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Fig. 1. GroomCap reconstructs high-fidelity hair geometry across a diverse array of hairstyles. For each result, we show one input view on the left,
alongside a rendering of the reconstructed hair model from the same view on the right. A pre-defined material is used to better visualize geometric details.

Despite recent advances in multi-view hair reconstruction, achieving strand-
level precision remains a significant challenge due to inherent limitations in
existing capture pipelines. We introduce GroomCap, a novel multi-view hair
capture method that reconstructs faithful and high-fidelity hair geometry
without relying on external data priors. To address the limitations of conven-
tional reconstruction algorithms, we propose a neural implicit representation
for hair volume that encodes high-resolution 3D orientation and occupancy
from input views. This implicit hair volume is trained with a new volumetric
3D orientation rendering algorithm, coupled with 2D orientation distribution
supervision, to effectively prevent the loss of structural information caused
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by undesired orientation blending. We further propose a Gaussian-based
hair optimization strategy to refine the traced hair strands with a novel
chained Gaussian representation, utilizing direct photometric supervision
from images. Our results demonstrate that GroomCap is able to capture
high-quality hair geometries that are not only more precise and detailed
than existing methods but also versatile enough for a range of applications.

CCS Concepts: • Computing methodologies→ Parametric curve and
surface models.

Additional Key Words and Phrases: Strand-level hair modeling, multi-view
reconstruction
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1 INTRODUCTION
Hairstyles are not merely aesthetic decorations; they serve as a
profound expression of individual and cultural identity that shapes
our perception of others. In the digital realm, realistic hair plays a
crucial role in virtual reality, gaming, and for digital doubles, where
visual authenticity is paramount. Despite ongoing efforts in human
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digitization, accurate reconstruction of strand-level hair geometry
from images remains a formidable and unique challenge. This com-
plexity arises from the detailed, layered, and intertwined structures
of hair, alongside its natural variability in style, texture, and material,
all of which significantly complicate the capture process.
Over the past decades, multi-view hair reconstruction has seen

encouraging progress. Well before the advent of neural networks,
traditional capture pipelines typically reconstruct the visible exterior
of hair and compute a 3D orientation field using 2D estimates from
each view, followed by completing the 3D structure of the entire
hair volume to generate the final strands. Despite the promising
results, the faithfulness and fidelity of the reconstructed hair are
largely compromised by key limitations of these pipelines: reliance
on explicit point clouds and orientation projections may overlook
critical details in regions of uncertainty and overlapping strands;
simple volume completion like diffusion or ribbon conversion often
produces overly smoothed hair and may only work effectively on
distinct wisp structures; and the final strand extraction further
deviates the result from the input.
To address these challenges, recent methods have sought to

leverage data-driven solutions, incorporating priors learned from
synthetic data into hair capture pipelines. While prior-based recon-
struction has seen notable success in other human components, such
as faces, hands, and bodies, its application to hair remains challeng-
ing for two primary factors. First, the scarcity of ground-truth hair
data necessitates large-scale synthetic assets, which are not only
costly to collect at scale but also suffer from an inevitable gap to real-
world examples. Second, due to the extreme diversity and variability
of hair, even the most extensive hair libraries cannot adequately
cover the precise details of specific subjects. Consequently, despite
more visually pleasing results, these prior-based approaches often
yield highly regularized and flattened geometries that struggle to
capture structural details outside the training set.

Data priors are not a cure-all. Simply plugging prior models into
capture pipelines, without addressing the underlying algorithmic
limitations, still results in challenges that hinder us from achieving
high-quality hair geometry capture. In this work, we take a more
fundamental look at the problem and push the boundaries of high-
quality hair capture without relying on any data priors.

By examining existing capture pipelines, we identify several key
issues: 1) Representing hair as discrete exterior surfaces or explicit
volumes often leads to a significant loss of spatial information, such
as rich structural details and natural variations in occupancy. 2) 3D
hair structure is inferred from image-based orientation estimation,
where each pixel is formed from superposing numerous strands with
dramatically different directions. However, the common practice of
aggregating them into a single orientation angle discards crucial
structural information necessary for accurate recovery. 3) Even with
initially accurate projected 3D structures, the quality of the hair
geometry tends to degrade after volume completion and strand
tracing, resulting in poor spatial distribution, missing local details,
inconsistent boundaries, and unnatural curvatures.
In this work, we introduce GroomCap, a novel multi-view hair

capture pipeline aimed at reconstructing high-fidelity and strand-
level accurate hair geometry without external data priors. Our
method incorporates several major technical innovations leading to

unprecedented performance, versatility, and robustness. Firstly, we
propose a neural implicit representation for volumetric hair, encod-
ing 3D orientation and occupancy from input views. Compared to
exterior surfaces or explicit volumes, our implicit hair volume enjoys
greater accuracy, expressiveness, and memory-efficiency. Secondly,
we train our hair volume model to effectively capture the complete
hair structure. To achieve this, we develop a new volumetric 3D
orientation rendering algorithm, where orientation integration is
performed along each ray, maintaining all overlapping hair struc-
tures without blending. Correspondingly, we revisit 2D orientation
estimation to estimate a per-pixel orientation distribution as the train-
ing supervision, rather than a single orientation angle. Finally, we
introduce Gaussian-based hair optimization, applied to initial hair
strands traced from the volume, to improve their faithfulness and
fidelity through direct photometric supervision from input images.
The key ingredient is a new chained hair Gaussian representation,
featuring carefully tailored geometry and appearance parameters,
along with a dynamic splitting and pruning mechanism.
Altogether, GroomCap effectively captures accurate and high-

fidelity dense hair models for a diverse range of hairstyles, using
the same pipeline and parameters for all of them. The resulting
strand geometries are consistently natural and guaranteed to be
scalp-rooted, thus supporting various editing applications, including
re-rendering, physics-based animation, and interactive grooming.

2 RELATED WORK

2.1 Hair Capture without Data Prior
Multi-view hair capture is of great interest to both research and
industry communities, in attempts to digitize 3D hair without in-
volving laborious artistic authoring. Early efforts [Paris et al. 2004;
Wei et al. 2005] construct visual hulls to constrain the hair volume
and estimate 3D hair orientations that are consistent across views.
[Paris et al. 2008] proposes a system that is capable of reconstruct-
ing exterior strand positions and growing strands within diffused
orientation volumes. [Luo et al. 2012, 2013b] introduce multi-view
stereo methods for reconstructing detailed hair surfaces using 2D
orientation fields. Following that, [Luo et al. 2013a] proposes a
structure-aware hair capture method that incorporates structural
priors to predict ribbon connectivity for capturing hair wisp struc-
tures. Focusing on capturing sparse outer strand segments instead
of complete hairstyles, [Jakob et al. 2009] detects accurate hair fibers
with shallow depth of field captures. [Nam et al. 2019] introduces
line-based PatchMatch multi-view stereo for hair, which is further
improved by [Sun et al. 2021] to support hair inverse rendering.
Besides RGB images, other imaging modalities have also been

investigated, such as RGB-D [Zhang et al. 2018] and thermal imaging
[Herrera et al. 2012]. Recently, [Shen et al. 2023] achieves high-
quality hair reconstructions by leveraging computed tomography
(CT) scans to obtain inner strand structures. However, it is unsuitable
for use on live human subjects due to the large exposure of X-rays.
Instead of strand-based geometry, some recent methods [Rosu

et al. 2022a; Wang et al. 2023, 2022] implicitly reconstruct hair in
volumetric representations. Despite achieving great visual quality,
their primary focus is on hair image synthesis for novel views or
motions, rather than capturing precise strand geometry itself.
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2.2 Model-Based Hair Capture
Data priors start to gain traction in single-view [Chai et al. 2015,
2016, 2013, 2012; Hu et al. 2015] or sparse-view hairmodeling [Zhang
et al. 2017] to address the inherent challenges of these highly ill-
posed problems. Early works [Chai et al. 2016; Hu et al. 2015] focus
on matching and retrieving the closest dataset items to the input
views as the foundation for further fitting. More recently, neural-
based approaches become dominant the field, offering improved
accuracy and robustness. For example, [Zhou et al. 2018] trains
a convolutional neural network to infer geometry encoding from
input images. [Saito et al. 2018] develops a volumetric variational
autoencoder for generating hair conditioned on the input image.
[Yang et al. 2019] infer 3D shape and motion from monocular videos
for dynamic hair capture. [Wu et al. 2022] trains a voxel-aligned
implicit function to infer 3D volumetric information from the image.
[Zheng et al. 2023] proposes inferring 2D depth and orientation
maps before predicting 3D geometry. [Kuang et al. 2022] extends
these techniques to handle sparse view inputs.

In the context of dense multi-view hair capture, early efforts adopt
data priors to enhance reconstruction robustness with physics-based
strand priors [Hu et al. 2014a] or address the specific challenge of
braid reconstruction with pre-defined prior models on braid patterns
[Hu et al. 2014b]. More recently, researchers have begun to integrate
data priors more deeply into hair capture pipelines. [Sklyarova et al.
2023] employs a surface-based representation for the coarse shape
of the hair volume and reconstructs hair strands as a geometry
texture in a prior-guided manner. [Wu et al. 2024] combines data
priors for predicting interior structure with conventional patch-
basedmulti-view optimization for exterior reconstruction, achieving
state-of-the-art results.

2.3 Preliminaries
Neural implicit fields. Neural implicit fields leverage neural net-

works to represent 3D scenes. In the groundbreaking work of NeRF
[Mildenhall et al. 2020], a multi-layer perceptron (MLP) model is
adopted to predict volume density and radiance for any 3D point. Us-
ing this MLP, each pixel can be rendered through alpha-blending the
radiance of sample points along the ray, akin to classical volume ren-
dering techniques. This allows for the synthesis of arbitrary views
by rendering all rays originating from a virtual camera. The model
itself is trained on multi-view images, adhering to the synthesis-and-
comparison paradigm. Our method builds upon the original NeRF
model, extending its capabilities to 3D hair structure reasoning.

3D Gaussian splatting. 3D Gaussian splatting (3DGS) [Kerbl et al.
2023] is a recent technique that represents a scene using anisotropic
3D Gaussians. Each Gaussian is defined by a set of parameters,
including position, covariance matrix, opacity, and color. These
Gaussians can be rendered differentiably using the splatting method
and are trained with supervision from color images. While 3DGS is
effective at reproducing visual appearance, the underlying geometry
formed by these Guassians has been less explored. In this paper,
we render hair strands as chained Gaussians, employing pixel-
wise supervision. Additionally, we propose a novel fomulation that
enforces geometric constraints during the optimization.

Fig. 2. The input to our pipeline includes calibrated multi-view images
(left), semantic segmentations of hair and foreground (middle), recon-
structed inner and outer meshes with the hair bounding box (right), and
optional hair partline annotation on one image (middle column, first row).

3 METHOD OVERVIEW

3.1 Our Pipeline
Our method contains three stages. In the first stage (Sec. 4), we
establish an implicit hair volume that encodes both the spatial
occupancy and orientation of the target hairs frommulti-view image
captures (Sec. 3.2). In the second stage (Sec. 5), we grow initial hair
strands within the hair volume based on simple heuristics. In the
last stage (Sec. 6), starting from these initial strands, we optimize
the final hair geometry with respect to multi-view images utilizing
differentiable rendering, where strands are represented as chained
hair Gaussians.

The final output of this pipeline is a collection of approximately
150𝐾 hair strands, each explicitly represented as a polyline with
𝑁𝑘 = 100 points. While appearance parameters are also estimated
as side-outputs, they are not the focus of this work. Being prior-free,
our method is designed to capture subject-specific details such as
flying strands beyond the coverage of existing datasets. Meanwhile,
our method also strives to maintain the physical correctness of the
hair geometry, including smoothness and scalp-connectivity. The
estimated geometry is ready to be used in downstream pipelines
such as physically based rendering, animation, and editing tasks.

3.2 Data Acquisition and Preparation
We collect input data using our multi-camera system with 64 cam-
eras at 4𝐾 resolution under uniform illumination. All cameras are
calibrated, synchronized, and arranged on a sphere centered around
the subject. Depending on specific hairstyles, there are typically
around 50 cameras that capture the hairs, where the diagonal size of
hair bounding box ranges from 1.3𝐾 to 4.6𝐾 pixels. For each view,
we compute a semantic segmentation mask that categorizes each
pixel as either background, hair, or body (i.e. non-hair foreground).
To ensure robust segmentation, we employ multiple off-the-shelf
models and derive the final pseudo ground-truth labels using a
simple aggregation strategy, elaborated in Appendix B.
Using all views, we apply the technique in [Guo et al. 2019] to

achieve a rough surface reconstruction of the subject. We then dilate
the mesh by 2cm to ensure all hairs are encompassed. This mesh,

ACM Trans. Graph., Vol. 43, No. 6, Article 254. Publication date: December 2024.



254:4 • Yuxiao Zhou, Menglei Chai, Daoye Wang, Sebastian Winberg, Erroll Wood, Kripasindhu Sarkar, Markus Gross, and Thabo Beeler

Fig. 3. The implicit hair volume network comprises three sub-modules:
the feature network and appearance network are used to estimate view-
independent volume density 𝜎 and view-dependent radiance a from input
position x and view direction z, similar to NeRF; an additional structure
network is devised to estimate hair 𝜌ℎ and body occupancy 𝜌𝑏 as well as
3D orientation (𝜃, 𝜙 ) in polar angles.

referred to as the outer mesh, sets a hard outer boundary for the
subject and hairs. We also fit a parameteric head mesh model to the
captured subject using dense facial landmarks. The resulting mesh
of the fitted head model, referred to as the inner mesh, approximates
the bald surface of the subject’s head and serves as the basis for
locating the hair scalp where all strands originate. Finally, we derive
a loose 3D bounding box of the hairs by projecting per-view hair
segmentation onto the outer mesh,. The outer mesh, inner mesh,
and bounding box together define the hair volume on which the
whole pipeline operates. If the hairstyle involves a visible parting
line, we optionally accept a 2D annotation of the line from a selected
top-down view. This straightforward step is the only manual one
in the pipeline and takes less than a minute to complete. Fig. 2
illustrates the inputs required for our method.

After all inputs are prepared, our pipeline works fully automatic
without any further human intervention. We consistently apply
the same pipeline with identical parameters for all results in this
paper, from both our in-house captures and public datasets that
cover diverse hairstyles.

4 NEURAL HAIR VOLUME
In the first stage, we build neural implicit fields to reconstruct the
spatial orientation and occupancy of the subject’s hairs, drawing
parallels to neural radiance fields (NeRFs). Our key contribution
in this stage is to formulate a neural orientation field within the
framework of volume rendering.

4.1 Network Structure
The implicit hair volume is formulated as an MLP network V . The
input to V is a 3D position x ∈ R3, and the output includes volume
density 𝜎 ∈ [0, 1], hair occupancy 𝜌ℎ ∈ [0, 1], body occupancy
𝜌𝑏 ∈ [0, 1] (refers collectively to the non-hair volume), and 3D hair
orientation in polar angles (𝜃 ∈ (0, 𝜋], 𝜙 ∈ (0, 𝜋]), all of which
are view-independent. Note that the polar angles are defined on
a hemisphere because they are undirectional, i.e. "lines" instead
of "rays". During training, we additionally feed V with the view
direction vector z ∈ R3 and receive the view-dependent radiance
color a ∈ R3, similar to the vanilla NeRF.
As illustrated in Fig. 3, our model architecture comprises three

sub-networks. It begins with a shared feature network that employs

Fig. 4. Visualization of 3D orientation rendering and projection. We
take two exemplary samples 𝑡1 and 𝑡2, characterized by 3D orientations of
(0.1𝜋, 0.2𝜋 ) and (0.7𝜋, 0.9𝜋 ) in polar angles. Both samples reside on the
same ray with transmittances of 0.6 and 1.0, where 𝑡1 is closer to the camera.
In the top row, from left to right, we show the expanded 3D orientation
distributions of 𝑡1, 𝑡2, and their blended integration. In the bottom row, we
illustrate the 2D orientation distribution after projecting their integrated
3D orientations using an exemplary camera matrix, detailed in Eq. 7.

positional encoding to map an input 3D position x into a high-
dimensional vector. Subsequently, an appearance network estimates
view-independent volume density 𝜎 and view-dependent color a
from the encoded position vector and additional view-direction
input z. In parallel, the feature network branches into a structure
network that estimates 3D hair orientation (𝜃, 𝜙) and the occupancy
values (𝜌ℎ, 𝜌𝑏 ) of hair and head. In the following, we focus on the
structure network that is specifically devised for our task, while the
feature- and appearance-networks are identical to the original NeRF.

4.2 Neural Orientation Field
Volume rendering of 3D Orientations. The volumetric orientation

plays a crucial role in defining the 3D hair structure. Existing meth-
ods either optimize an explicit direction field with limited resolution
[Wu et al. 2024], or employ neural networks to predict the volumetric
orientation in its entirety, which often leads to oversmoothed results
[Saito et al. 2018]. In contrast, our novel approach optimizes a neural
orientation field that estimates 3D orientations without explicit
limitation in resolution. To construct this neural orientation field,
we introduce a new formulation that “renders” 3D orientations
within the volume rendering paradigm.

Volume rendering of 3D orientations is not as trivial as radiance.
Directly applying 𝛼-blending to the polar angles is conceptually
wrong. For example, if a ray passes through two different hair
strands whose orientations are (𝜋, 0) and (0, 𝜋), assuming the trans-
parency of the front hair is 0.5, then the accumulated orientation
becomes (𝜋/2, 𝜋/2), which is different from either hair and essen-
tially smooths the distinct hairs into the same orientation. The
fundamental reason is that different orientations cannot be naively
added together. To accumulate the orientations of different hairs
along a ray, we need to keep track of all angles.
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To this end, we propose to expand a single 3D orientation, repre-
sented as polar angles, into a distribution, and perform 𝛼-blending
on the distributions. Formally, for a 3D position x, whose polar
angles are (𝜃x, 𝜙x), we construct its distribution of 3D orientations
Hx by using a predefined kernel function as its probability density
function (PDF) ℎx:

ℎx (𝜃, 𝜙) =
1
𝐶x
ℎ′x (𝜃, 𝜙) (1)

ℎ′x (𝜃, 𝜙) =
1

𝛽 ( | |𝜃 − 𝜃x | |2 + ||𝜙 − 𝜙x | |2) + 𝛿
(2)

𝐶x =

∬ 𝜋

0
ℎ′x (𝜃, 𝜙) d𝜃 d𝜙. (3)

Intuitively, ℎ(·) is inversely proportional to the squared distance
from an arbitrary angle (𝜃, 𝜙) to the “center” orientation (𝜃x, 𝜙x),
with a scaling factor 𝛽 , a damping factor 𝛿 , and a divisor𝐶x that nor-
malizes the integral to be 1. We empirically found that this inverse-
proportional function performs better than Gaussian kernels. In
practice, we furthermore consider the periodic and undirectional
characteristics of orientations, replacing ℎ′ with the more precise
form ℎ′′:

ℎ′′x (𝜃, 𝜙) =
1∑︁

𝑖=−1

1∑︁
𝑗=−1

1
𝛽 ( | |𝜃 − 𝜃0 + 𝑖𝜋 | |2 + ||𝜙 − 𝜙0 + 𝑗𝜋 | |2) + 𝛿

. (4)

The expanded distributions are illustrated in the top row of Fig. 4.
Based on the distribution formulationHx, we can compute the

accumulated 3D distribution G𝑟 along an arbitrary ray 𝑟 with the
following PDF:

𝑔𝑟 (𝜃, 𝜙) =
∫ 𝑡𝑓

𝑡𝑛

𝑇 (𝑡)𝜎
(
𝑟 (𝑡)

)
ℎ𝑟 (𝑡 ) (𝜃, 𝜙) d𝑡 (5)

𝑇 (𝑡) = exp
(
−
∫ 𝑡

𝑡𝑛

𝜎 (𝑟 (𝛼)) d𝛼
)
. (6)

These equations are derived from the classical volume rendering for-
mulation, where 𝑡 is the depth value along the ray 𝑟 (𝑡) = o + 𝑡q that
originates from o with direction q, 𝑇 (𝑡) denotes the accumulated
transparency along the ray, and 𝑡𝑛, 𝑡𝑓 are near and far planes.
In the actual implementation, we quantize the continuous inte-

grals into discrete bins. The range (0, 𝜋] is divided into 64 bins
such that the orientation distributions can be approximated by
vectors of 64 × 64 dimensions, and the accumulation is performed
for each dimension individually. Accordingly, we set the scaling
factor 𝛽 = (64/𝜋)2 and 𝛿 = 0.01.

Supervision with 2D Orientations. Now we explain how to super-
vise accumulated 3D orientation distributions G using multi-view
images. In previous works, convolution with a bank of oriented
filters was extensively used to estimate 2D orientation fields on hair
images [Paris et al. 2004; Wu et al. 2024], where the 2D orientation of
each pixel is simply assigned as the angle of the filter that activates
the maximum response. However, we argue that representing a
pixel’s 2D orientation with a single value is insufficient. First, a
filter’s receptive field may cover multiple hair strands with different
orientations. Second, several distinct hair strands may overlay and
pass through the same pixel. In both cases, only retaining a single
angle will discard the valuable structural information of all other

Fig. 5. Visualization of orientation distributions. We start with an
input image on the left, where we apply orientation filters and visualize the
maximum responses in the middle. On the right, we select two exemplary
patches (outlined by green and red rectangles on the left-hand side of the
respective row), where the inner rectangles’ sizes equal to the kernel radius.
On the right-hand side, we illustrate the orientational distribution for each
patch. For the green patch in the top row, there is a single sharp peak,
indicating that most strands share the same direction. In contrast, the red
patch in the bottom row shows a strong peak near 135◦ and a secondary,
broader peak from 30◦ to 70◦. The higher peak represents the thicker hairs
that fill the lower-left half of the patch, while the other peak corresponds to
the strands entering from the top-right corner.Merely keeping themaximum
responses (middle) will omit these critical structural details.

hairs, especially for challenging areas with high local inconsistency.
For example, Fig. 5 inspects the responses of all filters at two patches.
When strand orientations within a patch are locally varied (as high-
lighted by the red rectangle in the second row), using the maximum
response smooths distinct strands into the same orientation and
leads to flat reconstructions.
To better preserve the structural information, we propose to

maintain the responses of all filters, which naturally form a distri-
bution of 2D orientations. We use this 2D orientation distribution
to supervise the neural orientation field, as it effectively aligns
with our formulation that renders 3D orientations as a distribution.
Specifically, for each view with a known camera pose, we project
the 3D orientation distribution G of each ray into a distribution of
2D orientations F with the following PDF:

𝑓 (𝜂) = 1
𝐶𝜂

max
(𝜃,𝜙 ) ∈𝑢

ℎ(𝜃, 𝜙) (7)

where 𝜂 ∈ (0, 𝜋] is the 2D orientation, 𝑢 is a plane spanned by all
(𝜃, 𝜙) pairs whose projection on the image plane is angle 𝜂, and 𝐶𝜂
normalizes the integeral to be 1. Then, we define the loss function
for the neural orientation field as

Lori =

∫ 𝜋

0
| |𝑓 (𝜂) − 𝑓 (𝜂) | |2 d𝜂 (8)

where 𝑓 (𝜂) is the normalized response of the orientation filter at
angle 𝜂.
In our quantized implementation, 𝜂 is discretized into 64 values.

We use 64 Gabor filters to convolve over the grayscale image and
store the responses of all filters. The correspondence between 2D
orientation 𝜂, plane 𝑢, and 3D orientation (𝜃, 𝜙) can be easily enu-
merated. An illustration of a projected 2D orientation distribution
can be found in the bottom row of Fig. 4.
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4.3 Neural Occupancy Field
Our implicit hair volume further establishes neural occupancy fields
by predicting hair occupancy value 𝜌ℎ and body occupancy value
𝜌𝑏 at any given position. The continuous values of hair occupancy
naturally align with the fact that hairs are semi-transparent in im-
ages. The occupancy values 𝜌∗ are accumulated using the standard
volume rendering formula to give per-pixel labels𝜓∗ and supervised
by pseudo ground truth (GT) segmentation labels𝜓∗:

Locc = | |𝜓ℎ −𝜓ℎ | |2 + ||𝜓𝑏 −𝜓𝑏 | |2 . (9)

Notably, the GT masks do not need to be perfect. We find the
segmentations estimated by our method finally outperform GT,
since they implicitly integrate multi-view information.

4.4 Training Strategy
The model undergoes a two-phase training process. Initially, only
the feature and appearance networks are trained with the conven-
tional L2 photometric loss. In the subsequent phase, the structure
network is trained alone with loss 100Lori + 0.02Locc, and the
other two modules are frozen. This two-phase training strategy
enhances stability and convergence. In our experiments, we find
that only supervising radiance in the first phase mitigates the risk
of 𝜎 predictions being contaminated by the relatively noisy 2D
semantic and orientation labels. Following [Sarkar et al. 2023], we
utilize the reconstructed outer mesh to decide the depth sampling
range of the rays. This ensures that the model focuses exclusively
on the hair volume.

5 VOLUMETRIC HAIR TRACING
Once the hair volume is established, we extract hair strands by
tracing within the volume using the inferred volumetric orientation
and occupancy with forward Newton method [Chai et al. 2013;
Kuang et al. 2022; Paris et al. 2008]. Specifically, at timestep 𝑘 ,
each strand is extended by a fixed length 𝑙 = 3mm to a new point
v𝑘 = v𝑘−1 + 𝑙 · norm(m𝑘 ), where the growing direction m𝑘 before
normalization is calculated as:
m𝑘 =𝛾 ·m𝑘−1+

(1 − 𝛾) ·
(
sign(g ·m𝑘−1) · g + 𝜆min(n ·m𝑘−1, 0) · n

)
.

(10)

In this formula, g represents the predicted 3D orientation derived
from polar angles. We disambiguate it to the direction most closely
aligned with the previous strand direction m𝑘−1, determined by the
sign function sign(·) applied to the dot product. Additionally, an
inertia term controlled by the factor 𝛾 encourages smooth growth
transitions to avoid abrupt changes caused by potential outliers. A
surface repulsion term controlled by factor 𝜆 is used to push strands
away from the head according to the surface normal n of the inner
mesh. In our implementation, we set 𝛾 = 0.6 and 𝜆 = 𝑓 /𝑓𝑑 , where
𝑓 is the current penetration distance between v𝑘−1 and the inner
mesh (0 if not penetrating), and 𝑓𝑑 = 5mm is a constant penetration
threshold.

We initialize tracing from seed points uniformly sampled within
the bounding box volume between the inner and the outer mesh.
These seeds are organized into a priority queue, weighted by the
product of volume density and hair occupancy, 𝜎 · 𝜌ℎ . We also

dynamically deprioritize seeds in close proximity to newly traced
strands to promote volumetric uniformity.
During tracing, we monitor a health value for each strand and

cease tracing when this value drops to 0. At each step, the health
is reduced if: 1) the current vertex has low volume density 𝜎 or
hair occupancy 𝜌ℎ ; 2) the vertex goes outside the outer mesh or the
bounding box. Strands traced from seeds in this step are referred to
as volume hairs, which are not guaranteed to connect to the scalp.

The primary challenge with volume hairs not being scalp-rooted
is unreliable structural information near the scalp due to severe
occlusion. To address this, we trace an additional set of scalp hairs
to serve as a bridge between the floating volume hairs and the scalp
surface. Scalp hairs are initiated by sampling seeds on the scalp
region of the inner mesh, with their initial growth directions set to
the normals of the scalp. These hairs are then grown similarly to
volume hairs.

Once all scalp hairs are obtained, for each volume hair, we ran-
domly select a nearby scalp hair and grow the volume hair backward
along this scalp hair to the scalp. This process is able to connect most
strands (typically more than 99%) to the scalp. Any volume hairs that
fail to connect to the scalp are eventually discarded. Additionally,
if a parting line is annotated for the hairstyle, we remove all hairs
crossing it as a refinement step.
The final output of this stage is a collection of 𝑁𝑠 strands S =

{s1, s2, ..., s𝑁𝑠
}. We resample each strand to 𝑁𝑘 = 100 vertices,

i.e. s𝑖 ∈ R𝑁𝑘×3. Although our tracing algorithm can theoretically
generate an arbitrary number of hairs, we target 25𝐾 scalp hairs
and 125𝐾 volume hairs in all cases.

6 GAUSSIAN-BASED STRAND OPTIMIZATION
After navigating through the aforementioned pipeline from 2D
orientation estimation to implicit hair volume prediction and ulti-
mately to strand tracing, we observe a gradual loss of structural
information. In this final stage, we seek direct supervision from the
original images to recuperate the lost fine details, ensuring a proper
match to the captured imagery.

To achieve this, we adopt the image-based differentiable rendering
framework of 3D Gaussian spatting (3DGS) [Kerbl et al. 2023] to
optimize the reconstructed hairs using photometric losses. Our
method introduces a novel chained hair Gaussian formulation that
constrains the relationships among Gaussians along each strand,
aligning with the inherent geometric nature of hair. While the
concurrent work of GaussianHair [Luo et al. 2024] also proposes
to use cylinderal Gaussians as hair proxies, our formulation avoids
hallucination effects with rigorously designed constraints.

6.1 Formulation of Chained Hair Gaussians
In contrast to the vanilla 3DGS framework, our optimization targets
are the parameters of hair geometry, rather than the shape and
appearance parameters of individual Gaussians. We now describe
the conversion from strand geometry to chained Gaussians in our
representation, which correlates with strand parameters while re-
maining compatible with the Gaussian splatting framework.

We define the elementary unit of strands as line segments. For a
strand of 𝑁𝑘 vertices, we denote the segment between vertex v𝑖 and
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v𝑖+1 by p𝑖 , characterized by the following parameters: head vertex
v𝑖 , tail vertex v𝑖+1, diameter 𝑑 , opacity 𝑜 , and spherical harmonics
(SH) coefficients r.

In our chained Gaussian representation, each segment p𝑖 is ap-
proximated by a Gaussian centered at the midpoint (v𝑖 + v𝑖+1)/2.
The covariance matrix 𝐶 of this Gaussian is expressed as:

𝐶 = 𝐸𝐷𝐷𝑇 𝐸𝑇 . (11)

Here, 𝐸 = [e𝑖 , e′𝑖 , e
′′
𝑖
]𝑇 represents the principle axes of the Gaussian,

where e𝑖 is the unit direction vector of the segment v𝑖+1 − v𝑖 , and
e′
𝑖
and e′′

𝑖
are two orthogonal unit vectors to e𝑖 . The matrix 𝐷 =

diag[𝜏𝑙 , 𝜏𝑑 , 𝜏𝑑 ] contains scales of the axes, with 𝜏𝑙 = | |𝑣𝑖+1 − 𝑣𝑖 | |/2
and 𝜏𝑑 = 𝑑/2 being the axial and radial scales, respectively.

Following this conversion, each strand is transformed into a chain
of thin Gaussians, suitable for rendering via Gaussian splatting. At
the conclusion of optimization, we typically manage 50𝐾 strands,
equivalent to 5𝑀 Gaussians, and render only one-third of them
picked randomly due to limited memory capacity.

In addition to hair Gaussians, we also incorporate auxiliary Gaus-
sians to model the non-hair foreground, serving as proxies for occlu-
sion. These Gaussians, referred to as body Gaussians, are anchored at
the vertices of the inner mesh and modeled as discs with optimizable
radii𝑤 . The orientation of each body Gaussian disc is fixed, aligned
with the normal of the corresponding vertex. The thickness is set
to 0.001mm. The covariance matrix of each disc is calculated as
described in Eq. 11, treating each Gaussian as a short, thick disc
covering the surface. Given our focus on hair, we differentiate non-
hair pixels in each image by painting them a distinct color from hair,
such as green. Accordingly, the body Gaussians are initialized to
the same green color.

6.2 Geometry Parameters
Instead of directly optimizing the positions of strand vertices, we
optimize a low-dimensional latent vector for each strand. This
improves training efficiency while also serving as an effective regu-
larizer, preventing exaggerated strand geometry such as unnatural
sharp turns, which occurs with per-vertex optimizations.
To build such a strand latent space, previous efforts typically

leverage generic prior models based on synthetic curves. However,
we argue that building such a comprehensive space is impractical
due to the high variability of real-world hairs and the significant
domain gap. Instead, we construct this strand latent space in a
self-supervised manner, relying solely on the initial strands of the
specific subject. This approach aligns with the intuition that the
hairs of the same individual should share statistical similarities.
Specifically, for each subject, we train a strand variational au-

toencoder (strand-VAE) that encodes a latent code l ∈ R128 from
root-relative vertex positions s′ ∈ R(𝑁𝑘−1)×3. While the strand-
VAE is a vanilla MLP network, it works better than more complex
generic models, such as [Rosu et al. 2022b; Zhou et al. 2023], since
training a subject-specific latent prior is a much easier task. A less
complex model structure also simplfies optimization. The strand-
VAE is initialized from scratch and trained only with the traced hair
strands. In our experimental set-up we show that the quality and
diversity of the data is sufficiently good to serve as a dataset.

6.3 Appearance Parameters
While the high degree of freedom (DoF) associated with Gauss-
ian parameters enables effective reproduction of appearance, it
also introduces severe hallucination effects when precise geometry
is desired, particularly when it comes to the intricate structure
of hairs. As long as the volume is reasonably filled, even if the
strand geometry is inaccurate, the high DoF of color parameters
can fabricate the appearance to simulate shading that minimizes
photometric errors, without the support from proper geometry.
This necessitates additional constraints in hair parameterization
to ensure that improvements in appearance actually result from
enhancements in geometry.

To limit the per-strand appearance DoF, we propose the following
simplifications to the hair appearance parameters:

• View variations of color : We eliminate view-dependent com-
ponents of color by reducing the SH degree to zero, which
is non-essential for our method that prioritizes geometry op-
timization. This adjustment prevents the potential misuse of
view-dependent effects.

• Spatial variations of color: Instead of maintaining a color pa-
rameter for each strand segment, we optimize the color for
only 8 segments (referred to as anchors) uniformly distributed
along the strand. The color for other segments is derived via
piecewise linear interpolation.

• Segment diameters: Similar to color, we also parameterize seg-
ment diameters using these 8 anchors.

• Opacity: We restrict each strand to 2 opacity values: 𝑜1 for the
first 𝑁𝑘 − 𝑁𝑡 − 1 segments starting from the root, and 𝑜2 for
the final 𝑁𝑡 = 8 segments, recognizing that the tails of strands
tend to be more transparent.

In conclusion, for each strand, we optimize the following pa-
rameters: strand latent vector l ∈ R128, anchor diameters d ∈ R8,
anchor colors r ∈ R8×3, and opacity (𝑜1, 𝑜2) ∈ R2. By comparison,
the vanilla 3DGS setting would involve nearly 1400 optimizable
parameters per strand, which is approximately 8 times more than
the 162 parameters of our streamlined formulation.

6.4 Adaptive Control of Hair Gaussians
During optimization, we adaptively control the strand distribution
by periodically employing heuristic-based actions including splitting
and pruning. The Gaussian optimization starts with 30𝐾 initial
strands uniformly sampled from the traced hairs, and gradually
propogates them to 50𝐾 in the end. This adaptive control leads to a
more natual hair arrangement.

Splitting. With the introduction of diameter parameters, individ-
ual strands are allowed to grow thicker and split into multiple new
strands where necessary. For each strand 𝑠𝑖 with 𝑁𝑘 − 1 segments,
given its per-segment diameters 𝑑𝑖, 𝑗 and opacities 𝑜𝑖, 𝑗 for the 𝑗-th
vertex, we compute the per-strand split score 𝜔𝑖 the following way:

𝜔𝑖 =
𝜔𝑖

1
𝑁𝑠

∑𝑁𝑠

𝑖=1 �̂�𝑖
, �̂�𝑖 =

𝑁𝑘−1∑︁
𝑗=1

𝑑𝑖, 𝑗 · 𝑜𝑖, 𝑗 . (12)
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where 𝑁𝑠 is the number of strands at the time of splitting. Each
strand is then split into ⌈𝜔𝑖 ⌉ new strands, whose vertices are gen-
erated by randomly displacing the original positions within its
diameter.
This splitting operation serves two purposes in improving opti-

mization quality. First, it dynamically adjusts hair density to achieve
a more uniform distribution that aligns with the image data. Second,
it creates flyaway strands to capture details that are missing in the
initial hair tracing.

Pruning. Besides splitting, we regularly perform clean-up opera-
tions, including pruning and cutting, to preserve only meaningful
strands and segments. Throughout the optimization, certain strands
may migrate outside the designated hair volume, thus becoming
transparent or blending into the color of the background. These
strands, practically invisible and uninteresting, should be removed
completely. Additionally, some strands can grow excessively long
into void spaces, necessitating the cutting of their tails instead of
the entire strands.

In ourmethod, we identify and prune those invisible strands based
on their opacity and color. We periodically remove strands whose
average vertex opacity falls below a threshold of 0.1. Furthermore,
we calculate the average hair color r̄h of all strands in CIELAB
color space, pruning each strand s𝑖 if its average color r𝑖 is closer to
the background color rb than to the average hair color r̄h. Similar
checks are conducted for strand vertices individually. We remove
consecutive invisible vertices from strand tails until the first visible
vertex, according to the aforementioned criteria. While the invisible
vertices in the middle of strands are not affected, in practice they
are very few and do not harm the reconstruction quality.

6.5 Training Objectives
The primary loss during optimization is the L2 photometric distance
between rendered images and reference images, denoted as Li. In
addition to this, we introduce the following regularization terms.
For the sake of simplicity, we omit per-strand subscripts. The final
loss terms are computed as the mean over all strands.

Volume Guidance Term. We reuse the implicit hair volume model
from the first stage to provide additional 3D guidance:

Ln =
1

𝑁𝑘 − 1

𝑁𝑘−1∑︁
𝑖=1

min( | |e𝑖 − g𝑖 | |, | |e𝑖 + g𝑖 | |), (13)

where e𝑖 is the direction of the hair segment, and g𝑖 is the undirec-
tional 3D orientation prediction at (v𝑖+1 + v𝑖 )/2. This term helps to
regularize strands that do not receive adequate gradient information
from image pixels.

Penetration Prevention Term. We introduce a penetration loss to
prevent hairs from growing inside the inner mesh:

Lp =
1
𝑁𝑘

𝑁𝑘∑︁
𝑖=1

| |v𝑖 − ṽ𝑖 | |2, (14)

where ṽ𝑖 is the nearest point on the inner mesh surface to v𝑖 . This
term is applied only if v𝑖 is already located inside the mesh.

Heursitic Terms. Finally, we incorporate the following heuristic-
based terms:

• Diameter term:L𝑑 =
∑𝑁𝑘−1
𝑖=1 |𝑑𝑖 |/(𝑁𝑘−1) to encourage strands

to be thin and sharp;
• Latent regularization term: Ll = |l− l̂| to regularize the strand’s
latent vector l towards its initial value l̂, obtained from the hair
tracing stage;

• Body radius term: L𝑏 =
∑𝑁𝑏

𝑖=1 | |𝑤𝑖 − �̂�𝑖 | |2/𝑁𝑏 , a regularization
on the radii𝑤 of body Gaussians, where �̂�𝑖 is the initial radius.

The overall training objective is thus:

L = 𝜆iLi + 𝜆nLn + 𝜆pLp + 𝜆dLd + 𝜆lLl + 𝜆bLb, (15)

where we set the weights as 𝜆i = 1, 𝜆n = 1.0, 𝜆p = 0.05, 𝜆l = 1.0,
and 𝜆b = 1000. The weight for diameter regularization, 𝜆d, starts at
1 and is doubled after each strand splitting step.

7 EXPERIMENTS
In this section, we first describe implementation details and external
datasets used for experiments. Then, we compare with previous
works and validate the key design choices with in-depth ablation
studies. Finally, we discuss limitations and illustrate failure cases.

To thoroughly test the versatility and robustness of our method,
we take 27 subjects from our in-house capture dataset, covering a
broad spectrum of different hairstyles. All subjects are processed
automatically using the same pipeline. For all results presented in
this paper, unless specified otherwise, we eliminate all hallucination
effects by rendering the reconstructed geometry with predefined
hair materials. This ensures that all shading effects, such as high-
lights, shadows, and transparency, faithfully reflect the quality of the
geometry. We present all visualizations in high-resolution figures.
Readers are encouraged to zoom in on these figures for better details.
More illustrations and applications are available in the Appendix
and supplementary video.

7.1 Implementation
For our implicit hair volume model, the feature network comprises
6 fully-connected (FC) layers, the appearance network consists of 2
FC layers, and the hair structure network includes 8 FC layers, each
having 1024 hidden units. We train both the feature and appearance
networks for 1𝑀 steps, followed by an additional 1𝑀 steps for the
hair structure network alone. On average, the training process takes
28 hours in total, using 16 Google TPU v5.
For example, we currently render a full orientation distribution

in the neural hair volume, leading to significantly increased compu-
tational overhead due to the large number of bins in the histogram.
The volumetric hair tracing is completed in 1.5 hours using a

single NVIDIA A100 GPU. The bottleneck lies in repeated queries
to the implicit hair volume, which can be potentially boosted by
precomputing an explicit volume at high resolution.

Our Gaussian-based optimization encompasses 15𝐾 steps, taking
1.5 hours on 8 NVIDIA H100 GPUs. During the optimization, we
execute hair splitting and pruning every 5𝐾 steps, increasing the
number of strands from 30𝐾 to 50𝐾 . We further apply a final splitting
step that increase the hairs to 150𝐾 by scaling the split score 𝜔 in
Eq. 12 by 3. The strand-VAE network comprises 6 encoder and 4
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Fig. 6. Reconstruction results on diverse hairstyles from short hairs to long ponytails, where personal features such as fringe, hairline, and clusters are
faithfully captured. We use the same predefined material to better show geometric details.

decoder layers, taking 2.5 hours to train over 1𝑀 steps on a single
NVIDIA A100 GPU.
Prioritizing reconstruction fidelity for production use cases, the

entire pipeline of our method requires more computation than
NeuralHaircut [Sklyarova et al. 2023] (around 3 days on a NVIDIA
RTX 4090 GPU) and MonoHair [Wu et al. 2024] (4 − 6 hours on a
NVIDIA RTX 3090 GPU). This is partially because that we consider a
full orientation distribution represented by a large number of bins in
the histogram. Therefore, our reconstruction preserve more details
at the cost of longer processing time.

7.2 Results
In Fig. 6, we demonstrate our results on various hairstyles captured
in our studio. Being prior-free, our method can reconstruct diverse
hairstyles that surpass the coverage of any existing dataset, cap-
turing personal details such as hairlines, fringes, and clusters. Our
approach not only handles common medium-length hair, but also
deals with short hairs and long ponytails using the same pipeline,
which are rarely addressed in previous works – short hairs pose
challenges due to their messiness and inconsistent patterns, while
long ponytails often exceed the capacity of explicit volumes utilized
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Fig. 7. Comparions with existing hair reconstruction methods. We
compare GroomCap with MonoHair [Wu et al. 2024] and Neural Haircut
[Sklyarova et al. 2023] on the in-the-wild NHC dataset, rendered with the
same renderer. The rendering camera of NeuralHaircut results are manually
adjusted to match the input.

in prior methods. Our method also performs well on dark and dyed
hairs, a notable improvement over previous works that typically
focus on brighter hair colors.

7.3 Comparisons
We extend the evaluation of our method to the public NeuralHaircut
(NHC) dataset [Sklyarova et al. 2023] and compare with previous
works. Unlike our main dataset that is captured in a more controlled
setup, the NHC dataset comprises only videos captured in-the-wild
using a hand-held smartphone. This setup introduces additional
challenges, such as unknown camera poses, non-uniform lighting,
and slight subject movements during capture. To preprocess the
NHC dataset automatically, we employ colmap [Schönberger and
Frahm 2016] for each video to estimate camera poses. After this, we
fit the inner meshes using the same parametric head model. The
outer mesh is approximated simply by a sphere, roughly enclosing
the head and hair. Furthermore, we do not utilize any parting-line
annotations for this dataset.

In Fig. 7 we compare our results with state-of-the-art multi-view
hair reconstruction works MonoHair [Wu et al. 2024] and Neural
Haircut [Sklyarova et al. 2023] on the in-the-wild NHC dataset.
While our reconstructions on this dataset are inferior than our
primary setting due to the imperfect inputs, they remain comparable
with the concurrent work of MonoHair and outperforms the earlier
work of NeuralHaircut. Unlike these works, which are strongly
regularized by prior models, our prior-free reconstructions offer
better flexibility and yield more visually realistic outcomes.

Fig. 8. Ablation studies for implicit hair volume. We show strands
traced from different hair volumes, including full method (second column),
2D supervision of maximum orientations without keeping the distribution
(third column), and directly 𝛼-blending 3D orientation angles without our
rendering algorithm (fourth column). The results are either overly smoothed
(third column) or contain incomplete and sparser strands (fourth column).

Fig. 9. Visualization of 3D orientation predections. On an example
subject, we show a reference view (top-left) and the corresponding hair
reconstruction (top-middle). In the reference view, we highlight a sample
patch (the white square) where two intersecting wisps are accruately
captured in the output. In the lower part of this figure, we plot voxel densities
along the ray path at the center of the patch using a line chart. For each
density peak, we visualize the corresponding predicted 3D orientation by
drawing an arrow over the patch. The first peak represents the front hair
wisp with a 3D orientation in camera space of [−0.59, −0.77, 0.23] and a
2D projection of 52.5◦. Beginning at depth 1.75m (the fourth peak), the
ray intersects the back layer of hair, with 2D projections ranging from
107◦ to 130◦. At the top-right, we visualize the accumulated 2D orientation
distribution along the same ray at the patch center, identifying two peaks.
The first peak at 48◦ correlates to the front hairs, while the second peak at
143◦ corresponds to the hair at the back.

7.4 Ablation Studies
In this section we evaluate the critical design choices of our method.
For the implicit hair volume model, our key contributions are: 1)
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Fig. 10. Ablation studies for Gaussian-based hair optimization. In the second and third columns, we show hair models before and after optimization,
respectively. The optimization effectively consolidates the hair boundary and enhance overall smoothness. In the fourth column, we show an initial hair model
that is intentionally smoothed from the traced hairs to better highlight the difference brought by optimization. The fifth column demonstrates that, even from
this smoothed initial hair, the optimization is capable of faithfully recovering detailed features. However, as shown in the sixth column, keeping the high
degree-of-freedom parameters of the vanilla 3DGS leads to flattened strands, which underscores the importance of our tailored Gaussian parameters.

Fig. 11. Additional ablations for Gaussian-based hair optimization.
Each triplet shows the reference view (left), the result of our full method
(middle), and the result of the ablated baseline (right). Top left: the hair
without adaptive splitting suffers from worse coverage and wisp structures.
Top right: optimization without adaptive pruning leads to excessively long
strands. Bottom left: using a pre-trained prior strand-VAE leads to overly
smoothed strands due to poor coverage of the synthetic data. Bottom right:
regularizationwith the implicit hair volume helps enhance the hair structure.

supervising with the full 2D orientation distribution when training
the neural orientation network; 2) alpha-blending 3D orientations
in histograms when performing volumetric rendering. To assess
these contributions, we train two variants: 1) taking the orientation
angles with maximum responses as 2D supervision, instead of the
distribution; 2) directly 𝛼-blending the 3D polar angles, instead
of histograms. As demonstrated in Fig. 8, supervising only the
maximum angles results in locally over-smooth strands because non-
maximumorientations are discarded, while blending 3D orientations
by directly summing polar angles yields even worse results, as it is
mathematically flawed.

Fig. 12. Ablation study for the strand latent space. Optimization within
the strand latent space of strand-VAE achieves globally consistent strand
deformations that are smoothly regularized (top-middle and bottom-left). In
contrast, replacing this latent space regularization with a strong smoothing
term fails to prevent sharp turns in the strands (bottom-right), even when
the overall hair is already overly smoothed (top-right).

In Fig. 9 we further investigate estimated volume densities and
3D orientations by sampling along an example ray. The results
show that the 3D orientations match different hair layers and lead
to correct hair intersections, which is crucial for avoiding over-
smoothness for tracing.

We ablate the Gaussian-based optimization stage in Fig. 10, show-
ing that the optimization leads to improved hair boundaries, more
uniform hair density, and more natural strand geometry. To high-
light the effectiveness of Gaussian-based optimization, we process
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Fig. 13. Hair re-rendering application. We render the reconstructed hair
geometry using different materials (row 1) and environment lightings (row
2) with a physically-based renderer.

the traced hairs with a low-pass filter and test the optimization
on this over-smoothed initialization. Despite the more challenging
input, our optimization successfully recovers most details from
the images. On the contrary, allowing a high DoF as the vanilla
3DGS optimization results in flattened geometry, since tweaking
appearance parameters to hallucinate the appearance becomes a
shortcut to local optima without genuine geometric details.
We further validate several design choices of the optimization

stage in Fig. 11. The first row demonstrates that adaptive strand
splitting effectively improves hair coverage and structure, while
pruning and cutting are essential to eliminate excess strands. In the
bottom-left, we show that replacing the subject-specific strand-
VAE with a generic state-of-the-art model trained on synthetic
datasets [Zhou et al. 2023] leads to severe failures due to out-of-
distribution strand shapes. In the bottom-right, we drop both the
volume guidance lossLn and the latent regularization lossLl during
optimization and observe less structured results. This suggests that
without these terms, which maintains consistency with the implicit
hair volume, the Gaussian-based optimization alone does not fully
comprehend spatial composition of strands.
Finally, in Fig. 12, we justify the necessity of using the strand-

VAE during optimization. In this ablation, we directly optimize
the vertex positions without using the strand-VAE and introduce a
supplementary smoothing termLs = |e𝑖+1−e𝑖 |. However, due to the
high locality in pixel-wise optimization, the hair strands are severely
twisted, even if we enforce a large weight on Ls that already leads
to global over-smoothness. In contrast, optimizing the latent vector
deforms the strand as a whole, preserving its structural integrity.

7.5 Applications
Our method reconstructs explicit hair geometry as a dense set of
polyline curves. Compared to implicit representations of [Rosu et al.
2022a; Wang et al. 2023], our reconstruction can be much more
easily used in other applications, such as physically-based rendering
(Fig. 13), simulation (Fig. 14), and hair editing (Fig. 15).

Fig. 14. Hair simulation application. In each image pair, we demonstrate
the original captured hairs (left), and the hairs deformed with quasi-static
simulation at a given head pose. The simulation is performed using the
industrial software Houdini.

Fig. 15. Hair editing application. We perform haircut by keeping 80%
(60%) of the original vertices for each hair strand.

7.6 Limitation and Future Work
While most recent hair capture works heavily rely on prior models
derived from synthetic datasets, this paper aims to push the bound-
aries of prior-free hair capture, targeting diverse hairstyles with
rich personal details. However, we acknowledge the significance of
prior information, particularly for handling complex hairstyles.
In Fig. 16 we present several typical failure cases. Challenges,

arising from dark hair appearances and extremely curly strands,
can cause difficulties across all stages: retrieved orientations are
noisy, traced strands appear messy, and optimization struggles to
effectively enhance the hair quality. As a result, the final recon-
struction may contain hair structures that are inconsistent with the
input images. We believe that integrating prior knowledge with our
flexible prior-free capture pipeline represents a promising avenue
for future research, as exemplified by MonoHair [Wu et al. 2024].

Since our method does not assume any hairstyle priors, it requires
reliable segmentation masks to identify the hair regions. Inaccurate
segmentation will lead to hair strands compensating for mislabeled
background or body pixels and create misaligned variations that
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Fig. 16. Failure cases. For the extremely complicated hairstyles, ourmethod
fails to capture all the small curls.

deviate from the input imagery. Furthermore, as the hair masks
are binary, our method cannot fully reflect regional variations in
hair density or baldness. We anticipate that incorporating strand-
accurate hair matting will improve the capture of fine details.

8 CONCLUSION
We introduce GroomCap, a novel, prior-free approach for capturing
hair geometry from multi-view inputs, effectively bridging the gap
between high-fidelity hair modeling and practical application needs.

The first stage of GroomCap involves building a high-resolution
implicit hair volume, inspired by neural radiance fields, which
incorporates a comprehensive analysis of orientation distributions
through volumetric rendering on expanded histograms. Following
the hair volume construction, we trace explicit hairs and utilize 3D
Gaussian Splattings for differentiable rendering, facilitating detailed
photometric supervision. To refine and regularize the optimization
process, hair strands are deformed within a low-dimensional strand
latent space, leveraging a subject-specific variational autoencoder.
This approach is further enhanced by reduced parameters to prevent
appearance hallucinations and adaptive hair splitting/pruning to
improve the fidelity of the final hair geometry.
GroomCap has demonstrated its versatility and effectiveness,

capturing a diverse range of hairstyles with remarkable quality in
both controlled studio and challenging in-the-wild settings. The
success of GroomCap highlights its potential as a transformative
tool in various scenarios where high-quality hair is desired.
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A SUPPLEMENTARY EVALUATIONS
In this section we provide more evaluations of our method. In
Fig. 17 we evaluate the implicit hair volume by examining the 2D
orientations obtained from volume rendering. From the right sub-
figure, we can see that the peak angles of three distributions are
well aligned with hair directions at their sample pixels. The orange
distribution is most concentrated, because of its clean wisp structure,
while the blue distribution is most flat due to the blurriness in the
image near that pixel. Overall, our implicit hair volume recovers
correct hair structures with the per-pixel orientation distributions
faithfully match local hair compositions.

In Fig. 18, we further validate our implicit hair volume by drawing
line segments with the predicted 3D orientations at point samples
with top 5% density values. These sparse line segments already
identify the target hairstyle pretty well.

Finally, in Fig. 19, we show the intermediate results of our Gaussian-
based hair optimization. The rendered Gaussians do not perfectly
reproduce the input image due to our highly constrained parameters,
which helps lead the optimization towards improved geometry.

B HAIR SEGMENTATION
We require high-quality hair segmentation masks for all views
as the ground truth to train the neural occupancy fields. While
a perfect solution for hair segmentation does not exist, we find that
aggregating several off-the-shelf models improves the results.

Fig. 17. Visualization of accumulated 2D orientations. Left: orientations
with highest probabilities after volume rendering. Middle: the reference
image with three pixel samples. Right: 2D orientation distributions of the
three pixel samples with corresponding colors.

Fig. 18. Visualization of implicit hair volume by rendering line segments
oriented along the predictions. Reference images in Fig. 2.

Specifically, assume we have𝑚 segmentation models and denote
the per-pixel hair and body likelihood predicted by the 𝑖-th model
as𝜓ℎ,𝑖 and𝜓𝑏,𝑖 , we replace the occupancy loss in Eq. 9 with:

L′
occ = min

𝑖∈{1,...,𝑚}
| |𝜓ℎ −𝜓ℎ,𝑖 | |2 + min

𝑖∈{1,...,𝑚}
| |𝜓𝑏 −𝜓𝑏,𝑖 | |2 . (16)

Intuitively, we use the supervision that gives the minimal loss,
since we experimentally find that the neural occupancy model
outperforms all supervisions at the end of training due to its multi-
view consistency, as shown in Fig. 20. This observation also indicates
that our model is robust against incorrect segmentation masks. In
practice, we use 3 segmentation models, including two in-house
models and one public one [Lugaresi et al. 2019].

C IMAGE RESOLUTION
Ourmethod is robust to image quality. In Fig. 21, we demonstrate the
results reconstructed from lower-resolution images downsampled
from the original capture. While some fine details are inevitably
lost due to the reduced input fidelity, the overall structure is still
accurately captured, consistent across all resolutions.
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Fig. 19. Intermediate results of Gaussian-based optimization. Due
to our strong regularization, the rendered hair gaussians do not perfectly
reproduce the image. However, the formulation avoids hallucination and
leads to improved underlying geometry.

Fig. 20. Hair segmentation supervision and prediction. We use pseudo
ground truth from multiple sources as supervision to train our neural
occupancy model. The model’s prediction in turn outperforms the pseudo
ground truth due to the implicit multi-view aggregation.

D HAIR PARTING LINE
Hair partling line annotations can help our method better mitigate
the direction ambiguity. In Fig. 22, we compare the traced hairs
with and without parting line annotations. The results without
annotations exhibit blurry parting lines, although structures in other
areas remain correct.

E HYPERPARAMETERS
As a prior-free method, our pipeline relies on a set of empirically
determined constants. These values are chosen based on our exper-
iments with various capture data, real-world considerations, and
common practices in the field. In the hair tracing stage, we target
125𝐾 total volume strands, which are sufficient to fill the hair volume,
and 25𝐾 scalp strands, providing enough density to connect the
volume strands to the scalp. During Gaussian-based optimization,
we opt for a moderate number of 8 anchors, which is also divisible
by the number of segments. Increasing the anchors to 15 yields

Fig. 21. Ablation study of different input image resolutions. With
lower-resolution images (three right columns) downsampled from the
original captures, while the reconstruction fidelity is reduced due to the loss
of fine details in the input, the overall hairstyles are still correctly captured.

Fig. 22. Ablation study of parting line annotations in hair tracing.
Without the annotation (right columm), due to the inherent direction
ambiguity of orientation estimation, hair strands may grow across the
parting line.

almost identical results on most captures, while 33 anchors leads to
observable hallucination. Considering that the memory capacity is
around 50𝐾 strands, the optimization starts from 30𝐾 hairs to leave
room for the adapative control of hair density, allowing for half
of the strands to be dynamically created and rearranged. Notably,
our results are not senstive to these particular values, and we use
the same set of hyperparameters for every diverse hairstyle we
demonstrate in the paper.
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