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Abstract

By leveraging the similarities between quantization error and additive noise,
diffusion-based image compression codecs can be built by using a diffusion model
to “denoise” the artifacts introduced by quantization. However, we identify three
gaps in this approach which result in the quantized data falling out of distribution
of the diffusion model: a gap in noise level, noise type, and a gap caused by
discretization. To address these issues, we propose a novel quantization-based
forward diffusion process that is theoretically founded and bridges all three afore-
mentioned gaps. This is achieved through universal quantization with a carefully
tailored quantization schedule, as well as diffusion model trained for uniform
noise. Compared to previous work, our proposed architecture produces consistently
realistic and detailed results, even at extremely low bitrates, while maintaining
strong faithfulness to the original images.

1 Introduction

In today’s increasingly data-hungry society, the field of neural image compression (NIC) has seen
remarkable growth in both the demand and effectiveness of codecs. A critical step in lossy NIC is
quantization, where continuous latent representations must be discretized to encode the data into a
bitstream for transmission. This negatively affects reconstruction quality, as quantization introduces
error into the signal, and also produces a discrete variable which does not lie in the continuous
distribution the neural decoder was trained for. As a result, most NIC codecs address this issue by
building decoders that are robust to such errors.

Methods based on the recently proposed diffusion models [1; 2] follow a similar paradigm. Here, the
powerful generative capability of diffusion models is harnessed to produce highly detailed, realistic
reconstructions, especially at extremely low bitrates. This is achieved by conditioning the diffusion
model on information from the source image, and generating a new image which attempts to match
the source as closely as possible. The conditioning often takes the form of some spatial information,
such as learned embedding [3; 4], an image compressed via another codec [5; 6], or an edge or color
map [7; 8]. It can also additionally be an unstructured content variable, for example text from an
image captioning model [4] or a CLIP embedding [7; 8]. Regardless of modality, constructing a
robust diffusion-based decoder and conditionally sampling an image requires a long decoding time,
due to the iterative diffusion process, and often requires training a diffusion model from scratch to
accept the desired conditioning modality.

However, diffusion models also allow the problem to be approached from a different perspective.
Quantization error is often modeled as noise [9; 10], and given that diffusion models are denoising
models, one can directly apply them to the data to remove quantization artifacts. Relic et al. [11]
first introduced such a pipeline and proposed a learned module that selectively quantizes data (i.e.,
introduces noise) which is then denoised by the diffusion model at the receiver. However, we
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Figure 1: Visualization of the 3 gaps we address in this work. Failure to match the noise level (middle
columns) results in either too noisy or too smooth images. Inconsistent noise types (middle-right)
introduces generative artifacts and color shift. Applying diffusion to discrete data (far right) causes
flat textures as well as color shift. Addressing all three gaps (middle-left) results in the most realistic
reconstruction that best matches the source image (far left).

identify three gaps in their approach: the noise level gap, the noise type gap, and the discretization
gap. The noise level gap represents a difference in the amount of noise introduced via quantization
versus the amount of noise expected at the given diffusion step. Diffusion models are sensitive
to such mismatches (Fig. 1, middle) and produce either noisy or over-smoothed reconstructions
in the presence of this gap. The noise type gap is a gap in the class of distribution from which
the noise is drawn from. In this scenario, quantization error is well approximated by a uniform
distribution [9], while diffusion models are trained on Gaussian noise, resulting in the noise type
gap (Fig. 1, middle-right). The discretization gap signifies a mismatch when passing quantized data
to a neural network which was trained on continuous data. Small variations in the data are eliminated
during discretization, and many values can be quantized to the same bin, which results in flat texures
or color shifts in the image reconstructions (Fig. 1, far right).

We propose a pipeline that addresses and bridges all the aforementioned gaps. To achieve this,
we introduce a new quantization-based diffusion forward process that theoretically aligns with the
original forward process, placing the quantized data perfectly along the diffusion trajectory. Our
proposed forward process utilizes universal quantization to close the discretization gap, and we
introduce a quantization schedule that dictates the signal-to-noise ratio of the quantized data, which
can be aligned with a diffusion model to close the noise level gap. Finally, we resolve the noise type
gap by using a diffusion model trained with uniform noise, therefore matching the distribution of
quantization error. We additionally show that such a uniform noise diffusion model can be obtained
in a computationally efficient manner by fine-tuning existing foundation Gaussian diffusion models.
Using this forward process, we build a diffusion-based compression codec and show that it produces
more realistic and detailed reconstructions than other methods and can operate at a wider range of
target bitrates.

2 Method

The basis of our approach is a theoretically founded connection between quantization error and
the diffusion process. Such a link allows a diffusion model to be used as a compression codec
by “denoising” quantization artifacts at the reciever [11]. We achieve this by proposing a new
quantization-based forward diffusion process and implementing it within a latent diffusion model.

2.1 Universal quantization diffusion compression

Central to our method is a diffusion model [1; 12], which defines a process that models the transition
between random noise and structured data. When the forward (data to noise) and reverse (noise
to data) processes are divided into small steps, the transition between each step is the addition or
removal of a Gaussian noise sample. The full diffusion process is thus a traversal between a series of
timesteps t ∈ [N, 0]. While this process is iterative, one can also express the partially noisy diffusion
variable yt at any given t in terms of the original data y0 and a noise sample ϵ:

yt =
√
ᾱty0 + ϵ, ϵ ∼ N (0, (1− ᾱt)I), (1)
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Figure 2: Architecture of our proposed method. An input image is first encoded to the latent space of
a diffusion model and passed through the pre-quantization stage of our proposed forward process.
The discretized data is transmitted across the channel, subject to the post-quantization stage of Eq. 4,
denoised by the diffusion model, and decoded back to image space. The user-input timestep parameter
dictates the quantization bin size and variance of noise used in the forward process, as well as the
number of denoising steps performed by the diffusion model.

where ᾱt (known as the “variance schedule”) defines the ratio of signal and noise at every t and
increases as t → 0. In reality, the reverse process is intractable and thus parameterized by the
diffusion model, which learns to iteratively denoise yt by stepping through t = {N, ..., 1, 0}.

We propose to replace the forward diffusion process with universal quantization. Universal quanti-
zation [13; 14] is defined as hard quantization dithered by a uniform random variable. This has the
unique property of being equal in distribution to simply adding another sample from an identical
random variable to the original unquantized data [15]:

ŷ = ⌊y − u⌉∆ + u
d
= y + u′, u,u′ ∼ U [−∆/2,∆/2], (2)

where ⌊·⌉∆ denotes quantization to a bin of width ∆. We define a new diffusion forward process by
combining Eqs. 1 and 2, which is separated into pre- and post-quantization stages:

ŷt = ⌊
√
ᾱty − u⌉∆ + u, u ∼ U [−∆/2,∆/2] (3)

ẑ = ⌊
√
ᾱty − u⌉∆, ŷt = ẑ+ u. (4)

Critically, for Eq. 3 to be a suitable substitute for Eq. 1, we must ensure ŷt follows the same
variance schedule as yt. We achieve this by proposing a quantization schedule which dictates the
quantization bin width and uniform variable support, thus controlling the SNR of ŷt. Specifically,
setting ∆ =

√
12(1− ᾱt) in Eq. 3 aligns our quantization schedule with the diffusion variance

schedule.1

Our proposed quantization-based forward process simultaneously eliminates both the noise level and
discretization gap, via the quantization schedule and the use of universal quantization, respectively.
An added benefit of our quantization schedule is that t also becomes a rate-distortion tradeoff
parameter, as the quantization bin width has a direct impact on the final size of the compressed
bitstream. Additionally, because diffusion models can denoise data at any arbitrary timestep, our
method supports compression to multiple bitrates with a single model by accepting t as user input at
inference time.

2.2 Uniform noise diffusion model

To address the noise type gap, we use a diffusion model trained for uniform noise, which matches the
distribution of error introduced during quantization. Several works [16; 17; 18] investigate diffusion
models under varying noise (and even data [19]) distributions, with Heitz et al. [18] proposing a
diffusion formulation which is valid for any distribution of finite variance, for which the uniform
distribution qualifies. However, training such a diffusion model (either Gaussian or non-Gaussian)
from scratch requires significant resources [20] and can be computationally prohibitive. We find that
existing foundation Gaussian diffusion models can be applied to uniform noise by finetuning the

1We provide a derivation in Appendix B.
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model on the desired distribution. A critical operation in this process, as in Sec. 2.1, is ensuring the
signal-to-noise ratio of the noisy diffusion variable under the new distribution follows the variance
schedule of the original diffusion model. In our scenario of adapting a Gaussian diffusion model to
uniform noise, this is done by drawing ϵ ∼ U

(
−
√
3(1− ᾱt),

√
3(1− ᾱt)

)
in Eq. 1.

2.3 Implementation

We implement our quantization strategy with a latent diffusion model because quantization in this
latent space is uniformly distributed, which is not necessarily the case in the image domain. Fig. 2
shows an overview of our pipeline. An input image is first encoded to latent space via the VAE
encoder. We then apply only the pre-quantization stage of our proposed forward process (Eq. 4),
which produces a discrete latent that is coded to a bitstream using a learned entropy model. At the
receiver, the post-quantization stage is performed and the latent passed to the diffusion model, which
reconstructs information lost during quantization. Finally, the reconstructed latent is decoded back to
image space.

We implement our pipeline using Stable Diffusion v2.1 [21] and follow the same training procedure
for finetuning, except for using to Uniform noise of proper variance instead of Gaussian noise. Our
model is trained for 100k steps on a subset of the LAION Improved Aesthetics 6.5+ dataset2 with
batch size 8 and learning rate 1e-5. We additionally employ input perturbation [22] as this has been
shown to improve sampling quality. The VAE encoder and decoder are not finetuned.

Entropy coding is performed with a mean-scale hyperprior entropy model [23] and arithmetic
coding (implemented via CompressAI [24]). Because the latent transform and quantization process
are fixed, we optimize the entropy model only on the rate objective. Both the VAE and diffusion
model are frozen when training the entropy model.

3 Experiments

We validate the performance of our method via qualitative comparison of compressed images. The
codec proposed by Relic et al. [11] is used as a baseline as it is most similar to our method, and
we evaluate on the Kodak dataset. Our method consistently produces more realistic and detailed
reconstructions, shown in Fig. 3. This can be seen in the red wood or cloud (top row), where Relic
et al. contains flat textures (top right) and unnatural color shifts (top right and top left) that do not
appear in our reconstructions. Additionally, our reconstructions are always realistic, compared to the
baseline which can produce over-smoothed images (bottom right).

We report additional qualitative comparisons to other compression baselines, as well as quantitative
metrics, in Appendix A.

Source Ours - 0.0596 bpp (100%) Relic et al. - 0.0634 bpp (106%)

Source Ours - 0.0955 bpp (100%) Relic et al. - 0.0990 bpp (104%)

Source Ours - 0.0538 bpp (100%) Relic et al. - 0.0583 bpp (108%)

Source Ours - 0.0579 bpp (100%) Relic et al. - 0.0683 bpp (118%)

Figure 3: Qualitative comparison of our method to Relic et al. [11]. Best viewed zoomed in.

2https://huggingface.co/datasets/bhargavsdesai/laion_improved_aesthetics_6.5plus_
with_images
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Supplementary Material

A Additional Results

In addition to Relic et al. [11], we take the method proposed by Hoogeboom et al. (HFD) [5]
and Yang and Mandt (CDC) [3] to compare against diffusion-based methods. We only include
quantitative comparisons against CDC as it operates in a significantly higher bitrate range, and thus
a fair qualitative comparison is not feasible. We also compare to ILLM [25] and HiFiC [26], both
GAN-based approaches, to provide a baseline to other generative image compression codecs.

Further qualitative comparions are shown in Fig. 5. Our method consistently produces more realistic
reconstructions compared to the baselines. At low bitrates, where other codecs lack detail (rows 1
and 3) or introduce generative artifacts (row 2), our reconstructions are detailed, more closely match
the source image, and contain plausible textures. Our proposed method additionally performs well at
higher bitrates, where the baselines fail to match the level of detail of our reconstructions (row 4).

For quantitative comparison, we evaluate all baselines using four metrics: FID [27], to measure the
realism of reconstructed images; LPIPS, as a perceptually-oriented pixelwise distortion metric; and
PSNR and MS-SSIM which are metrics traditionally used in image compression evaluation. It is
important to note that at low bitrates, PSNR and MS-SSIM do not accurately reflect the quality of
reconstructed images [28; 4]. In fact, achieving high performance in pixelwise distortion necessarily
decreases visual quality [28]. As one of our goals is to produce realistic and perceptually pleasing
images, we do not focus on performance measured by these metrics. Experiments are performed on
the Kodak dataset. However, as computing FID metrics requires a large number of images and is thus
not possible on the Kodak dataset, we use MS-COCO 30k [5] for this comparison.

Quantitative performance is shown in Fig. 4. In rate-realism, our method outperforms all baselines
except for Relic et al., for which it remains competitive. At higher bitrates, where Relic et al. is
unable to operate, our method achieves the best performance. When measured in LPIPS, our proposed
method outperforms all other diffusion-based codecs at nearly all bitrates. Performance of our method
suffers when evaluating on PSNR and MS-SSIM due to reasons mentioned above.

Notably, our method can operate at a significantly wider range of bitrates than the baselines. At
the lower end, our method can compress images to nearly an order of magnitude fewer bits with
reasonable faithfulness to the source image. We additionally can compress to significantly higher
bitrates than Relic et al., highlighting the versatility and applicability of our proposal.

To provide examples of our method’s ability to consistently produce realistic and plausible images,
we show examples of images compressed over a range of bitrates in Fig. 6. Here it can be seen that at
high bitrates, the reconstructions are accurate at a pixel level to the source image. As bitrate decreases,
the images maintain high realism and semantic alignment and vary in low-level details (e.g., bush,
rock, or brick textures), rather than blurring artifacts traditionally seen in neural image compression.
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Figure 4: Rate-distortion performance of our method compared to Relic et al. [11], HFD [5],
ILLM [25], CDC [3], and HiFiC [26].

Source Ours - 0.0536 bpp (100%) Relic et al. - 0.0566 bpp (106%) HFD - 0.0580 bpp (108%) ILLM - 0.0590 bpp (110%)

Source Ours - 0.0587 bpp (100%) Relic et al. - 0.0614 bpp (104%) HFD - 0.0644 bpp (110%) ILLM - 0.0644 bpp (110%)

Source Ours - 0.0536 bpp (100%) Relic et al. - 0.0687 bpp (128%) HFD - 0.0607 bpp (113%) ILLM - 0.0753 bpp (140%)

Source Ours - 0.1609 bpp (100%) Relic et al. - 0.2056 bpp (128%) HFD - 0.1848 bpp (115%) ILLM - 0.2325 bpp (144%)

Figure 5: Qualitative comparison of our method to Relic et al. [11], HFD [5], and ILLM [25] on the
Kodak dataset. Bitrates are also expressed as a percentage of our method. Best viewed digitally.
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Source t = 2: 0.1609 bpp t = 5: 0.0973 bpp t = 10: 0.0617 bpp

t = 20: 0.0332 bpp t = 30: 0.0174 bpp t = 40: 0.0138 bpp t = 45: 0.0132 bpp

Source t = 2: 0.1435 bpp t = 5: 0.0888 bpp t = 10: 0.0547 bpp

t = 20: 0.0297 bpp t = 30: 0.0164 bpp t = 40: 0.0140 bpp t = 45: 0.0131 bpp

Source t = 2: 0.1611 bpp t = 5: 0.0971 bpp t = 10: 0.0611 bpp

t = 20: 0.0331 bpp t = 30: 0.0182 bpp t = 40: 0.0145 bpp t = 45: 0.0133 bpp

Figure 6: Visual example of image reconstructions produced over a range of bitrates. At high bitrate,
our method produces reconstructions with high fidelity to the source image. As bitrate decreases, the
images maintain a high realism and semantic alignment, tending towards differences in the spatial
alignment of content. The maximum timestep value of the diffusion sampler in this experiment is
t = 50. Best viewed digitally.
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B Matching Signal-to-Noise Ratio via Quantization Schedule

In this section we provide a derivation of our quantization schedule such that the signal-to-noise ratio
of the noisy diffusion variable produced by our forward process matches that of the original diffusion
process.

The standard Gaussian diffusion process is defined as:

yt =
√
ᾱty0 + ϵ, ϵ ∼ N (0, (1− ᾱt)I). (5)

In this context, the signal to noise ratio of the noisy variable yt is:

SNRyt
:=

E[S2]

Var[N ]
=

E[(
√
ᾱty0)

2]

1− ᾱt
. (6)

Using our proposed forward noising process in Eq. 3 and deriving the SNR of ŷt:

ŷt = ⌊
√
ᾱty0 − u⌉∆ + u, u ∼ U [−∆/2,∆/2] (7)

d
=

√
ᾱty0 + u (8)

Var[u] =
1

12

(
∆

2
− −∆

2

)2

(9)

=
1

12
∆2

∴ SNRŷt
=

E[(
√
ᾱty0)

2]
1
12∆

2
(10)

Therefore, to match the SNR between Gaussian diffusion and our proposed method:

1

12
∆2 = 1− ᾱt (11)

∆ =
√
12(1− ᾱt). (12)
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