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Abstract. We introduce Spline-based Transformers, a novel class of
Transformer models that eliminate the need for positional encoding. In-
spired by workflows using splines in computer animation, our Spline-
based Transformers embed an input sequence of elements as a smooth
trajectory in latent space. Overcoming drawbacks of positional encoding
such as sequence length extrapolation, Spline-based Transformers also
provide a novel way for users to interact with transformer latent spaces
by directly manipulating the latent control points to create new latent
trajectories and sequences. We demonstrate the superior performance of
our approach in comparison to conventional positional encoding on a
variety of datasets, ranging from synthetic 2D to large-scale real-world
datasets of images, 3D shapes, and animations.
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1 Introduction

Positional encoding is an essential component in transformer models, introduced
in the seminal work by Vaswani et al . [43]. It infuses positional information into
input tokens to help transformers learn position-agnostic token embeddings. Po-
sitional encoding works by (1) pre-assigning sinusoids of different frequencies
and phases to every position an input token can take on in a sequence, and (2)
by adding this sinusoid to the token embedding that appears at the correspond-
ing position in the sequence. Injecting a token with positional information, also
referred to as absolute position encoding in later work, has evolved into several
variants that address shortcomings and improve generalization. For example,
several works have shown that absolute position encoding limits the ability of
transformers to handle longer sequences at inference time and proposed rela-
tive position encoding schemes where a fixed or learned bias is added to the
attention matrix [19, 31, 34]. Irrespective of their exact arrangement, today’s
state-of-the-art transformer architectures employ a combination of absolute and
relative position encoding schemes [31,37,38].

* equal contribution.
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Positional encoding assumes that token embeddings represent elemental data
in a collection, e.g ., individual words in a sentence, images in a video, or poses
in an animation, and that an additional notion of position is required to model
a collection of such elements, such as sequences of words, images, or animation
frames. This thought process conceptually decouples elemental and collective
datatypes and forces that separate representations for the elements and the col-
lection as a whole are learned. This becomes even more evident when we consider
that most existing architectures that learn compact neural representations for
collections do not leverage the fact that individual elements, traversed in a par-
ticular order, make up a collection.

In this work, we argue that learned neural representations for elemental and
collective datatypes do not have to be decoupled from one another. Instead,
they can be effectively represented in a single, shared latent space. At the heart
of our approach is the idea that a collection can be represented by learning to
traverse a trajectory in the latent space of elemental data. Inspired by animation
workflows where splines are commonly used to describe a temporal sequence of
poses, we introduce a new class of transformer models based on splines that we
call Spline-based Transformers. They do not require absolute position encoding.

At a high level, our approach uses a transformer-based encoder with ad-
ditional learned control tokens to reduce an input collection of elements to a
fixed number of latent control points ∈ Rd. These control points are interpreted
as the control points of a d-dimensional spline in latent space, representing a
continuous latent space trajectory. The trajectory encapsulates the fundamental
characteristics of the elements constituting the input collection. Uniformly sam-
pling and processing the trajectory through the transformer-based decoder re-
constructs the original input sequence. Our Spline-based Transformers require no
sinusoidal positional encoding and, therefore, completely circumvent the down-
sides of absolute position encoding, including poor extrapolation and overfitting.
A conceptual overview of our approach is illustrated in Fig. 1.
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Fig. 1: Spline-based Transformers. Our Spline-based Transformers encode an in-
put sequence, together with learnable control tokens, into a trajectory in latent space
defined by the latent control points of a spline curve.
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We demonstrate the superior performance of our Spline-based Transform-
ers over transformers with conventional positional encoding on several datasets
and applications, including synthetic data (Sec. 4.1), images (Sec. 4.2), anima-
tion data (Sec. 4.3), and in representing challenging geometry like hair strands
(Sec. 4.4). Additionally, our Spline-based Transformers allow users to manipu-
late a given collection by directly interacting with corresponding latent controls,
thereby introducing a new means of interacting with this architecture. With
transformers gaining significant attention in recent years as general purpose ar-
chitectures [2, 5, 9, 29, 30, 33], we believe that our simple yet effective approach
has the potential to be leveraged across multiple disciplines for a wide variety of
tasks.

Succinctly, our contributions are:

– We introduce Spline-based Transformers; Transformer models that use a
spline-based latent space to encode temporal information without requiring
additional positional encoding.

– We show that simple control mechanisms to manipulate the latent space are
automatically learned by our models and allow for rapid manipulation of the
output sequence.

– We demonstrate superior performance of Spline-based Transformers over
Transformers with positional encoding on a variety of data modalities, in-
cluding synthetic data, images, 3D shapes, and motion datasets.

2 Related Work

Before we discuss related work, we would like to clarify our use of the term
positional encoding. The term positional encoding is widely used in the literature
of coordinate-based neural networks [27, 28] to refer to a frequency encoding
scheme for improvement of network training [39] wherein a low dimensional
input (such as a 3D position) is mapped to a higher dimension using a collection
of sinusoids of different frequencies. In our work, we refer to positional encoding
as a mechanism to introduce positional information into inputs and outputs that
are otherwise devoid of any positional information, as is common in the literature
on transformers.

Transformers [43] were introduced as an alternative to traditional sequence
models such as RNNs [36] and LSTMs [16]. While they initially showed re-
markable performance on language tasks, their effectiveness as a general pur-
pose neural architecture led to their quick adoption as foundational image mod-
els [9, 22, 23], in speech recognition [33], 3D and 4D modeling [2, 4, 5, 30], and
more recently as backbone architectures for diffusion models [29].

The original transformers [43] relied on absolute position encoding with si-
nusoids to inject positional and temporal information into input tokens. Soon
after, researchers identified sequence length extrapolation and overfitting as lim-
itations of absolute positional encoding and introduced several extensions to
combat them. Su et al . proposed RoPE [38], where absolute positions are en-
coded as a rotation matrix and relative token positions are explicitly taken into
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account during attention computations for better performance and generaliza-
tion. Raffel et al . introduced the T5 transformer [34] where a learned bias that
depends on the relative distance between tokens is added to the attention ma-
trix. They achieved a performance boost on a variety of natural language tasks.
Press et al . proposed ALiBi [31] and showed that a fixed bias with a predeter-
mined slope that depends on the attention head can improve the performance
for unseen sequence lengths. An extension to ALiBi [1], which applied ideas
from RoPE, further improved the performance of ALiBi in language tasks. To
specifically tackle the extrapolation problem, Ruoss et al . proposed positional
encoding with a randomized ordering of sinusoids [37] to account for longer test
positions by augmenting the training distribution. A more recent and highly rel-
evant finding in the context of our work is described by Kazemnejad et al . [18].
They showed that transformers with no positional encoding (NoPE) outperform
most commonly used forms of position encoding in decoder only tasks.

However, for transformers used in learning condensed latent spaces of se-
quential data [4, 5, 10, 30, 32, 40], almost all current methods make use of a
transformer autoencoder with relative position encoding [31, 34] and an addi-
tional [CLS] (short for classification) token [8] as input. In these applications,
the transformer encoder aggregates information from the input data tokens into
the [CLS] token, which is then interpreted as a condensed latent descriptor of the
input sequence at the encoder’s output. This latent descriptor token is appropri-
ately position-encoded and passed through a transformer decoder to reconstruct
the input. For such scenarios, the use of no positional encoding (NoPE) is not
a viable solution as it reduces to an n-fold duplication of the latent descriptor,
therefore passing an identical or static latent sequence to the decoder. Without
any variation in its input or absolute positional encoding, the decoder fails to
reconstruct the original input sequence.

Our Spline-based Transformers present a new approach to learning such con-
densed latent spaces for sequential data using a transformer autoencoder that
does not require a positional encoding. In addition to providing significant per-
formance benefits, our approach provides a novel control mechanism to navigate
the latent spaces without any additional complexity.

3 Spline-based Transformers

The core of our architecture is constructed around a transformer autoencoder
model, which incorporates a latent space between the encoder and decoder com-
ponents. In the following, we first introduce the theory behind the modifications
that result in our Spline-based Transformers and later describe the architectural
details of the new transformer autoencoder. See Fig. 1 for an illustration.

3.1 Background: Splines

Splines have seen widespread use in function approximation, computer-aided de-
sign, and the specification and editing of animation curves in computer graphics.
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They provide a means to define a curve or a trajectory with a discrete set of con-
trol points and have many desirable properties. Adjustments to control points
have only a local effect, and the degree of the polynomial basis provides users
with control over the smoothness of a curve.

While our modeling is agnostic to the specific spline representation, we use
B-Splines in our current transformer model as they provide a good trade-off be-
tween ease of implementation and fine-grained control over shape and smooth-
ness. A B-Spline curve is a linear combination of control points, pi, and basis
functions, Ni,k(t),

s(t) =

n∑
i=0

Ni,k(t)pi for t ∈ [tk−1, tn+1], (1)

and describes a piecewise polynomial curve where each segment has degree k [11].
The smoothness at the interface of pairs of segments is determined by the knot
vector

T = (t0, t1, . . . , tk−1, tk, tk+1, . . . , tn−1, tn, tn+1, . . . , tn+d). (2)

Note that a B-Spline curve does, in general, not pass through the two end
control points. Only if a knot has multiplicity k − 1, the corresponding control
point will lie on the curve, reducing the continuity at that point to C0. If we
increase the multiplicity of a knot to k, the curve is C−1 and therefore discon-
tinuous. In more general terms, a knot with multiplicity m results in a curve
that is k−m− 1-differentiable, and hence Ck−m−1, at the knot. We can always
normalize the time interval so that t ∈ [0, 1].

Splines have many desirable properties, notably:

– Local support: A knot span, ti ≤ t ≤ ti+1, is only affected by k control points,
and a control point only has an effect on k spans. Adjustments to a control
point, pi, have an effect on the curve between ti and ti+k.

– Smoothness: If the multiplicity of a knot is zero, a B-Spline curve is Ck−1

and k − 1-differentiable. To increase the smoothness of the curve, we can
always increase the degree of the polynomial basis.

– Numerical Stability: The theory behind B-Splines is well-understood, and
numerically stable and efficient algorithms exist to evaluate them [11].

3.2 Network Architecture

Typically, the encoder of a transformer autoencoder reduces an input sequence of
tokens into a single latent code. However, because transformers are sequence-to-
sequence architectures, they require additional pooling mechanisms to condense
information from the entire input sequence into a single latent token [8, 42].
This is usually accomplished by concatenating an additional learned token to
the input sequence, and by using only the latent representation of this token as
input to subsequent neural networks (e.g ., a decoder) or by directly using it in a
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training objective [32]. The other outputs of the transformers are discarded. In
classification tasks, the learned token is often referred to as the [CLS] token [8].
Finally, in order to decode the latent [CLS] token into an output sequence, it is
duplicated, positional encoded appropriately, and passed through a transformer
decoder that predicts the output sequence.

Instead of only appending a single [CLS] token to the input, Spline-based
Transformers append a collection of ordered control tokens to the input sequence.
Specifically, Spline-based Transformers append n+1 control tokens to the input
sequence to obtain n+1 control points, pi, that will be used to evaluate a latent
spline at the output of the encoder with polynomial basis of order k. Latent
codes corresponding to each output token are produced by evaluating the spline
at the token’s position according to Eq. (1).

The resulting trajectory, s(t), in latent space, has several advantages com-
pared to a traditional positional encoding. First, the latent code is not perturbed
by positional information, meaning the decoder does not need to learn to distin-
guish between positional and contextual information. Second, when using sinu-
soidals to encode the position of tokens, the contextual part of the token remains
fixed and therefore provides a form of redundancy; our latent spline trajectories
encode the temporal information implicitly, e.g ., they can traverse the latent
space faster in certain points and slower in others, making better use of the
latent space. In Fig. 2, we show an overview of how our spline-based latent tra-
jectories are derived from the control points and how they differ from commonly
used schemes like ALiBi [31].

Architecture Details As seen in Fig. 1, an input sequence is encoded using an
MLP that is shared across input tokens, leading to an embedded sequence. Learn-
able control tokens are concatenated to the embedded sequence and sent through
a seq2seq transformer encoder block. We add a linear layer after the last trans-
former encoder block to map the encoded tokens to the latent space dimension d.
The exact number of evaluations of the spline depends on the number of output
tokens expected at the decoder’s output. Our transformer decoder uses the same
structure as our encoder. The encoder and decoder have n-layers, each layer has
h heads, and c feature dimensions. In every layer of the transformer, an ALiBi
attention bias is added. Each layer, except the last MLP of the decoder, uses
the GeLU activation [15]. While our transformer blocks follow the structure of
the T5 transformer model [34], any transformer block could be used in combi-
nation with the spline-based latent space. Depending on the complexity of the
data type, we use transformer blocks of varying feature dimensions and capaci-
ties. For training our Spline-based Transformer autoencoder, we use the RAdam
optimizer [21] with a cosine annealing learning rate scheduler [25].

4 Experiments

We now present experiments on a number of datasets to demonstrate the ef-
fectiveness of the proposed Spline-based Transformers when applied to multiple
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Fig. 2: Variations of Latent Spaces. Our Spline-based Transformers use multiple
control points to evaluate a latent B-Spline and to create a d dimensional trajectory
in the model’s latent space. On the other hand, ALiBi duplicates a single control
point and adds positional information to the duplicated points, while the positional
information is concatenated to the duplicated control point in ALiBi-Cat.

modalities of sequential data. We specifically compare our method against AL-
iBi [31], a state-of-the-art transformer model that uses a combination of both
absolute and relative positional encoding. Because ALiBi adds sinusoids to the
input token embedding, which could create an ambiguity between the token’s
content and position for the transformer decoder to disentangle, we also com-
pare against a variation of ALiBi, where the sinusoids are concatenated with
the token embedding, effectively doubling the size of the transformer decoder
blocks. We refer to this concatenated variation as ALiBi-Cat. Fig. 2 illustrates
the differences between our spline-based latent space and the two baselines; AL-
iBi uses a single control point and adds positional information on top to create
a latent sequence [4,7], while ALiBi-Cat concatenates the control point and the
positional information instead.

For our experiments, we parameterize the latent space between the encoder
and decoder blocks with cubic Bézier curves, with four control points per seg-
ment. Bézier curves are one instance of the B-Spline family, and provide sufficient
smoothness for the applications we have studied so far. We uniformly sample the
latent spline trajectory in the range t ∈ [0, 1]. We summarize the network pa-
rameters for each experiment in our supplemental material.

4.1 Synthetic Datasets

We first evaluate our Spline-based Transformer, ALiBi, and ALiBi-Cat in rep-
resenting parametric 2D curves that have a known latent space size. For this
task, we use three different parametric curve families: (1) Lissajous (d = 3), (2)
Hypotrochoids (d = 4), (3) Bézier curves (with d = 2, and d = 64). For each
curve type, we create three different transformer autoencoders for the Spline-
based Transformer, ALiBi, and ALiBi-Cat, respectively. As seen in Fig. 2, the
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network architectures for the different autoencoders are identical, with the only
difference being the mechanism used to derive latent token trajectories. The di-
mensionality of latent token embedding is decided based on the known latent
space of the curve family. We train the three transformer autoencoders indepen-
dently on each curve family. For training, we randomly sample curve parameters
according to the parameterization of the curve in a pre-determined domain. Us-
ing the sampled parameters, we evaluate the curve to create a sequence of 256
2D tokens that contain the (x, y) coordinates of the curve, which are then fed
as input to the transformer encoder. The three transformer autoencoders are
trained end-to-end using a simple L2 reconstruction objective. In Tab. 1, we
show the reconstruction error of each of the transformer models when presented
with 10,000 unseen curves from the family it was trained on. Our Spline-based
Transformer outperforms ALiBi and ALiBi-Cat, especially on low dimensional
latent spaces. Some qualitative comparisons are shown in Fig. 3.

Table 1: Average reconstruction error (MSE) of 10000 test curves in 2D

Method Lissajous (3D) Hypotrochoids (4D) Bézier (2D) Bézier (64D)
ALiBi 1e-4 2e-3 1.76e-2 3.88e-3
ALiBi-Cat 8e-4 5.3e-3 1.78e-2 3.89e-3
Spline (Ours) 3e-5 1.4e-3 2e-6 3.87e-3

4.2 Images

We continue by showing the effectiveness of Spline-based Transformers in recon-
structing real image datasets. For the following experiment, we divide an image
into distinct non-overlapping patches to create a sequence of patches similar
to (Masked) Vision Transformers [9, 14]. The sequence of 2D image patches is
then the input to our transformer autoencoder. We replace the MLP-Encoder
in Fig. 1 with a CNN-Encoder that maps each patch of size (PS, PS, 3) to a d-
dimensional latent token (1, d). An image (H,W ) is therefore represented with a
sequence of size (HW/PS2, d). The rest of the transformer autoencoder remains
identical to what was described above. We train the transformer autoencoder
using a simple L2 reconstruction loss to recover the input image from the patch
sequence and compare the performance of the Spline-based Transformer against
ALiBi and ALiBi-Cat.

We present results on three different image datasets: CIFAR-10 [20] (32x32),
AFHQ [6] (128x128), and a dataset containing facial images [3] (128x128). For
each dataset and method, we train three transformers with three different latent
sizes: 32D, 64D, and 128D. Tab. 2 summarizes the results. The spline-based la-
tent space significantly outperforms the baselines by a factor of 2. Fig. 4 shows
examples of the reconstructed images and their corresponding error maps; the
spline-based latent space results in sharper and more detailed images. We ob-



Spline-based Transformers 9

Fig. 3: Our Spline-based Transformer can successfully reconstruct curves of different
families with consistently better performance than ALiBi and ALiBi-Cat. In certain
scenarios (third row), reconstructions from ALiBi and ALiBi-Cat can collapse to a
single point, while our Spline-based Transformer successfully manages to recover the
input curve.

serve that the performance improvements are larger for lower dimensional latent
spaces. More results are reported in our supplementary.

Table 2: Image Reconstruction. Comparison across different datasets and
bottleneck dimensions. Bold indicates the best overall performance, and underline
the best in each category. Performance is measured in Mean Squared Error (MSE).

CIFAR-10 AFHQ Faces [3]
Method 32D 64D 128D 32D 64D 128D 32D 64D 128D

ALiBi 0.266 0.178 0.107 0.064 0.050 0.038 10.65e-3 8.56e-3 6.71e-3
ALiBi-Cat 0.264 0.174 0.108 0.064 0.049 0.038 10.87e-3 8.56e-3 7.14e-3
Spline (Ours) 0.107 0.056 0.042 0.038 0.030 0.025 6.77e-3 5.27e-3 4.52-3

4.3 Animation

A commonly encountered modality of sequential data is 3D animation, with in-
terest in using transformers for learning motion manifolds garnering significant
attention in recent years [2, 4, 7, 30]. A Spline-based Transformer, when used to
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ALiBi ALiBi-Cat Spline (Ours)
Rec Err Rec Err Rec Err

(a) AFHQ - 64D

Rec Err Rec Err Rec Err
ALiBi ALiBi-Cat Spline (Ours)

(b) Faces - 64D

Fig. 4: Visual Image Reconstruction. Comparison between ALiBi, ALiBi-Cat, and
Spline (ours) using a 64D bottleneck on AFHQ and Faces [3].

represent 4D data, like a sequence of 3D meshes from a facial animation or a se-
quence of joint poses describing human motion, can lead to notable performance
benefits.

Faces We compare the performance of the Spline-based Transformer autoen-
coder against ALiBi, and ALiBi-Cat, training the three models on a database of
3D facial animations [4]. Each animation is represented by a sequence of regis-
tered 3D meshes. We decimate them to meshes with around 5,000 vertices, and
flatten the vertices to a vector. A flattened animation sequence is thereafter split
into windows of size 30 (∼1 second of animation) and used to train three varia-
tions of the transformer autoencoder. In Tab. 3, we show the reconstruction error
on six performances from three unseen identities. Irrespective of the dimension-
ality of the latent space, the Spline-based Transformer outperforms both ALiBi
and ALiBi-Cat. A qualitative visualization of a reconstructed test performance
is shown in Fig. 5 for the 64D Spline-based Transformer model. We note that
the ALiBi transformer decoder used in these experiments is conceptually simi-
lar to the ones used in previous works [2, 4, 7, 30], indicating that Spline-based
Transformers could lead to improved performance in several downstream tasks.

Table 3: Face Performance Reconstruction. Comparison across different latent
dimensions. Bold indicates the best overall performance, and underline the best in

each category. Performance is measured in Mean Squared Error (MSE).

Method 32D 64D 128D 256D
ALiBi 1.58 1.55 1.48 1.54
ALiBi-Cat 1.60 1.54 1.53 1.50
Spline (Ours) 1.43 1.35 1.47 1.47
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Fig. 5: Our Spline-based Transformer is able to successfully represent facial animations,
preserving both the identity and expression of the subject throughout the performance.

Full-Body Motion We evaluate our method on the full-body human motion
dataset HumanML3D [12], a combination of the HumanAct12 [13] and AMASS
dataset [26]. In Tab. 4, we report the mean squared reconstruction error of
per-frame joint positions measured in degrees. Spline-based Transformers show
reconstruction improvements of at least a factor two, reducing the mean joint
error of the smallest model (16D) from ∼0.4◦ to ∼0.2◦, and up to ∼0.07◦ for the
largest model (64D). We use the joint rotations to compute SMPL body model
parameters [24] and visualize the reconstruction in Fig. 6 along with the recon-
struction error in mm. Positional encoded transformers have recently received a
lot of attention in full-body motion reconstruction and synthesis [10,30,41]. We
believe that Spline-based Transformers can help to increase the performance of
various state-of-the-art models designed for these applications.

Table 4: Human Motion Reconstruction. Comparison across different latent
dimensions. Bold indicates the best overall performance, and underline the best in

each category. We report the Mean Squared Error (MSE) between joint angles [deg].

Method 16D 32D 64D

ALiBi 0.151 0.103 0.059
ALiBi-Cat 0.153 0.103 0.051
Spline (Ours) 0.054 0.022 0.006
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Motion Editing We also show that motions can be modified by applying sim-
ple operations to the control points. In Fig. 6, we visualize two resulting motions
where the control points have been modified to be closer or further away from
the end-points of the spline. The motions preserve the overall style but change in
speed and detail. This experiment suggests that latent splines behave smoothly
in a neighborhood and edits result in plausible motions. We observe that mo-
tions can easily be toned down or amplified as we show with more results in the
accompanying video. The spline-based latent space further allows us to super-
sample motions. By sampling the latent spline more densely before decoding,
we can achieve up to a 4x upsampling of a motion clip. This method effectively
preserves the original motion characteristics, as demonstrated in the video. Mul-
tiple splines can be combined to represent longer sequences of motions. Each of
the segments can then be modified individually.

GT

Rec

Err

0mm 30mm

M1

M2

Fig. 6: Full Body Reconstruction and Modification. Upper rows: Reconstruction
quality on a motion. Lower rows: Two reconstruction results after modifying the control
tokens.
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4.4 Geometric Representation

Finally, we show how Spline-based Transformers can also be used to model com-
plex geometry like hair strands [35, 44], which present themselves as 3D curves
in space. For this experiment, we use a dataset of 343 unique 3D hairstyles [17],
where each hairstyle contains 10,000 strands, and each strand has 100 points. We
are interested in representing only the strand geometry in our experiment, so we
consider the strands across the hairstyles as individual 3D curves in space. We
normalize the root position of each strand by translating it to the origin. Each
normalized strand is therefore a sequence of a 100 vertices and is used to train
a transformer autoencoder as before with an L2 reconstructive loss. We report
the reconstruction error of strands from 10 test hairstyles in Tab. 5. While a
thorough comparison to state-of-art methods [35,44] is required to demonstrate
the real effectiveness of Spline-based Transformers for this task, our initial tests
indicate that they could be an interesting architectural alternative. For the pur-
pose of visualizing the reconstructed strands as a coherent hairstyle, we apply
the ground truth root position to the reconstructed strands in Tab. 5.

Table 5: Strand Reconstruction. Comparison across different latent dimensions.
Bold indicates the best overall performance, and underline the best in each category.

Performance is measured in Mean Squared Error (MSE).

Method 8D 16D 32D
ALiBi 4.8e-3 2.0e-3 1.5e-3
ALiBi-Cat 4.6e-3 1.9e-3 1.2e-3
Spline (Ours) 1.09e-3 1.06e-3 9.4e-4

GT ALiBi ALiBi-Cat Spline (Ours)

0 mm 5 mm

4.5 Practical Limitations

Spline-based Transformers not only achieve a better performance than conven-
tional transformers as demonstrated by our experiments, but can also achieve
this performance improvement much faster than the traditional positional en-
coded models. Fig. 7a shows the validation loss on an image experiment.

While they converge faster, we observe that the Spline-based Transformers
are sensitive to learning rates. Fig. 7b shows the same run with three different
learning rates. A large learning rate can lead to a model collapse where the
control points start to converge to the same point in latent space; leading to
the same latent code for each token in the input sequence and the model not
being able to recover from this state. We also observe that having a too small
learning rate can harm performance significantly. We believe that a specialized
scheduling strategy could significantly improve the stability and performance of
Spline-based Transformers and leave this as future work.
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Fig. 7: Training Performance (AFHQ). (a) shows the validation loss of the dif-
ferent methods. (b) shows the sensitivity of Spline-based Transformers to the learning
rate.
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Fig. 8: Latent Splines (AFHQ). Visualization of predicted latent spline trajectories
in d = 64 and d = 8. x-axis: position along the spline; y-axis: value of the feature.

4.6 Latent Space Visualization

After training, we can visualize the latent spline trajectories (see Fig. 8). The
trajectories show similar characteristics with sinusoidals but are more complex
and asymmetric curves. In some parts, the change of the features is more rapid,
while other dimensions propagate the same value over the whole sequence length.

5 Conclusion

In this work, we introduced Spline-based Transformers, a new class of Trans-
former models that eliminate the need for absolute positional encoding by com-
bining temporal and contextual information into a single trajectory, represented
by a latent spline curve. We presented the superior performance of Spline-based
Transformers across a variety of datasets, from simple curves to complex an-
imation data and images. The experiments show significant performance im-
provements over traditional positional encoded transformer models. Spline-based
Transformers are trivial to implement yet effective and have no additional com-
putational overhead. We identify improvements to the training stability as fu-
ture work to reduce the sensitivity to training hyperparameters such as, e.g ., the
learning rate. The spline-based latent space introduced by our method opens up
a new way to interact with latent spaces using straightforward modifications of
the latent control points. We hope that our work encourages research towards
a new class of transformers with controllable latent spaces across a variety of
applications.
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