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ABSTRACT 
Dialog act classification is essential for enabling digital characters 
to understand and respond effectively to user intents, leading to 
more engaging and seamless interactions. Previous research has 
focused on classifying dialog acts from transcriptions alone due 
to missing multimodal data. We close this gap by collecting a new 
multimodal (i.e., text, audio, video) dyadic dialog dataset from 60 
participants. Based on our dataset, we developed a novel multi-
modal Transformer-based dialog act classification model. We show 
that our model can predict dialog acts in real-time on four classes 
with a Macro F1 score up to 80.81, outperforming the unimodal base-
line by 1.24%. Our analysis shows that the segments of a sentence 
associated with the highest acoustic energy are most predictive. By 
harnessing our new multimodal dataset, we pave the way for dy-
namic, real-time, and contextually rich conversations that enhance 
the experience of interactions with digital characters. 

CCS CONCEPTS 
• Computing methodologies → Supervised learning by clas-
sification; Neural networks; Lexical semantics.
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Dialog act classification, Multi-modal learning, Contextual mod-
elling 
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1 INTRODUCTION 
Creating a conversational agent that can mimic human communica-
tion is a challenging task due to the inherently multimodal nature 
of human interaction. The agent should be carefully customized to 
align with the particular task it is designed to accomplish [5]. This 
mainly involves providing adequate responses to the user’s utter-
ances depending on the given context. Embodied conversational 
agents (ECAs) should also exhibit social and emotional intelligence 
through rich verbal and nonverbal behavior [2]. To satisfy these 
constraints, it is essential to have a strong understanding of the 
dialog context, which can be achieved by analyzing information 
from multiple modalities, including text, audio, and visual inputs. 
One key element in achieving this comprehension is Dialog Act 
Classification (DAC), a task that is vital for creating a holistic view 
of the dialog context [28, 29]. 

Dialog acts are semantic tags that are attributed to utterances 
with respect to the function they have in the dialog (e.g., “question” 
or “answer”). Exploiting dialog acts associated with user utterances
can enhance (non-) verbal response selection for the agent [4, 20]. 
In turn, the inferred dialog acts corresponding to the agent’s utter-
ances can aid the selection of suitable animations for the digital 
character [10] (see Figure 1). State-of-the-art networks for (DAC) 
mostly rely on textual information [12, 25, 34, 35, 37, 52, 55]. Only a 
few works use two modalities (e.g., text and audio) [22, 33]. Never-
theless, employing a multimodal approach that additionally incor-
porates audio and video could be advantageous for DAC. Prosody 
can help to better handle ambiguity in syntactically similar utter-
ances [26, 46]. Furthermore, action units in the upper face establish 
non-verbal signals that can enhance the speaker’s intended effect 
of a dialog act [18]. 

In this work, we develop a multimodal model for joint DAC on 
text, audio, and video. Our network consists of three Transformer-
based encoders, an inter-modality-attention module, and a sequence 
model for decoding. We show that our multimodal approach is 
beneficial for accurately predicting dialog acts in conversations 
in real-time. Compared to the performance of the unimodal base-
line [25], our method achieves an increase of 1.24% in the Macro F1 
score on the DailyTalk dataset [30] and 1.7% on a newly collected 
multimodal dataset called COMOCAP. Our new dataset comprises 
individual and conversational recordings of 60 participants, leading 
to a total recording time of 32 hours. Additionally, our method 
is superior to various other unimodal state-of-the-art approaches 
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Figure 1: Overview of an exemplary dialog system for conversations between a user and an embodied digital character. We 
propose a novel Transformer-based model for multimodal dialog act classification. Using all modalities of a user’s utterance 
(red), dialog acts (i.e., inform, question, directive, commissive) are predicted, which can improve character response generation 
[28, 29]. Similarly, the dialog act predicted from the character’s textual response (blue) can be used for improved speech [44] 
and animation synthesis. 

evaluated on DialyDialog [31]. Moreover, we conduct an extensive 
analysis of the importance of each modality for DAC. We show 
that the acoustic channel contains predictive features, while the 
visual channel can be used to stabilize and speed up the learning 
process of the model. We further demonstrate the applicability of 
our approach for research on the interaction between users and 
digital characters by showing that our model is robust to the pecu-
liarities of human-machine conversations. Through the power of 
our multimodal approach and the versatility of our newly curated 
dataset COMOCAP, we are advancing the field of dialog act classifi-
cation laying the groundwork for a new era of dynamic, human-like 
interactions with digital characters. 

1.1 Contributions 
Overall, the contribution of our work is fourfold: 

• A large-scale, multimodal (i.e., text, audio, video) dataset 
COMOCAP comprising dyadic dialogs of 60 participants, 
intended for research in various tasks related to the improve-
ment of the interaction with conversational digital charac-
ters. 

• A novel multimodal Transformer-based model for real-time 
dialog act classification based on text, audio, and video, that 
improves the Macro F1 score on the bimodal dataset Dai-
lyTalk [30] by 1.24% and on our new dataset COMOCAP by 
1.7%. 

• A comprehensive analysis of the importance of each modality 
for dialog act classification. 

• A qualitative and quantitative analysis on the applicability 
of our method to human-chatbot interactions, providing 
rationale for integrating our DAC model into ECA dialog 
systems. 

2 RELATED WORK 

2.1 Dialog Act Classification 
Extensive research has been conducted to enhance the understand-
ing of human communication through dialog acts in various con-
texts. Most of the existing approaches for DAC exclusively exploit 
textual features to predict the function of an utterance within a 
dialog [6, 13, 15, 25, 28, 34, 35, 37]. However, findings in the field 
indicate that prosodic characteristics, such as pitch and intonation, 
can be used to modify the intent of an utterance [26, 27]. This sug-
gests that multimodal approaches that make use of both textual 
and audio inputs could increase DAC performance [22, 33]. 

Gu et al. [22] and Ortega et al. [33] used CNN-based encoders for 
text and audio. The features extracted from the different modalities 
are combined through concatenation. Ortega et al. [33] addition-
ally performed an in-depth analysis of the importance of those 
modalities. They found that incorporating acoustic features can sig-
nificantly enhance the model’s accuracy, particularly in situations 
where lexical information (e.g., punctuation) is scarce or absent. 

Compared to our work, both works use structurally different 
datasets, i.e., non-conversational text and audio data from a trauma 
room [22] and different dialog act taxonomies [33]. However, recent 
work has shifted the focus back to recognizing intent solely from 
text [12, 34, 35, 55]. To the best of our knowledge, no research 
has been conducted to explore the potential benefit of visual cues 
for DAC. By collecting a conversational, multimodal dataset and 
training a Transformer-based classifier that can process text, audio, 
and video, we aim to close this gap in DAC. 
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2.2 Contextual Modeling 
The vast majority of early DAC approaches classified each utterance 
in the dialog independently [45, 47]. However, the sequential struc-
ture of a dialog imposes dependencies between utterances [21]. As a 
result, the function of the utterance heavily depends on context [38]. 
This can be supported by looking at the dependencies between 
dialog acts of consecutive utterances in public datasets, such as Dai-
lyDialog [31], which is visualized in Figure 2. The strong inter-tag 
dependency patterns highlight the importance of contextual infor-
mation for recognizing intent. For DAC, this implies a notable de-
crease in the likelihood of a successive dialog act when the dialog act 
of the preceding utterance is known. Thus, many works proposed 
a context-based approach for DAC. Bothe et al. [6] included contex-
tual information into their models using an RNN. This increased the 
final prediction accuracy by 3%. Similarly, Chen et al. [13] proposed 
CRF-ASN, a hierarchical RNN-based encoder with a conditional 
random field (CRF) in the decoder. Concurrently, Kumar et al. [28] 
developed a similar approach based on CRFs. CASA [37] built upon 
this work by incorporating self-attentive representation learning. 
Colombo et al. [15] injected guidance into the decoder’s attention, 
improving the accuracy on the SwDa dataset [46] by 4.55%. Due to 
this strong positive influence on DAC, we only consider contextual 
modeling. 
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Figure 2: Relationship of consecutive dialog acts in DailyDia-
log [31]. Given the dialog act in the subcaptions a–d, the bar 
charts illustrate the frequency of occurrence for each dialog 
act in the next utterance. Since the resulting conditional dis-
tributions are not uniform, contextual modeling is essential 
for DAC. 

2.3 Speaker Conditioning 
Considering the individuality of each participant in a dialog in 
terms of language usage, the most recent enhancement in DAC net-
works involves incorporating speaker information. Shang et al. [42] 
leveraged speaker information for DAC by integrating it into the 
layers of their CRF. This increased the performance of their models 
by 1%. Moreover, He et al. [25] proposed an architecture in which 
trainable speaker embeddings are fused with the extracted textual 
features, achieving top performance on multiple benchmarks for 
DAC. Based on these results, we follow He et al. and incorporate 
trainable speaker embeddings into our multimodal DAC network. 

2.4 Multi-task Learning 
In a dialog, intents and emotions constitute valuable knowledge 
on the conversational context. This led to research in Multi-Task 
Learning (MTL), where both tags are predicted simultaneously. 
Cao et al. [9] explored the underlying causal relationships between 
dialog acts and emotions. They found that emotion can be im-
pacted by the dialog act of the same utterance, while the dialog 
act can be influenced by the emotion of the same as well as the 
previous two utterances. Incorporating this knowledge, researchers 
improved the accuracy of DAC by pushing their networks towards 
learning emotion-aided embeddings [40]. Since then, numerous 
multi-task networks have been developed, such as DCR-Net [34] or 
Co-GAT [35]. Their goal is to reach high performance on both tasks 
at the same time by including multiple cross-connections between 
the individual branches of each task. Recent work also took advan-
tage of Large Language Models (LLMs). WEAKDAP used GPT-J 
to augment multi-task datasets like DailyDialog [31] for further 
boosting the performance in DAC and Emotion Recognition in Con-
versations (ERC). Zhao et al. [55] leveraged GPT-3.5 with prompt 
engineering for DAC and ERC. However, their results indicate that 
this approach may still be inferior to supervised methods. To pri-
marily maximize performance on DAC, we do not consider MTL in 
this work and develop a supervised model instead of leveraging an 
LLM. 

3 METHOD 

3.1 Preliminaries 
A dialog act is a tag that contains information on the semantic and 
structural function of an utterance in a conversation [41]. It can also 
be interpreted as the speaker’s intent at a lower level [48]. Thus, 
the terms “dialog act” and “intent” are often used interchangeably. 
To the best of our knowledge, there is no universally accepted 
taxonomy for dialog acts. This mainly stems from the numerous 
factors contributing to the delineation of an utterance’s function, 
including aspects like scope, granularity, and dimensionality. 

In this work, we use the dialog act scheme proposed by Amanova 
et al. [1] consisting of four classes: question, inform, commissive 
and directive. The question tag covers all types of questions that 
can arise in a conversation, while the inform tag covers answers, 
agreements, and disagreements, as well as any other informational 
statement. The directive class represents utterances that are meant 
to give a direction to the interlocutor in form of a request or a sug-
gestion. Conversely, the commissive class captures the commitment 
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or refusal of the speaker to perform a certain action in the present 
or future. Our choice for this dialog act annotation scheme is mainly 
driven by two factors. First, it captures general-purpose functions 
within the dialog. This makes it a suitable taxonomy since we do 
not target topic- or task-specific conversations. Moreover, it has the 
benefit that the majority of annotation schemes applied to dialog 
acts in previously published datasets can be simplified to these four 
classes. 

3.2 Architecture Overview 
In this work, we propose a deep multimodal model for DAC, which 
is visualized in Figure 3. For each utterance, our method processes 
the three modalities (i.e., text, audio, and video) using individual 
branches for deep feature extraction. In the text branch, the to-
kenized sentence is passed through a pre-trained RoBERTa [32] 
model to obtain a sequence of text embeddings. To extract features 
for speech representation, we use a pre-trained version of Distil-
HuBERT [11]. The video branch leverages a pre-trained ResNet-
18 [23] backbone followed by a Transformer encoder. To make sure 
the extracted features align across modalities, we deploy world-
level alignment in the audio and video feature extraction branch. 
Furthermore, we prepend a look-up token ⟨𝐶𝐿𝑆⟩ , which learns 
a summarized representation of the entire sequence through the 

Well , how does it look ? 

RoBERTa 

DistilHuBERT 

ResNet-18 

Transformer Encoder 

Word-Level Alignment 

Prepend CLS 

Word-Level Alignment 

Transformer Encoder 

Prepend CLS 

T<CLS> T1 Tt A<CLS> A1 A a V<CLS> V1 VV 

Inter-Modality Attention 

ET EA EV 

concatenation 

E 

+Speaker 
Information 

Bi-GRU …… 

Fully-Connected Layers 

Class Logits 

Figure 3: Visualization of our proposed model for multimodal 
DAC. For each modality (i.e., text, audio, or video) of an ut-
terance, we extract a sequence of deep features including 
a ⟨𝐶𝐿𝑆⟩ token that summarizes information on the entire 
input sequence. The embeddings are passed through a fusion 
module that makes use of inter-modality attention. The en-
hanced classification embeddings are then concatenated and 
speaker information is added. The final embeddings are fed 
to a Bi-GRU network. Finally, a set of dense layers is used to 
obtain a logit for each class. 

self-attention mechanism used by the Transformer encoder mod-
ules. To encourage the interaction between distinct modalities, their 
extracted features are passed in pairs through Inter-Modality At-
tention (IMA) modules [43]. As proposed by He et al. [25], we 
integrate speaker information into the network by adding trainable 
embeddings that are conditioned on the tag of the current speaker 
(i.e., either 0 or 1 since the dialogs are dyadic) to the fused feature 
vector. Finally, the resulting embeddings of all utterances in the 
conversation are passed through a Bi-directional Gated Recurrent 
Unit (Bi-GRU) network. This injects contextual information from 
the whole dialog into the embeddings. Lastly, the embeddings are 
passed through a set of fully connected layers to obtain the class 
logits used for the final prediction. In the following, we elaborate in 
more detail on the feature extraction branches as well as the IMA 
module. 

3.3 Feature Extraction 
3.3.1 Text. Bidirectional Encoder Representations from Transform-
ers (BERT) is a state-of-the-art method for building rich embeddings 
from text [17]. BERT embeddings can be used for any task that re-
quires a comprehensive understanding of language. The extracted 
features capture detailed patterns in input sentences by modeling 
the embedding of each word and the contextual relationships be-
tween them. In the last years, researchers have developed different 
flavors of BERT for further improving the expressiveness of the 
text embeddings to generalize to arbitrary downstream tasks. We 
use one of these versions, which is RoBERTa [32]. 

Figure 4 illustrates the process of extracting text features from 
an utterance. In most NLP tasks, it is common to remove the punc-
tuation from the text. However, punctuation is important for intent 
classification. A single comma or question mark can change the 
function of the utterance in the dialog. Thus, each punctuation mark 
must get its own embedding. This is achieved by separating punc-
tuation from words with whitespaces, which are introduced around 
the punctuation marks. However, this operation is not applied to 
contractions (e.g., it’s, we’re) and abbreviations (e.g., Mr., p.m.). They 
are treated as unitary words in communication. RoBERTa provides 

<CLS> Well , how does it look ? <SEP> 

0 8386 2156 141 473 24 356 17487 2 

T<CLS> T Well T , T how T does T it T look T? T<SEP> 

Well, how does it look? 

Well , how does it look ? 

Encoder 

Tokenizer 

Tokens 

IDs 

Embeddings 

RoBERTa 

Figure 4: Pipeline for extracting deep features from text. The 
text is passed through the RoBERTa model, where words are 
tokenized and each token is embedded into a vector of size 
768. 
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a tokenizer that splits the utterance into tokens. In addition to the 
contents of the sentence, two additional tokens are appended at the 
beginning (⟨𝐶𝐿𝑆⟩ token) and end (⟨𝑆𝐸𝑃 ⟩ token) of the sequence. 
Finally, text embeddings are obtained by passing the input token 
identifiers to the RoBERTa encoder generating an embedding vector 
of size 768 for each token. 𝑇 ⟨𝐶𝐿𝑆 ⟩ , which is the embedding of the 
⟨𝐶𝐿𝑆⟩ token, acts as a compressed representation of the whole ut-
terance. By fine-tuning the RoBERTa model on a downstream task, 
the 𝑇 ⟨𝐶𝐿𝑆 ⟩ embedding can learn expressive sentence-level features 
that can be used to differentiate between the dialog act classes. 

3.3.2 Audio. Our audio feature extraction pipeline is shown in 
Figure 5. We down-sample the audio signal to 16 kHz and extract 
the time intervals of each spoken word and pause using the Penn 
Phonetics Lab Forced Aligner (P2FA) [54]. The pauses are referred 
to as ⟨𝑆𝑃 ⟩ (“short pause”). We exclude the silent segments at the 
beginning and end of the actual utterance since they do not provide 
any useful insights. The truncated audio signal is fed to DistilHu-
BERT [11] to obtain a temporal sequence of deep features with an 
embedding size of 768. Each feature vector represents 25 ms of audio. 
Inspired by Yang et al. [53], we aggregate the features by applying 
average pooling at the word level using the P2FA alignments. This 
simplifies the complexity in the network’s upper layers, aligning 
the level of detail with that of the text feature encoder. In addition, 
we prepend a learnable vector 𝐴𝑖𝑛𝑖𝑡 

⟨𝐶𝐿𝑆 ⟩ to the embedding sequence 

before passing it through a Transformer encoder. We empirically 
found that placing 𝐴𝑖𝑛𝑖𝑡 

⟨𝐶𝐿𝑆 ⟩ at the beginning of the sequence works 
best. 
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Figure 5: Pipeline for extracting deep features from audio. 
A forced aligner extracts the start and end timestamps of 
each spoken word. The audio signal is then passed through 
DistilHuBERT. The acoustic embeddings are later aggregated 
using the word alignments and the final sequence of embed-
dings is obtained after the Transformer encoder. 

3.3.3 Video. For extracting video features, we first detect the largest 
face per frame using the Haar Cascade algorithm [49] and resize 
it to 48 × 48 pixels in grayscale. Due to efficiency constraints, we 
select the middle frame for each word using the P2FA alignment 
timestamps in case a face was detected. The sequence of cropped 
faces is fed to the pre-trained ResNet-18 [24] to obtain an embed-
ding vector of size 512 for each frame. Similarly to the audio branch, 
a learnable embedding 𝑉 𝑖𝑛𝑖𝑡 ⟨𝐶𝐿𝑆 ⟩ is prepended to the sequence before 

passing the input through a Transformer encoder (see Figure 3). 

3.4 Inter-Modality Fusion 
To predict the dialog act of an utterance, we fuse the modality em-
beddings. Recent approaches, such as CM-Bert [53], utilize cross-
modal attention for sharing information across modalities. This 
requires equal sequence lengths per modality. Although we aggre-
gate the audio and video embeddings at word level, their sequence 
lengths do not fully match due to punctuation and other addi-
tional tokens. Thus, we use the Inter-Modality Attention (IMA) 
transformer modules proposed by Siriwardhana et al. [43]. In this 
approach, the ⟨𝐶𝐿𝑆⟩ embedding token of each modality is enhanced 
by the entire embedded sequence of the other modalities. 

Figure 6 (left) shows the architecture of the IMA module [43], 
exemplified for the text ⟨𝐶𝐿𝑆⟩ token 𝑇⟨𝐶𝐿𝑆 ⟩ and the audio embed-
ding sequence 𝐴. These are passed through a Multi-Head Attention 
layer, in which the query (Q) corresponds to 𝑇 ⟨𝐶𝐿𝑆 ⟩ , and both the 
key (K) and value (V) correspond to 𝐴. The initial ⟨𝐶𝐿𝑆⟩ embedding 
is added to the output of the attention sub-module through a resid-
ual connection. On top, a normalization layer is applied to obtain 
the embedding of text enhanced through audio features. This is 
denoted as 𝐸𝑇 𝐴 . 

The equations in Figure 6 (right) capture the process of using 
multiple IMA modules to fuse the features of all three modalities (𝐴 
for audio, 𝑇 for text, 𝑉 for video). First, all pair-wise combinations 
of modalities are passed through individual IMA modules (Figure 6, 
Equations 1). Then, for each modality, we perform element-wise 
multiplication between the two embedding variations and add train-
able speaker embeddings [25] (Figure 6, Equations 2). Finally, the 
enhanced embeddings per modality are fused using concatenation 
(Figure 6, Equation 3). 

3.5 Feature Decoding 
Based on the fused multimodal embeddings, the decoder forms a 
dialog act prediction. It is composed of two modules: the Bi-GRU to 
leverage contextual information at the conversation level, and the 
classification head consisting of fully-connected layers. Although 
Transformers are considered to be the new standard for decoding 
intra-sequence relationships, it has been shown that simple RNNs 
suffice to capture the contextual dependencies in dialogs that are 
relevant when predicting intents [6]. Thus, we use the Bi-GRU [14] 
to avoid unnecessary complexity in the architecture that could 
potentially cause overfitting and increase inference time. 
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Figure 6: Visualization of feature fusion using IMA [43]. The diagram of the IMA transformer (left) is shown exemplary for text 
and audio. In the equations for computing the final embedding 𝐸 (right), ⊙ is the element-wise multiplication, and 𝑆modality are 
learnable speaker embeddings. 

3.6 Training 
Our model optimizes the Cross-Entropy (𝐶𝐸), i.e., the loss function 
is 

L𝐶𝐸 ( ̂𝑧, 𝑦) = − 
𝐶∑︁ 

𝑐=1 

𝑦𝑐 log(𝑧𝑐 ) (4) 

where 𝑦𝑐 is the binary value indicating whether the class 𝑐 corre-
sponds to the ground truth label or not, while 𝑧𝑐 represents the 
predicted logit for class 𝑐 . 

For the pre-trained RoBERTa, DistilHuBERT, and ResNet-18, we 
only fine-tune the last layer and keep the others frozen during 
training. The Transformer encoders consist of one layer with four 
attention heads each. The Bi-GRU comprises two layers. During 
training, we use AdamW with a weight decay of 5𝑒 − 4, a batch size 
of 1, a chunk size (maximum number of utterances in a dialog) of 20, 
and 10 epochs for early stopping. We add multiple dropout (𝑝 = 0.5) 
and sequence normalization layers throughout the network. Lastly, 
we make use of a cascade training technique, where the model is 
first pre-trained on a text corpus. Afterwards, we freeze the text 
branch and integrate the audio branch for additional training on 
a text-audio dataset. Finally, we fine-tune the video branch on a 
text-audio-video dataset. Since this dataset contains novel speakers, 
we train the parameters of the audio and video branches. At each 
stage of the fusion process, the decoding layers remain trainable. 

4 DATASETS 
We train and evaluate our model on three different datasets: Daily-
Dialog [31], DailyTalk [30], and a newly collected dataset (COMO-
CAP) introduced in Section 4.1. The splits per dataset are shown 
in Table 1. For DailyDialog, we use the split proposed by Wen et 
al. [51] since it avoids the overlapping issue where samples from 
the train and test set overlap. DailyTalk and COMOCAP (scripted 
dialogs) are subsets of DailyDialog. Hence, their splits should be 
aligned. Instances from the training set of one dataset should not be 
included in the test set of the other dataset. Furthermore, DailyDia-
log and DailyTalk are imbalanced in terms of their label distribution. 

For DailyDialog, this phenomenon becomes apparent when aggre-
gating the total count of next dialog acts for each dialog act in 
Figure 2. To compensate for this imbalance, we assign weights to 
conversations during training. We use a weighted sampler so that 
the sampled set in each epoch has an almost uniform distribution 
of labels. The weight 𝑤𝑖 of each utterance is inversely proportional 
to the fraction of the associated label 𝐿 within the entire corpus 𝑅. 
With 𝑙𝑘 being the label of utterance 𝑢𝑘 , we obtain: 

𝑤𝑖 = 
|𝑅 |  𝑢𝑘 | 𝑢𝑘 ∈ 𝑅, 𝑙𝑘 = 𝐿 

  . (5) 

The weight 𝑊𝑗 of the dialog 𝐷 𝑗 is the mean of the weights of its 
utterances 𝑢𝑖 : 

𝑊𝑗 = 
1 

|𝐷 𝑗 | 

|𝐷 𝑗 |∑︁ 

𝑖=1 

𝑤𝑖 , ∀𝑢𝑖 ∈ 𝐷 𝑗 . (6) 

Table 1: Train-validation-test split for the three datasets used 
during training and evaluation, i.e., DailyDialog, DailyTalk, 
and COMOCAP. We only use the scripted dialogs from CO-
MOCAP. For each dataset, the number of used conversations 
and utterances in the train, test, and validation set is shown. 

Conversations Utterances 
Train Val Test Train Val Test 

DailyDialog [31] 8,967 1,001 1,004 69,185 7,650 7,999 
DailyTalk [30] 2,088 216 233 19,416 1,953 2,337 
COMOCAP 606 86 76 2,438 320 304 

4.1 COnversational MOtion CAPture Dataset 
(COMOCAP) 

We collected a large-scale, multimodal COnversational MOtion 
CApture dataset (COMOCAP) of 60 participants. COMOCAP is 
intended for research in various tasks related to the improvement 
of conversational digital characters. We built a custom motion 
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capture setup that records audio, video, and animation parameters 
of participants in dyadic conversations. The recorded sequences 
can be separated into three categories: (i) scripted sentences, (ii) 
scripted dialogs, and (iii) free dialogs. Please note that we only use 
samples from the scripted dialogs in this work. 

4.1.1 Participants. We recruited 60 participants (29 identified as 
female, 31 as male, 0 as non-binary and 0 preferred not to answer) 
between the ages of 18 and 42 (mean = 24.7¯ 3 years, SD = 4.95 
years). 12 participants had a background in acting. In Figure 7, 
we plot the different regions of origin as well as the age-gender 
distribution. We only considered participants who were fluent in 
English. We excluded participants taking any type of medication, 
tranquilizers, or psychotropic drugs (e.g., anti-depressants) as well 
as participants having any type of injury, disease, or long-term 
effects of a past disease (e.g., stiff neck, stroke, or tremor), which 
might affect body movements. All participants provided written 
informed consent before the start of the experiment and received 
monetary compensation. 

Europe 

North America 

South America 

Asia 

Africa 

22% 

61% 

8% 

7% 

2% 

Figure 7: Distribution of the reported region of origin (top) 
and age/gender distribution (bottom) in COMOCAP. 

4.1.2 Aparatus. Figure 8 illustrates the physical recording setup 
that we built for collecting COMOCAP. In this setup, two individ-
uals were positioned to face each other. A screen was placed in 
front of them to show different text snippets and affective images. 
The participants were asked to read and act out the shown textual 
contents. They were further asked to have short conversations on 
the prompted images. We recorded RGB videos of the participants’ 
faces at 60 FPS using an iPhone 13 Pro. Through the Live Link Face 
app [19], we further recorded ARKit blendshapes, which are com-
monly used in facial animation. Besides the face cameras, we also 

placed an iPhone stereo rig in front of the participants as a source 
for body motion (not used in this work). The audio was recorded 
at 48 kHz using two Rode Wireless Go II clip-on microphones. The 
data collection was approved by ETH Zurich’s ethics committee 
and we will release parts of the dataset in the future. 

Scripted Sentences. We randomly sampled 10 phonetically bal-
anced lists from the Harvard Sentences [39]. Each list contains 10 
sentences. Participants were asked to read aloud the sentences from 
two randomly selected lists (counterbalanced), which took approxi-
mately 10 minutes. Each sentence was shown on a screen in front 
of them. To ensure accurate pronunciation, participants listened to 
a speech file (synthesized using AudioStack [3]) before recording 
a sentence. As an example, Table 2 contains the sentences from 
the second Harvard list [39]. In total, we recorded 240,110 frames 
(≈ 67 minutes) of active speech over 1,200 sequences (mean = 200 
frames, SD = 73 frames). On average, each Harvard list is spoken 
by 12 participants. 

Table 2: Second list of the Harvard Sentences Database [39]. 
Each list is phonetically balanced. 

List Harvard Sentences 
2 The boy was there when the sun rose. 

A rod is used to catch pink salmon. 
The source of the huge river is the clear spring. 
Kick the ball straight and follow through. 
Help the woman get back to her feet. 
A pot of tea helps to pass the evening. 
Smoky fires lack flame and heat. 
The soft cushion broke the man’s fall. 
The salt breeze came across from the sea. 
The girl at the booth sold fifty bonds. 

Scripted Dialogs. Pairs of participants were acting out a subset 
of dialogs from DailyDialog [31] where each dialog turn is labeled 
in terms of emotion and intention. Since DailyDialog has an imbal-
anced label pair (i.e., emotion-intention) distribution, we developed 
a randomized downsampling algorithm that approximates unifor-
mity across label pairs in the subset (see Section 4.1.3). We used 
this algorithm to sample 100 dialogs from DailyDialog. An example 
dialog can be found in Table 3. Each pair of participants acted out 
between 15 and 30 randomly selected dialogs (25 minutes on aver-
age). In total, we recorded 715,590 frames (≈ 199 minutes) of active 
speech (mean = 237 frames, SD = 174 frames), and 7.59 participant 
pairs per dialog on average. 

Free Dialogs. To capture non-acted, realistic performances with 
varying emotions, participants were asked to have short free con-
versations on affective images from the GAPED dataset [16] for 
25 minutes. GAPED contains 730 images with ratings for valence, 
arousal, and the alignment of the depicted scene with internal 
(moral) and external (legal) norms. We performed 𝑘-means cluster-
ing with 𝑘 = 3 (corresponding to a positive, neutral, and negative 
category) on the valence and arousal ratings of the images. From 
each of the three clusters, we randomly chose three samples that 
had a small standard deviation in terms of valence and arousal (i.e., 
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Figure 8: Left: Sketch of the recording setup. Right: Sample scene from the free dialogs (iii) where participants were shown a 
neutral image stimulus (i.e., a flower pot). 

Table 3: Sample dialog from DailyDialog [31] including the 
ground truth dialog act and emotion labels. 

ID Utterance (DailyDialog) Dialog Act Emotion 

A Waiter! Directive No emotion 
B I’ll be with you in a second. 

Uh... Yes, ma’am ? 
Commissive No emotion 

A This is not what I asked for. 
I’m afraid. 

Inform Sadness 

B Oh, I’m so sorry. May I ask 
what you ordered again? 

Directive Sadness 

A Yes. What I ordered is roast 
beef, not roast beef sand-
wiches. 

Commissive No emotion 

Table 4: Sample conversation between two participants on 
the neutral image (i.e., a flower pot) from Figure 8 including 
the predicted dialog act labels. 

ID Utterance (Custom) Predicted Dialog Act 
A Is that a flower pot or something? Question 
B Yeah. Inform 
A It seems so, because of the color 

and the dust. 
Inform 

B Yeah, you’re right. Inform 
. . . . . . . . . 

9 images in total). The images were upscaled to 2560 × 1920 pixels 
using ESRGAN [50]. Every participant pair was presented with all 
9 images in a counterbalanced order with respect to the category. 

We display a sample scene from the free dialogs in Figure 8. 
Two participants discuss a neutral image stimulus (i.e., a flower 
pot) from the GAPED dataset. The recordings from the free dialogs 
were diarized using pyannote.audio [7, 8]. Google Speech-to-Text 
was used to transcribe the diarized snippets. Nevertheless, manual 
correction was required to fix faulty diarizations and transcriptions. 

To obtain dialog act labels, we used our multimodal classifier 
trained on DailyDialog [31] and DailyTalk [30] and performed 
inference on the free dialogs. In Table 4, we show a sample dialog 
on the affective image in Figure 8 as well as the predicted labels. 
In total, we recorded 2,240,391 frames (≈ 622 minutes) of active 
speech (mean = 401 frames, SD = 560 frames). 

4.1.3 Downsampling Algorithm. In the following, we explain the 
downsampling algorithm that we developed to reduce the size of 
DailyDialog for our data collection while achieving close uniformity 
on label pairs. This is not a trivial task since a dialog always contains 
multiple labels due to its multiple turns. Let 𝑛 be the number of 
unique emotion-intention label pairs in the entire set 𝑅, i.e., 𝑛 = 
4 · 7 = 28 for DailyDialog. The algorithm encodes a dialog 𝑖 in the 
form of a vector 𝑣𝑖 ∈ N𝑛 where each entry 𝑗 ∈ [1, 𝑛] represents 
the number of occurrences of label pair 𝑗 in dialog 𝑖 . Let further be 
var(𝑣𝑖 ) the variance across the elements of 𝑣𝑖 . Our goal is to sample 
𝑆 ⊆ 𝑅 with |𝑆 | << |𝑅 | such that 

𝑆 = arg min 
𝑣𝑖 ∈𝑆 

var 
 |𝑆 |−1∑︁ 

𝑖=0 

𝑣𝑖 

 
. (7) 

We believe this problem is NP-complete (reduction to the knapsack 
problem) and thus only provide an approximate solution. Our al-
gorithm randomly selects an initial subset 𝑆0. In each iteration 𝑡 , 
the algorithm draws a new sample 𝑣 ′ 

𝑖
∈ 𝑅 \ 𝑆𝑡 −1 and replaces a 

randomly selected 𝑣𝑖 ∈ 𝑆𝑡 −1, i.e., 

𝑆𝑡 = 𝑆𝑡 −1 \ {𝑣𝑖 } ∪ {𝑣 ′ 𝑖 }, (8) 

iff. 𝑣 ′ 
𝑖 reduces var(𝑆𝑡 ). While the majority label pair (no emotion, 

inform) is represented approximately 2,600 times as often as the 
minority label (disgust, directive) in DailyDialog, we can reduce this 
factor to 38 in 𝑆 . However, the majority and minority labels change 
to (no emotion, commissive) and (disgust, commissive), respectively. 

4.1.4 Procedure. Upon arrival, participants read the written in-
formation form. After giving their written informed consent, they 
performed the three types of recordings as described in Section 4.1.2. 
There were always two participants at the same time. Finally, they 
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filled in an exit questionnaire and received their monetary compen-
sation. This took approximately 90 minutes in total. 

5 RESULTS 

5.1 Quantitative Results 
Table 5 shows the performance of our multimodal model on all three 
datasets. We used a modality fade-in approach during training. We 
trained on DailyDialog, evaluated the network’s performance on 
its test set, then fine-tuned on DailyTalk, evaluated on its test set 
again, and finally fine-tuned on the scripted dialogs in COMO-
CAP and evaluated on its test set. Thus, our model always uses 
all modalities of the current dataset. As a baseline, we trained the 
unimodal state-of-the-art architecture developed by He et al. [25]. 
For a fair comparison, we also trained the baseline on DailyDialog 
first and fine-tuned it on DailyTalk and the scripted dialogs in CO-
MOCAP afterwards. Here, we again freeze the text branch of the 
baseline and only train the decoding layers. Additionally, Table 5 
shows the performance on DailyDialog for state-of-the-art multi-
task approaches (DCR-Net [34], Co-GAT [35], and ChatGPT 3-shot, 
P.E [55]) as well as the best performing unimodal single-task ap-
proaches (CASA [37], and WEAKDAP [12]). Our model is superior 
to all other methods in the unimodal case (DD column). This indi-
cates that the Transformer-based text encoder learns descriptive 
patterns that can be successfully decoded to dialog act predictions. 
The small improvement compared to the baseline [25] is most likely 
caused by our model’s more powerful decoder. When fine-tuning 
on DailyTalk, our model successfully integrates acoustic features 
and outperforms the text-only model, leading to a relative improve-
ment in the Macro F1 score of 1.24% compared to the baseline. This 
aligns with the findings from other bi-modal approaches [22, 33], 
which have been trained on different datasets comprising different 
dialog act labels. Since COMOCAP contains more speakers, further 
training the audio encoder adds more variance, which can lead to a 
more robust model. The results obtained on this dataset show an 
even greater relative improvement in performance (1.7%). 

5.1.1 Modality Ablation Study. To better understand the signif-
icance of each modality for DAC, we trained our model on sub-
sets of the available modalities in COMOCAP (scripted dialogs) 
and report the corresponding performance in Table 6. For this ab-
lation, we did not perform any pre-training on DailyDialog nor 
DailyTalk. For classifying dialog acts in an unimodal setting, text is 
the most discriminative modality, followed by audio. When pair-
ing two modalities, the combination of text and audio leads to the 
highest Macro F1 score. Moreover, adding video to text does not 
have a significant effect, indicating that facial expressions may 
not represent an important cue for detecting intent. Interestingly, 
combining audio and video worsens the performance compared 
to the unimodal approaches. Lastly, the model that uses all three 
modalities achieves the best performance. While text and audio 
may be sufficient for detecting intent, visual inputs can stabilize 
predictions when the training set is small like the scripted dialogs 
in COMOCAP. Here, the labeled fraction that can be used contains 
only 100 unique dialog contents. 

5.2 Qualitative Results 
To gain a better understanding of how the additional modalities 
influence our model’s decision-making, we examined individual 
predictions made by the multi- and unimodal (text-only) models. 
The scripted dialogs in COMOCAP contain several duplicated con-
versations uttered by distinct participants. Consequently, the audio 
and video recordings linked with these conversations are unique. 
Therefore, utilizing samples from this category allows for an ex-
ploration of how the behavior of the multimodal model evolves in 
response to the varying additional input modalities. 

We manually analyzed the predictions on utterances for speakers 
where the performance of our multimodal model deviated most 
from the unimodal baseline. This includes cases where our multi-
modal model accurately predicts the ground-truth label, whereas 
the unimodal model fails, and vice versa. We discovered that most 
of those utterance are composed of multiple sentences with varying 
intent. Table 7 shows two examples where the DAC result changes 
with integrating the additional modalities. In the first utterance, the 
sentence “He is not breathing and there’s no pulse.” is related to the 
function of inform, while “Call 911.” represents a directive message. 
In this case, including audio and video in addition to text helps our 
model to correctly predict the ground-truth label. For the second 
utterance, the first sentence “Yeah, it’s boring.” corresponds to an 
inform message, while “I’d rather read something more exciting.” 
represents a commissive message. Here, the incorporation of addi-
tional modalities negatively impacted the predictive performance. 

Figure 9 displays the Root-Mean-Square energy of the audio 
signals for the described utterances (see Table 7). In both examples, 
it can be observed that the model chooses the intent of the sen-
tence that has the highest RMS energy for forming a prediction. 
By emphasizing the sentence “Call 911.”, the speaker expresses the 
urgency of this message. Therefore, the intent of this sentence be-
comes crucial and can be considered as the principal function of 
the whole utterance. Furthermore, this means that the multimodal 
model is not necessarily wrong with respect to the dialog act of 
the second utterance. Instead, the faulty prediction may arise from 

Oh, no. He is not breathing and there's no pulse. Call 911. 

Inform Directive 

Yeah, it's boring. I'd rather read something more exciting. 

Inform Commissive 

Figure 9: Acoustic energy of the two utterances in Table 7 in 
form of the Root-Mean-Square (RMS) energy of the audio 
signals. The intent of the sentence with the highest RMS 
energy corresponds to the multimodal model’s prediction. 
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Table 5: Performance on the test sets of DailyDialog (DD), DailyTalk (DT), and COMOCAP (CM) when using modality fade-in 
training for the unimodal baseline [25] and our proposed multimodal network. We only used the scripted dialogs from 
COMOCAP. Precision, recall, and F1 score are computed using macro-averaging. Our model improves the baseline on all test 
sets in terms of F1 score and achieves better performance compared to other state-of-the-art methods. 

Accuracy (↑) Precision (↑) Recall (↑) F1 (↑) 
DD DT CM DD DT CM DD DT CM DD DT CM

DCR-Net* [34] - - - 79.10 - - 79.00 - - 79.10 - -
Co-GAT* [35] - - - 81.00 - - 78.10 - - 79.40 - -
ChatGPT 3-shot, P.E† [55] 84.00 - - - - - - - - 72.00 - -
CASA* [37] - - - 77.90 - - 76.50 - - 78.00 - -
WEAKDAP† [12] 84.20 - - - - - - - - - - -
He et al. [25] 84.36 85.20 80.59 80.34 80.59 74.67 78.81 79.15 82.63 79.52 79.82 76.44 
Ours 84.50 85.79 77.96 80.44 81.72 79.13 78.96 80.02 78.42 79.66 80.81 77.74 
*Results reported from [35] 
†Results reported from [55], P.E stands for prompt engineering 

Table 6: Performance of our approach when ablating modal-
ities in COMOCAP (scripted dialogs). Precision, recall, and 
F1 score are macro-averaged. In terms of accuracy and F1 
score, we achieve the best performance utilizing all three 
modalities. 

Modalities Accuracy (↑) Precision (↑) Recall (↑) F1 (↑) 
Text 68.75 63.65 67.35 62.75 
Audio 52.01 49.71 51.08 50.15 
Video 35.53 37.45 36.37 35.00 
Text + Audio 74.67 76.45 72.97 73.37 
Text + Video 65.46 61.96 63.76 62.77 
Audio + Video 36.18 34.32 29.68 30.21 
Text + Audio + Video 75.33 75.68 75.37 75.00 

Table 7: Predictions of the unimodal vs. multimodal model 
on test samples in COMOCAP (scripted dialogs) and the cor-
responding ground-truth (GT). We additionally propose fine-
grained labels that may better reflect the varying intent in 
the input utterances. 

Utterance GT Fine-grained Unimodal Multimodal 
Oh, no. He is not 
breathing and there’s 
no pulse. Call 911. 

Directive Inform, 
Directive 

Inform Directive 

Yeah, it’s boring. I’d 
rather read some-
thing more exciting. 

Inform Inform, 
Commissive 

Inform Commissive 

a disagreement between the annotator’s and voice actor’s inter-
pretation of the utterance. Hence, more fine-grained labels may be 
required for longer utterances. 

5.3 Online Chatbot Conversations 
Our work is intended for the development of enhanced conversa-
tional digital characters. In such scenarios, we posit that incorporat-
ing character state labels, like intent, that have been predicted for 

a chatbot’s derived response can contribute to making synthesized 
speech [44] and animations more realistic. To provide rationale for 
integrating our DAC model into ECA dialog systems, we perform 
two additional analyses. First, we quantitatively report our model’s 
performance on a modified version of the utilized datasets. These 
modifications are designed to mimic human-chatbot conversations, 
where we only have multiple modalities available on the user side. 
Secondly, since there may remain a domain gap to real human-
chatbot conversations, we additionally provide qualitative results 
on real interactions with a conversational agent. In this context, 
we test the usability of our multimodal model for predicting dialog 
acts in real-time. 

5.3.1 Quantitative Results. We adjusted DailyTalk and COMOCAP 
such that the two speakers are assigned a “user” and “chatbot” role. 
For utterances belonging to the user, we replaced the initial text 
with transcriptions generated from the audio recordings using the 
Whisper Speech-to-Text (STT) model [36] from OpenAI. In actual 
chatbot interactions where the user communicates with the chatbot 
through speech, there are no ground-truth transcriptions available. 
Instead, they need to be generated on the fly using an STT model. 
Through this type of dataset modification, we can analyze the im-
pact of faulty speech transcriptions, which commonly occur in 
state-of-the-art STT methods used for human-character interac-
tions. For utterances belonging to the chatbot, we keep the initial 
text but remove the corresponding audio and video recordings. 

Table 8 shows the Macro F1 scores on different versions of the 
train (T) and evaluation (E) sets of DailyTalk and COMOCAP ob-
tained by our multimodal model and the baseline by He et al. [25]. 
The superscript indicates that the respective set was modified to 
simulate human-chatbot interactions. For example, for “ T / E* ”, the 
model was trained on the original training dataset (full modalities 
for both interlocutors) and evaluated on the altered version (only 
text for one interlocutor, full modalities for the other). 

The results show that the performance of our model and the 
baseline degrades when they are evaluated on the modified conver-
sations. The fact that the Macro F1 scores obtained by the unimodal 
model also decrease suggests that the poor quality of automatically 
generated transcriptions negatively impacts DAC. Furthermore, the 
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Table 8: Macro F1 scores on modified versions (*) of the train 
(T) and evaluation (E) sets of DailyTalk and COMOCAP to 
simulate human-chatbot interactions. For the modified ver-
sions, we removed audio and video from the input of one 
interlocutor and replaced the text by STT transcriptions for 
the other interlocutor. The STT methods used in the pipeline 
negatively impact the performance on DAC. Nevertheless, 
our method still outperforms the baseline as long as the train-
ing and evaluation distributions align. 

Macro F1 (↑) 
Dataset DailyTalk COMOCAP 

T / E T / E* T*/ E* T / E T / E* T* / E* 
He et al. [25] 79.82 77.39 77.57 76.44 75.23 75.67 
Ours 80.81 77.18 78.52 77.74 74.33 76.23 

performance of the unimodal model increases slightly when the 
training utterances are also altered (i.e., the model becomes more 
robust to transcription mistakes). This increase in performance 
is substantial in the case of the multimodal model. These results 
indicate that training on modified utterances is essential for robust 
DAC in human-character interactions. Furthermore, it shows that 
faulty transcriptions of state-of-the-art STT methods introduce 
non-negligible error sources in DAC. These are essential insights 
for developing robust dialog systems. 

5.3.2 Online Inference. To mimic real online interactions with a 
conversational agent, we conversed with a GPT-3.5-based chatbot 
through speech, which was automatically transcribed and sent to 
the chatbot. The corresponding conversational user interface is 
shown in Figure 10. The transcription of a sample conversation and 
the dialog acts inferred on the chatbot’s text and the user’s text and 

GPT-3.5 

Figure 10: Conversational user interface for interactions with 
a GPT-3.5-based chatbot. Audio is recorded and transcribed 
to text, which is then sent to the chatbot. 

Table 9: Online Inference on utterances between a human 
and a chatbot using our best pre-trained multimodal model. 
For the user’s utterances, both text and audio inputs were 
used. For the chatbot, the model only uses text. 

Speaker Utterance Predicted Dialog Act 
Chatbot Please make yourself at home. Ask me any-

thing. 
Directive 

User How do you like your coffee? Question 
Chatbot With a bit of milk and sugar, it’s a nice morn-

ing drink. 
Inform 

User That’s nasty! Sugar in coffee makes me vomit! Inform 
Chatbot Ha! I understand. Milk and sugar can be diffi-

cult for some people. 
Inform 

User Can you go and make me a black coffee? Directive 
Chatbot Of course! Let me know if you like it. Commissive 
User Oh, I didn’t expect it to be this hot! Inform 
Chatbot That’s why I like to add a bit of cool water to 

my coffee. 
Inform 

User You almost burned me. You should be more 
careful! 

Directive 

Chatbot Yes, I will be more careful in the future. Commissive 

audio are shown in Table 9. The predicted dialog acts correspond to 
the expected intents of both the user’s and the chatbot’s utterances. 

In Figure 11, we show the average time measurements of the 
previously described pipeline for DAC in human-chatbot interac-
tions. This also includes video on the user side, which is not sent to 
the chatbot but only processed locally by our DAC model. Hence, 
it does not require any extensive transfer of sensitive data. For 
this, we consider an utterance of average length. Its audio signal 
is 4 seconds in length, the sentence contains 11 words, and 8 total 
frames are extracted from the video recording at equal intervals (2 
per second). In total, less than 0.3 seconds are needed to obtain the 
intent of the utterance. Among these, 0.082 seconds are required 
to generate the transcription of the utterance and 0.037 seconds 
to get the timestamps for each word. Video pre-processing takes 
another 0.104 seconds. Finally, our multimodal model takes 0.04 
seconds to make a prediction. Overall, this corresponds to 15% of 
the total inference time of 0.263 seconds. With these run-times, our 
approach can be used in online applications and is hence suitable 
for ECA dialog systems. 

0.082s 
31% 

0.037s 
14% 

0.104s 
40% 

0.04s 
15% 

STT 

Word-level alignment 

Pre-process video 

Obtain predictions 

0.263s 

Figure 11: Time required for inference on a user’s utterance 
(4 seconds, 11 words, 8 frames) incorporating all modalities 
in a user-chatbot interaction. The video pre-processing for 
our DAC model is the bottleneck of the pipeline. However, a 
prediction can still be made in real-time. 
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5.3.3 Privacy. When processing video data for DAC, privacy con-
cerns may arise. However, our method runs locally and hence the 
video data is not transferred to external servers. Furthermore, our 
proposed method is tailored for dialog systems which inherently 
include video processing to enhance the interactive experience, e.g., 
allowing the character to react to user characteristics (see Figure 1 
for an example). In such contexts, users might naturally anticipate 
the character’s observational capabilities, potentially adjusting their 
privacy expectations accordingly. Given this, incorporating video 
data for DAC aligns seamlessly with the existing functionalities of 
these platforms and does not introduce additional complexity. Over-
all, however, we acknowledge a trade-off between the improvement 
in accuracy and privacy preservation. 

5.4 Limitations 
Our findings provide valuable insights into the impact of acoustic 
and visual features on DAC, supporting the hypothesis that a multi-
modal approach is superior for this task. However, there are certain 
limitations to the methods that we used in this work. First, we only 
had access to a comparably small number of labeled conversations 
comprising all three modalities. Therefore, further analysis on a 
larger dataset based on text, audio, and video may be required. 
Furthermore, apart from the scripted dialogs in COMOCAP, the 
used training datasets are highly imbalanced. Although this prob-
lem is partially solved by utilizing a weighted sampling technique, 
a balanced dataset would provide more diverse examples for the 
underrepresented classes. Moreover, the usefulness of visual cues 
is not fully exploited in our approach because of the way the video 
recordings are processed and how their features are extracted. Due 
to spatial and temporal constraints, we had to compromise visual 
information by reducing the videos to a small number of frames. In 
addition, due to the limitations of our recruiting pool, COMOCAP 
contains a bias in terms of age and region of origin. This may impact 
the type of conversations present in the free dialogs of COMOCAP 
as well as the distribution of auditory and visual features. Lastly, 
existing research has primarily focused on the role of dialog acts 
in facilitating response selection and enhancing speech synthesis. 
However, the impact of dialog acts on animation synthesis for ECAs 
remains unexplored. This aspect will be a focus of future research. 

6 CONCLUSION 
Our work represents an important step towards the development of 
enhanced conversational digital characters. We developed a multi-
modal network that uses text, audio, and video to predict dialog acts 
in conversations. Leveraging the cues offered by each communica-
tion channel, our model can accurately classify the utterances with 
respect to the functions they serve in the dialog (inform, question, 
directive, or commissive). We collected a novel multimodal dataset 
to train our network. We showed that our model outperforms pre-
vious unimodal networks by 1.7% Macro F1 score. Furthermore, we 
performed an ablation study where we demonstrated that using 
multiple input modalities reduces the number of required training 
samples due to faster learning. Lastly, we highlighted the robust-
ness and versatility of our model by showing that it can predict 
dialog acts in human-chatbot conversations in real-time, taking 
less than 0.3 seconds on average. By having real-time access to the 

dialog acts associated with past utterances in the dialog, we lay 
the groundwork for research on enhanced speech and animation 
synthesis for digital characters. Our work can be easily integrated 
into existing dialog systems, providing a seamless enhancement to 
their functionality and capabilities. 
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