) to account for modeling
uncertainties in the equations of motions

ṗ = v
v̇ = M−1(p)(f(p,v) + fC)

with state s =

[
p
v

]
, (1)

of mechanical components, with generalized mass matrix M,
forces f that model gravity, damping and other body forces,
and constraint forces fC that we extract from a simulation.

Rather than training an augmentation for each building
block in isolation, we seek to train a network that outputs an
augmentation ∆s(t) when fed with s(t) and fC(t) of building
blocks of a particular class. For example, we seek to train
a single SAT that generalizes across all rigid bodies. This is
possible as long as all building blocks in a particular class
have the same number of state variables and constraint force
components (e.g., six for rigid bodies). Note that if there are
robots that consist of components of vastly different size, it
could make sense to train several SATs for a particular class.

Fig. 2. Modular Augmentation. We decouple the motion of building blocks
a robot is made of by recording the time-varying forces and torques that
neighboring building blocks exert on them. By doing so, we could simulate
their motion in isolation.

In our simulation, we model actuators with a PID controller
and a standard brushed DC motor model. The state of an

actuator is described by its (1D) position, velocity, current,
and voltage, and it takes as input reference values r(t) of
position, velocity, and torque. Analogously to rigid bodies,
we augment classes of actuators that we can represent with
the same number of state variables. To this end, we record the
constraint forces, which in this context represent the dynamics
of the part of the robot the actuator is driving. In contrast to
a mechanical system, however, our neural augmentation takes
the reference curves r(t) as additional inputs.

B. Measurements

Our actuators use built-in sensors to measure their position,
velocity, voltage, and current, which we use for training our
actuator SATs. To train augmentations of the mechanical
components, we add motion markers (four spheres on the
green component in Fig. 2, zoom-in, top, right), then track
them using a commercial tracking system to obtain the time-
varying rigid body trajectory. These data sources result in
partial measurements s̄(t) of the full state.

C. Reference Motions

To collect a representative and sufficiently large dataset,
we draw end-effector trajectories from randomly generated B-
Spline curves of varying order (0−4). We then use an inverse
kinematics formulation [24] to generate the reference curves
r(t) that we send to the simulator and the physical robot. We
refer to the accompanying video for an example of a reference
motion.

D. Problem Statement

For every class of building blocks, our neural augmentation
takes decoupled states s(t), constraint forces fC(t), and partial
state measurements s̄(t) as input, learning an augmentation
∆s(t) that minimizes the difference between the augmented
s(t) + ∆s(t) and measured state s̄(t).

To measure differences between states and partial mea-
surements, we introduce a constant matrix S that selects
and transforms full-state quantities so that we can numeri-
cally compare them to measurements. In loss functions, we
then compare S (s(t) + ∆s(t)) to s̄. To avoid unnecessary
transformations during training and evaluation, we preprocess
the data, subtracting the transformed state, Ss(t), from the
measurements, then comparing

∆s̄(t) = s̄− Ss(t) to S∆s(t) (2)

in loss functions.

V. TRANSFORMER-BASED AUGMENTATION

Our SAT is an instance of the Temporal Fusion Transformer
(TFT) introduced by Lim et al. [20]. The TFT was designed
for a variety of forecasting tasks. All base modules required
for an implementation are supported by Beitner et al. [4]. In
our setting, there is only a causality going forward in time
(i.e. the current state is only influenced by previous states).
Moreover, unlike most forecasting tasks, our model consumes
an initial state estimate and predicts an additive residual value.
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Fig. 3. State Augmentation Transformer (SAT). For every class of
components, we learn an augmentation ∆s(t) of the current state s(t), taking
the simulated constraint forces fC(t) and reference curves r(t) as additional
inputs. Curved arrows represent skip connections.

Our custom instance of the more general TFT is shown in
Fig. 3.

The encoder of our SAT consumes the previous simulation
states, together with the difference between measured and
simulated states, ∆s̄, or the previously predicted error S∆s(t).
This is motivated by the teacher forcing approach proposed
by Williams and Zipser [28]. At the initial time step, we
assume the error to be zero or known. For electromechanical
components, we can feed the network with measurements even
during the evaluation phase. For rigid bodies, we feed the
network with predictions from previous time steps or set them
to zero. The decoder only consumes the current observable
state.

Both the encoder and decoder transform the simulation
states into a latent representation. This embedding has aggre-
gated local information and the SAT continues with a multi-
head attention layer [27]. The attention-weighted combination
of the embeddings now encodes global information and is fur-
ther processed in a final output layer which predicts a residual
value for the current simulation state. For the backbone of the
encoder/decoder, we experimented with different architectures,
including dense fully-connected layers or the LSTM cells that
are used in the TFT.

The model makes use of Variable Selection Networks (VSN)
to assign varying importance to the input dimensions, sup-
pressing irrelevant or disturbing fields in each prediction step.

Many hyperparameters can be chosen in our architecture.
We can reliably estimate some of them (e.g., hidden dimen-
sionality or numbers of attention heads) using hyperparameter
optimization frameworks [2]. An interesting hyperparameter
in our setting is the number of previous states or the length of
the history that the model consumes in a single prediction step.
In our experiments (Sec. VI), we show the attention profile of
the TFT and how it improves prediction performance.

A. State Augmentation

To perform state augmentations, the model must handle
fields with different scales and units. We apply standard
normalization. For example, we define four global scale factors
for state quantities that describe the position and orientation

of a body and its linear and angular velocity. We then scale
all coordinates of a particular 3-dimensional quantity with the
same global scale factor.

For orientations, we rely on a 6-dimensional representation
that is continuous and results in smaller errors for regression
tasks [30]. This representation is obtained by dropping the
last column of a 3× 3 rotation matrix. To recover the rotation
matrix, we perform a Gram-Schmidt orthogonalization step on
the first two columns.

B. Training

A supervised training procedure is used where the SAT
minimizes an objective function between the predicted S∆s
and the measured error ∆s̄ at each time step. To reduce the
final sim-to-real gap of the simulation, we hence want to
reduce an objective based on the absolute state values as, e.g.,
the L1 loss.

As we are augmenting a simulation where physics must
hold, we also propose an additional physics-informed term
for position and velocity augmentations, where we penalize
differences between the time derivative of the position and
the velocity. The full physics-inspired loss is given as

LPL1 :=L1(S∆s,∆s̄)+L1

(
d

dt
θ(S∆s), θ̇(S∆s)

)
, (3)

where θ(·) and θ̇(·) extract the position and velocity from
the state augmentation, respectively, and we use finite differ-
ences to approximate the time derivative of the position. We
demonstrate later that the additional loss reduces overfitting
(Sec. VI-D2).

To compare two orientations R1 and R2, we rely on the
geodesic distance

D(R1,R2) = cos−1
(
(tr(R1R

−1
2 )− 1)/2

)
. (4)

VI. EXPERIMENTAL RESULTS

For the following experiments, we consider three robot
configurations as shown in Fig. 4. KickBot is a small custom
humanoid robot (height 438mm, mass 3.08kg, 12 DoFs),
which we either attach to mechanical ground at the pelvis
(KickBotA) or on one foot (KickBotB). These two configura-
tions lead to significantly different forces and torques, and
also show that our method can handle changes in contact
configurations as would be seen for legged robots. DanceBot
is a small biped (height 325mm, mass 2.58kg, 12 DoFs),
with series-parallel kinematics, where most of the actuators
are placed in the body, and we fix its feet to mechanical
ground. The robots are driven with Dynamixel XM430-W350-R
actuators and are 3D printed. The KickBot has motion capture
markers attached to seven rigid bodies.

For the training data, we sampled 600 trajectories of
30s each, sampled at 250Hz with the method described in
Sec. IV-C. The test data was collected from artist-created
animations. The animations allow us to show generalizability
over motions not sampled from the same underlying model
used for the training data.
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During the training of the SAT models, we never showed
any data from KickBotB or DanceBot; the only training data
comes from KickBotA. This makes our training-test split
strong, and allows us to show generalizability over new, unseen
robot configurations. The robots are built using the same
actuators.

Fig. 4. The robots. KickBotA (attached at the pelvis), KickBotB (attached
at the right foot), and DanceBot (attached at both feets). Fixed components
are shown in red.

A. Actuator Modeling

This section presents the augmentation capabilities of the
SAT model on actuator states, which include position, velocity,
and electric current. For this test, the SAT is solely trained
with randomly sampled animations simulated and measured
on KickBotA, and evaluated on unseen artist-created anima-
tions on KickBotB and DanceBot. Thus, we demonstrate that
the model generalizes over different robots and over unseen
animations. We compare our modular approach against a non-
modular version of the SAT, where the augmentation takes the
state of all actuators as input and learns to augment all states
simultaneously.

In the first experiment, an instance of the modular and non-
modular SAT learns to augment the actuators’ position and
velocity states simultaneously, with the physics-informed loss.

Fig. 5 shows bar plots summarizing the augmentation
performance on the training robot (KickBotA) and the un-
seen robot (KickBotB) for position and velocity, respectively.
We evaluate the models on three metrics: the Concordance
Correlation Coefficient (CCC) [19]; the Mean Absolute Error
(MAE); and the max error. A higher CCC indicates that the
state follows the up and down trend of the measurements more
accurately. For the max error and MAE, we evaluate the devi-
ation between the measurements and the simulated/augmented
states per trajectory, and look at the error distribution over all
test trajectories.

The simulation shows a max error of >1o on average,
which the SAT state augmentation reduces to 0.6o. The non-
modular approach performs slightly better on the training
robot (KickBotA), especially since the variance is smaller.
However, it performs worse and has almost no improvement
on the KickBotB. This suggests that the non-modular approach
overfits the error patterns of the specific actuators that do not
generalize to new acting forces and torques. Our proposed
modular approach, however, achieves similar performance on
the new configuration.

Fig. 7 shows an example of the state of an actuator over
a window of 4s. The augmented simulation matches the
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Fig. 5. Actuator Augmentation Evaluation. Position and velocity, for
KickBotA and KickBotB non-modular vs. modular approach. And modular
approach on unseen DanceBot.
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Fig. 6. Actuator Augmentation Evaluation. Electric current, for KickBotB.

measured state for position and velocity more closely than the
initial simulation. Note that the measurements are quantized,
and we avoid pre-filtering in our training pipeline. Due to
the physics-based loss, we see that the velocity augmentation
follows the expected smooth profile although supervised on
the quantized measurements.

We further show the augmentation capabilities on an unseen
robot with a different topology (DanceBot, Fig. 5). The
difference between the two unseen robots is the higher torque
and complexity of the DanceBot, resulting in a more signif-
icant simulation error. Note that the non-modular approach
is inherently topology-dependent by design, and can not be
applied to a different robot. Our modular method can augment
the actuator states and reduces the max simulation error from
∼3o to ∼1o. In general, the state augmentation shows that
the mean and variance of the simulation error can be reduced
significantly for both unseen robots.

Besides the mechanical, the model can also learn to augment
the electric states. We show the results of a modular SAT
instance trained on predicting the error of the electric current
of actuators in Fig. 6. The SAT increases the CCC from 0.25
to 0.75, showing that the model can capture the trends of the
electric current more accurately.

B. Rigid Body Modeling

We repeated similar experiments for the rigid bodies. We
tracked multiple rigid bodies of the KickBot with a motion
capture setup while performing the randomly generated tra-
jectories. We train an instance of the SAT to predict augmen-
tations for the 3D positions of the rigid bodies, and a second
SAT on augmenting the 6D representation of the orientations.
We show results for the KickBot in Fig. 8. For position,
we measure the Euclidean distance, and for orientation, we
evaluate the geodesic distance (Eq. 4).
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Fig. 8. Rigid Body Augmentation Evaluation. Position and orientation for
KickBotA and KickBotB non-modular vs. modular approach.

The simulation has an average max position error of
∼17.5mm on KickBotA. Both the non-modular and modular
approach can reduce the error by a factor ∼3.5, to ∼5mm. A
similar effect is seen in the MAE.

The rigid body orientation error sees a similar reduction,
with max error reduced from 7o to ∼2.5o and MAE reduced
from 3.5o to < 1o. The non-modular approach performs
similarly or better on the training robot but performs worse
on a new robot configuration.

In general, the augmentation method performs better on
actuators. The reason for this is the higher dimensional space
of the rigid bodies that are more difficult to sample densely.

C. Augmentation Limits

We further investigate the limitations of our augmentation.
In a first experiment, we show augmentation limits when
approaching actuator limits (Fig. 9). For this, we speed up
the artist’s animation by factors of 1 − 20x. We see that the
augmentation performance declines as we reach the actuator
limits. At 10x speed-up, we are simulating motions that exceed
the actuator limits; while the method can not achieve the same
performance as before, it still improves the simulation states.

Our rigid body augmentation is robust to model variations,
i.e. increasing sim-to-real gaps, as we demonstrate with the fol-
lowing experiments where we perturb simulation parameters
with Gaussian noise of increasing magnitude. Concretely, we
perturb each rigid body mass by mϵ = mϵ, ϵ ∼ N(1, σ), shift
each rigid body center of mass by COMϵ = COM + ϵ, ϵ ∼
N(0, σ), and constraint positions by CTSϵ = CTS + ϵ, ϵ ∼
N(0, σ) for increasing values of σ up to σmax as indicated
in Fig. 10. For multiplicative noise, we ensure values remain
non-negative by clipping to a small positive value. Note that
we set σmax to a large value (cf. Fig. 10), well beyond what

Actuator Limits
VelocityPosition

M
A

E
 [

de
g]

im
pr

ov
em

en
t [

%
]

0%

20%

40%

60%

80%

100%

1 2 5 10 20

10

0

20

30

60

40

70

50

M
A

E
 [

de
g/

s]

im
pr

ov
em

en
t [

%
]

speed-factorspeed-factor
0%

20%

40%

60%

80%

100%

1 2 5 10 20

0.5

0

1

1.5

3

2

3.5

2.5

simulated augmented

Fig. 9. Augmentation Limits Position and velocity MAE of KickBotB on
artist-designed motion for different speed-factors under and over the actuator
limits. Gray lines show percentage improvement.
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could be expected as a sim-to-real gap, in order to stress-test
our method.

As seen in Fig. 10, the rigid body augmentation is robust
for a large perturbation and still achieves 50% improvement
against the simulation for σmax/2 and over 25% improvement
for σmax-perturbation. We also show the perturbation of the
actuator’s resistance parameter (rϵ = rϵ, ϵ ∼ N(1, σ)), which
shows a similar trend. Similar effects are observed when
perturbing other actuator parameters. This shows that the aug-
mentation is robust in a large neighborhood under uncertainty
in simulation parameters and is evidence of generalization
across different robot instances.

D. Ablation Studies

In the following, we evaluate the importance of the compo-
nents of the SAT model as well as alternatives, give intuition
into the attention mechanism, investigate different loss func-
tions, and show how a physics-motivated term helps the model
converge and stabilizes the training.

1) Architecture: The final architecture combines recurrent
neural layers with an attention-based module. To evaluate the
importance of each component, we investigated the modules’
performance in isolation and with alternative architectures
as the encoder/decoder backbone. Each instance was trained
to augment the position state of the actuators. All models
saw the same training data, and were evaluated on unseen
animations. The results are summarized in Table I, where we
report the MAE and Max error of the base simulation, and
the augmentation performance of the different architectures.
The LSTM model without attention results in an increased
error, while the attention models can consistently improve
the base simulation and reduce the MAE and Max error. A
more complex encoder/decoder backbone has slightly better



SERIFI et al.: TRANSFORMER-BASED NEURAL AUGMENTATION OF ROBOT SIMULATION REPRESENTATIONS 7

TABLE I
ARCHITECTURE EVALUATION ON KICKBOTA. LOWEST VALUES IN BOLD.

ACT.: ACTUATORS, RBS: RIGID BODIES, ATTN.DENSE: ATTENTION + DENSE.

Simulation LSTM Attention Attn.Dense SAT
MAE Max MAE Max MAE Max MAE Max MAE Max

Act. [deg] 0.48 1.10 1.50 2.80 0.26 0.82 0.26 0.76 0.24 0.71
Rbs. [mm] 8.72 17.52 2.78 7.48 1.87 5.57 2.43 6.12 1.90 5.03

performance. To verify the results, we also train instances on
augmenting position states for the rigid bodies of KickBotA,
see Table I. We see similar results here, where the attention
models beat a pure LSTM model and reduce the mean and
max error of the rigid body position.

In the following, we discuss the results for each architecture
in more detail.

a) RNN: We removed the attention part of the model
and investigated the output of the Variable Selection Network
(VSN) [20] followed by the LSTM layer. The VSN acts as
a pre-filtering of the input fields, avoiding the disturbance of
the limited LSTM cells caused by less important or irrelevant
fields. This pure LSTM approach stagnates on long animation
sequences leading to an increased max- and mean-error of
the simulation, on average by a factor of 2. We observe
that the stagnation of the model is slower on rigid bodies,
and the augmentation beats the base simulation on the 30s-
long animations. Besides a lower error accumulation, this also
suggests that there are some simpler error patterns for rigid
bodies where an RNN can already improve. The MAE can be
reduced by 70% from 8.7mm to 2.8mm.

b) Attention: We investigate whether attention can im-
prove the results by removing the LSTM and using the multi-
head attention layer with its final fully connected output
module. In this configuration, the model applies attention to
the output of the VSN module, and has an unlimited perceptive
field without information losses. The transformer aggregates
the past and current simulation states together, and a final
dense output layer predicts the residual of the position state.
This very simple model significantly reduces the sim-to-real
gap. The average improvement on the unseen robot is 45%
for the mean error and 25% for the max error. The attention
model also further improves the results on the rigid bodies by
reducing the MAE by 80%. The aggregation with the attention
layer is powerful enough for a simple dense output layer
to outperform the RNN model consistently and significantly
over a larger prediction period. This shows the attention layer
to be crucial in the architecture and sufficient for achieving
a good augmentation. However, we further investigate the
composition of both architecture types as proposed in the
initial TFT model and alternatives.

c) Encoder/Decoder: Starting from the simple trans-
former model above, we investigated different extensions of
the encoder/decoder. The first version Attention Only is the
previously described model with no additional layers attending
directly to the output of the VSN. Attention + Dense has two
additional Dense ReLU layers after the VSN. Finally, Attention
+ LSTM describes the encoder/decoder architecture proposed
in the TFT with an LSTM layer that is recurrently applied
over the history sequence. The additional components in the
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Fig. 11. Attention over 128 history states. The attention profile for the three
encoder/decoder variations. Left: Normalized average attention per history
step. Right: Cumulative sum of the attention distribution.
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Fig. 12. Validation Loss. We trained the SAT model to simultaneously aug-
ment the position and velocity state. Here we show the Mean Absolute Error
(MAE) on an unseen motion while training with three different objectives.

encoder/decoder lead to slightly better results. Notably, the
Max error can be reduced by a further 5% by the dense layers
and 10% by the LSTM layer on average for both robots. We,
therefore, further investigate their effects on the attention layer.

Fig. 11 shows the normalized average attention of each
architecture over the input states in percentage. We see that
the Attention Only and Attention + Dense models assign over
10% of their attention to the single previous history state. This
is significantly more then the Attention + LSTM model with
only 4.5%. The Attention + Dense instance assigns similar
attention over the last 10 states. In the cumulative sum of the
attention plot, shown in Fig. 11 (right), we observe that using
no additional layers in the encoder assigns only 27% of the
attention to states that are 20 or more steps in the past. Using
the dense layers increases this attention to 40%, but assigns it
almost equally along the states. The model with LSTM-cells
shows a more gradual decrease of attention for past states.

Thus, we refer to this final attention model with an
LSTM encoder/decoder as the State Augmentation Trans-
former (SAT). In contrast to the TFT, the SAT consumes
no future or static covariates and acts as a residual network
predicting the correction of the current simulation state.

2) Physics-Informed Loss: We evaluated the convergence
of the SAT when trained on different loss functions. We train
an SAT model to augment the actuators’ position and velocity
state simultaneously. Fig. 12 evaluates the MAE of an unseen
animation during the training process. We use the Quantile,
L1, and the Physical-Informed L1 loss (LPL1). In contrast to
usual forecasting tasks, we observe that the Quantile loss does
not fit our problem. Its statistical nature does not concentrate
on reducing the absolute error between the simulation and
the measurements. We observe that the MAE of the position
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augmentation saturates quickly and increases temporarily for
the velocity. With the L1 loss, we see a significant decrease
in the MAE. The model’s predictive power increases, and we
learn more general applicable patterns from the training data.
Over the training time, however, we observe an overfitting
effect that leads to increasing position and velocity errors,
which is a known issue with neural networks [29]. The LPL1

loss shows a lower MAE. This loss acts as a filtering process
that reduces the effect of noise and mitigates overfitting.

VII. CONCLUSION

We have devised a transformer-based augmentation of sev-
eral robot building blocks, and demonstrated that we can learn
actuator augmentations that generalize well to other robots,
and rigid body augmentations that are robust under uncertainty
in modeling parameters. We have presented augmentations
for positions, velocities, orientations, and electric currents
of components. Moreover, we have evaluated the attention
mechanism and argued for the fused LSTM-Transformer archi-
tecture. Additionally, we have presented an idea of introducing
physical information into the loss function and shown this
regularization to positively affect model convergence.

One limitation of the augmentation is that the method has no
mechanism to keep constraint violations low. While this allows
the augmentation to move out of the constrained simulation
space and more accurately match the measured data, it could
also lead to unwanted constraint violations for scenarios with
insufficient training data. While we only observed relatively
small constraint violations in our examples, additional loss
terms that minimize such a coupled error metric could be an
interesting direction to explore.

While we have demonstrated generalization of actuator
augmentations across different robots, our rigid body augmen-
tation does not generalize to new robots. Because we observe
good generalization in a neighborhood of a moving rigid body,
we believe that a generalization across robots made of different
rigid components could be possible with an extensive sampling
of rigid body properties and behaviors, which we leave as
future work.

Soft components are typically simulated using finite ele-
ments. As the number of elements vary per component, our
modular approach is not directly applicable. The augmentation
of general soft bodies with a single transformer is a future
direction which we plan to investigate further.
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