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… a snowy
mountain village

… an old man… a botanical garden … a bunny … a garden gnome
… a satellite 

view of the Earth
… a turtle

an expressionist art of… a watercolor painting of… an oil painting of…

Figure 1. We propose a method to generate ambiguous anamorphoses—images that reveal a hidden image when viewed through a mirror

or lens. In the examples above, a conic mirror viewed from the top reveals a turtle hidden in an Earth image; a garden, seen through a lens,

shows a bunny, and rotating the lens slightly reveals a gnome; a cylindrical mirror reflects a village painting into the face of an old man.

Abstract

Anamorphosis refers to a category of images that are in-

tentionally distorted, making them unrecognizable when

viewed directly. Their true form only reveals itself when

seen from a specific viewpoint, which can be through some

catadioptric device like a mirror or a lens. While the con-

struction of these mathematical devices can be traced back

to as early as the 17th century [28], they are only inter-

pretable when viewed from a specific vantage point and tend

to lose meaning when seen normally. In this paper, we re-

visit these famous optical illusions with a generative twist.

With the help of latent rectified flow models, we propose a

method to create anamorphic images that still retain a valid

interpretation when viewed directly. To this end, we intro-

duce Laplacian Pyramid Warping, a frequency-aware im-

age warping technique key to generating high-quality visu-

als. Our work extends Visual Anagrams [17] to latent space

models and to a wider range of spatial transforms, enabling

the creation of novel generative perceptual illusions.

1. Introduction

Anamorphosis, derived from the Greek ana (“back” or

“again”) and morphe (“form”), refers to a category of im-

ages that are deliberately distorted, rendering them unrec-

ognizable when viewed directly. These optical illusions

reveal their true form only when observed from a precise

vantage point or through reflective or refractive surfaces,

such as mirrors or lenses—objects collectively known as

anamorphoscopes [23]. These mathematical curiosities be-

came more popular since the 17th century, when the pio-

neering treatise by the French mathematician J.-F. Nicéron,

La Perspective Curieuse, laid the foundation for their rigor-

ous construction [28]. However, these images are typically

interpretable only from specific angles, losing their mean-

ing when viewed normally.

In this paper, we propose a method for creating anamor-

phic images using latent text-to-image models. We focus on

setups in which the image has a valid interpretation when

viewed as-is without distortions. Our work is similar to the

recent framework of Visual Anagrams proposed by Geng et

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Laplacian Pyramid Warping. (a) The view mappings are generated using a ray tracer and the Level of Detail (LOD) map is

computed. (b) For each pixel, our forward warping algorithm looks up in the warping UV mapping and LOD to fetch the corresponding

value. (c) We consider different views, from 2D transformations like vertical flip and arbitrary angle rotation to complex 3D projections.

al. [17], which generates ambiguous images by synchroniz-

ing diffusion paths across multiple views. However, their

method is constrained to pixel-space diffusion models and

limited to orthogonal transformations of image pixels. We

address these two limitations in this paper. First, we enable

the use of latent diffusion and flow models in an artifact-

free manner, improving the generation quality. We believe

this will render the generation of these illusions more ac-

cessible. Second, we introduce Laplacian Pyramid Warp-

ing, a robust image-warping technique that handles complex

image transformations while preserving high-frequency de-

tails. This enables the generation of intricate anamorphoses

involving complex reflective and refractive surfaces, with

minimal sacrifice to image quality. Compared to previous

work, our method demonstrates a significant boost in both

the quality and expressiveness of the generated results.

2. Related Work

Computational optical illusions. Anamorphosis can be

dated back to around the 16th century [21, 28, 38], when

artists either hand drew the illusions on paper or used grids

to create them systematically. Since then, the generation

of optical illusions has seen significant progress, especially

with the advent of computational methods in recent years.

Earlier work focuses on creating illusion with 2D images,

such as revealing an image by stacking transparent sheets

of images [27], achieving appearance change of images at

different viewing distances [29], creating static images that

appear to move [10], and designing a refractive lens for re-

vealing a hidden image from dots [30]. Beyond image ma-

nipulation, several works explored 3D illusions. Hsiao et

al. [20] introduced multi-view wire art, where a single 3D

wireframe produces different projected images from var-

ious perspectives. Perroni-Scharf and Rusinkiewicz [31]

extended this idea to 3D-printed view-dependent surfaces.

Apart from illusion based on 3D geometries, Chu et al. [11]

explored camouflaging objects by retexturing them, while

Chandra et al. [7] developed models that shift in percep-

tion based on lighting changes. In contrast, we focus on 2D

illusions that require 3D objects to reveal the hidden views.

Illusions with diffusion models. Recent work has re-

vealed the potential of diffusion models in creating op-

tical illusions. Burgert et al. [3] employ score distilla-

tion sampling (SDS) to generate images that align with

multiple prompts from different viewpoints. Although

their optimization-based method can theoretically produce

anamorphoses, it suffers from lower image quality and long

inference times. Visual Anagrams [17] introduces a formal

framework for illusion generation in a single diffusion pass.

However, their approach is limited to orthogonal transfor-

mations, making it unsuitable for generating the complex

deformations needed for anamorphoses. Subsequent stud-

ies have also explored various types of illusions, such as

visually meaningful spectrograms [9] and generative hybrid

images [16]. Our proposed method is most similar to Visual

Anagrams. Key differences, however, are that we extend to

latent space models and a broader range of transformations.

A concurrent work, Illusion3D [15], builds on [3] to gen-

erate 3D anamorphic illusions, but appears constrained in

quality and artistic flexibility. We outline the key differ-

ences with our method in the supplementary material.

Beyond academic research, the artistic community has

also explored diffusion models for optical illusions. No-

tably, an anonymous artist known as MrUgleh [37] repur-

posed a model fine-tuned for generating QR codes [24, 43]

to create images that subtly mimic the global structure of a

specified template image. Our focus is on generating am-

biguous images and anamorphoses based on text prompts,

which does not require an image template.
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Figure 3. A real life demo of the cylindrical mirror illusion.

Synchronized diffusion. In Visual Anagrams [17], diffu-

sion paths from different viewpoints are synchronized by

averaging the predicted noise at each timestep. Numer-

ous studies have explored merging diffusion paths, often in

the context of controlled image generation. MultiDiffusion

[2] proposes a least-squares formulation for merging views,

which simplifies to averaging in the special case of equal-

size crops—a setup they apply to panorama generation. Dif-

fCollage [44] synthesizes large-scale content by merging

outputs from diffusion models trained on segments of the

larger composition. SyncTweedies [22] thoroughly exam-

ines synchronization techniques, finding that averaging the

predicted clean images yields the best quality. Closer to

our approach, Generative Powers of Ten [39] creates infi-

nite zoom videos by merging concentric views at different

resolutions using Laplacian pyramids. But their method is

tailored to the specific use case of zooming. One of our

contributions, Laplacian Pyramid Warping, generalizes this

approach to arbitrary views.

Image pyramids in vision and graphics. Image pyra-

mids, particularly Gaussian and Laplacian pyramids, are

widely used in computer vision for their multi-scale rep-

resentation capabilities [4, 12, 41]. By decomposing im-

ages hierarchically, pyramids enable efficient compres-

sion, progressive image reconstruction, and seamless blend-

ing—essential in applications like panorama stitching and

HDR imaging [5]. Beyond blending, Gaussian pyramids

are central to scale-invariant object detection and recogni-

tion, where they assist in feature detection for algorithms

like SIFT [25]. They are also valuable in texture analysis

and synthesis [18], and optical flow estimation [33], where

multi-scale representations enhance accuracy and reduce ar-

tifacts.

In computer graphics, pyramids relate closely to tech-

niques like texture MIP-mapping [14] and antialiasing,

which address the challenges of rendering textures at vary-

ing distances and viewing angles. MIP-maps, essentially

a Gaussian pyramid form, allow graphics engines to select

the appropriate level of detail (LOD) based on screen space,

minimizing artifacts like flickering and enhancing both

quality and efficiency. We repurpose these texture MIP-

mapping techniques in our proposed method for frequency-

aware image warping.

3. Preliminaries

3.1. Text­conditioned Rectified Flows

In Rectified Flows (RFs), a noise sample z0 ∼ N (0, I) is

mapped to an image z1 ∼ p1 through the ODE:

 \label {eq:flow_ode} d \mathbf {z}_t = \boldsymbol {u}_t(\mathbf {z}_t, y)dt,     (1)

where t ∈ [0, 1], y is an optional text prompt condition-

ing, and the velocity field is typically parameterized with a

neural network, i.e. ut(zt, y) = uθ(zt; t, y). At inference,

the ODE is discretized, and solved with classical integration

schemes such as forward Euler:

 \label {eq:flow_euler} \mathbf {z}_{t+\Delta t} = \mathbf {z}_t + \boldsymbol {u}_{\theta }(\mathbf {z}_t; t, y)\Delta t,        (2)

Classifier-free guidance (CFG). As in diffusion models,

classifier-free guidance [19] can be used to improve sample

quality in RFs. The final velocity interpolates between a

text-conditioned and an unconditional prediction:

  \label {eq:cfg} \hat {\boldsymbol {u}}_t = (1+\omega ) \boldsymbol {u}_\theta (\mathbf {z}_t ; t, y) - \omega \boldsymbol {u}_\theta (\mathbf {z}_t ; t, \varnothing ),          (3)

where ω is the classifier-free guidance scale. Higher guid-

ance scales typically improve sample quality at the expense

of diversity, but also tend to produce over-saturated images.

Predicted clean image. At any intermediate timestep t,

an estimate of the clean image, denoted z1|t, can be ob-

tained by a single Euler step to t = 1 using the current

velocity estimate:

  \label {eq:final_estimate} \mathbf {z}_{1|t} = \mathbf {z}_t + \boldsymbol {u}_{\theta }(\mathbf {z}_t; t, y)(1-t).         (4)

Equation (4) can be seen as the flow matching equivalent of

the Tweedie’s formula [34] in diffusion models.

3.2. Gaussian & Laplacian Pyramid

A Gaussian pyramid is a multi-scale representation of an

image obtained by iteratively applying a Gaussian blur ker-

nel κ and downsampling D(·). Given an image x, the image

 \mathbb G_l  at level l is computed from the previous level as

  \mathbb G_l(\mathbf {x}) = \mathbf {D}(\kappa (\mathbb G_{l-1}(\mathbf {x}))),  

where  \mathbb G_0(\mathbf {x}) =\mathbf {x}    is the original image.

A Laplacian pyramid stores the high-frequency details

between each level of a Gaussian pyramid. Each Lapla-

cian level  \mathbb L_l  is defined as the difference between a Gaussian

level and the upsampled version of the next level

  \mathbb L_l(\mathbf {x}) = \mathbb G_l(\mathbf {x}) - \mathbf {U}(\mathbb G_{l+1}(\mathbf {x})),  

with \protect \mathbb  L_{L-1}(\mathbf {x}) = \mathbb G_{L-1}(\mathbf {x})    for a pyramid of depth L and

U(·) being the upsample operator. To reconstruct the im-

age, we recursively add each Laplacian level back to the

upsampled version of the next level.
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Figure 4. Our Proposed Pipeline. At each denoising step, the estimated final image is computed from the network velocity estimate and

decoded into image space. Image warping and view aggregation is performed in image space using Laplacian pyramids, before encoding

back into latent space for the diffusion step.

3.3. Visual Anagrams

The work of Geng et al. [17] proposes creating multi-view

images by using a text-to-image generative model to simul-

taneously denoise multiple views of an image. The original

paper utilizes diffusion models. We summarize the method

here through the terminologies of RFs for simplicity.

A canonical space C is defined for an image. A set of

prompts yi are associated with different view functions πi,

which transform the image from the canonical space to the

target space T where rectified flow models are applied. At

each timestep of the inference, zit of each view is trans-

formed into the canonical space, and averaged together with

the other views. After averaging, the noisy images in the

canonical space are transformed back to the target space as

ẑit, replacing the original zit as

 \label {eq:visual_anagram} \hat {\mathbf {z}}^{i}_{t}=\pi _i\left (\frac {1}{N} \sum _j \pi _j^{-1}\left (\mathbf {z}^{j}_{t}\right )\right ).  


























  (5)

Transforming noisy samples, as in Geng et al. [17],

limits possible mappings between the canonical and target

spaces to be orthogonal transformations such as flipping,

rotation and permutation of pixels. This happens since ar-

bitrarily warping a noise sample is generally more difficult

than warping images, as bilinear and bicubic interpolations

can destroy the Gaussian noise properties [8]. Moreover,

SyncTweedies [22] showed that averaging the predicted

clean image zi
1|t, instead of noisy samples, produces higher

quality results. Thus, to allow more general transformations

and improve generation quality, we modify Equation (5) to

average predicted clean image using Tweedie’s formula as

 \label {eq:sync_tweedies} \hat {\mathbf {z}}^{i}_{1|t}=\pi _i\left (\frac {1}{N} \sum _j \pi _j^{-1}\left (\mathbf {z}^{j}_{1|t}\right )\right ).  



























  (6)

4. Generative Anamorphosis

Our goal is to generate high-quality anamorphoses from

text prompts. Anamorphoses involve view functions be-

yond simple transformations such as rotation, flipping and

pixel permutations where no analytical transformations can

be defined. We opt for a more general representation: π

is now a 2-channel image of UV coordinates indicating

where to fetch values in the canonical view for each pixel

π(x, y) = (u, v). We implement the transformation with a

simple raytracer by placing a UV coordinate texture on the

main image plane, and rendering the result when viewing

through mirrors or lenses (see Figure 2).

Simply adopting SyncTweedies [22], however, is not

enough when considering latent diffusion models. Thus,

in Section 4.1, we present a generalization of previous ap-

proaches to latent diffusion models. Naively averaging ar-

bitrary transformations with highly distorted regions, typi-

cal when looking through curved mirrors or lenses, results

in visual artifacts. We introduce a novel Laplacian Image

Warping method that utilizes a multi-level texture structure

inspired by classic works in computer graphics [12, 41] in

Section 4.2 to alleviate this problem. Additional design

choices are then discussed in Section 4.3. Figure 4 and Al-

gorithm 1 show an overview of our method.

4.1. Latent Visual Anagrams

Tancik [36] generates multi-view illusions with Stable Dif-

fusion 1.5 [35] using a similar pipeline to Geng et al. [17].

Images are transformed to canonical space through views

in the latent space, and decoded to the clean image after the

denoising process is finished. The results contain visual ar-

tifacts due to the fact that VAEs for latent diffusion and flow

models are generally not trained to be equivariant. When

the latent images are deformed, the corresponding decoded

image does not necessarily share the same transformation.

While these artifacts are less pronounced in recent models

with larger latent spaces (e.g. Stable Diffusion 3 [13]), they

still persist and create undesirable strokes (see Figure 5).
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Geng et al. + Final Estimate + VAE + Residual Corr.

Figure 5. Latent Visual Anagrams. In this 135◦ rotation exam-

ple, we demonstrate that contributions from Sec. 4.1 improve the

generation of visual anagrams with latent models. While the final

estimate from SyncTweedies [22] partially addresses noise issues,

artifacts from the VAE persist. Our VAE encoding/decoding pro-

cess and residual correction further enhance image quality.

VAE encoding/decoding. To tackle this issue, we pro-

pose to keep all image transformations in image space. This

is done by decoding the estimated clean image latent to

pixel space, applying the transformation, and re-encoding it

to latent space. Denoting E , D the encoder and decoder of

the VAE respectively, our estimated clean latent at timestep

t, in view i, becomes

 \label {eq:latent_aggreg} \hat {\mathbf {z}}^{i}_{1|t}=\mathcal E \circ \pi _i\left (\frac {1}{N} \sum _j \pi _j^{-1} \circ \mathcal D \left (\mathbf {z}^{j}_{1|t}\right )\right ).    














 












  (7)

Residual correction. While Eq. (7) proved to be effective

in removing the artifacts, we observed that it can be sensi-

tive to the VAE reconstruction quality. In particular, when

the input latent is far from the training distribution of the

VAE (e.g. predicted clean image from early steps of denois-

ing), the reconstruction typically fails to match the value

range of the input. This creates washed-out colors in the

final image. We correct the reconstruction failure through a

first-order term ∆ẑi
1|t. This is done by first computing the

residual between the latent and the decoded-encoded latent.

This residual is then transformed to a target view as

 \label {eq:delta_aggreg} \Delta \hat {\mathbf {z}}^{i}_{1|t}=\pi _i\left (\frac {1}{N} \sum _j \pi _j^{-1} \left (\mathbf {z}^{j}_{1|t} - \mathcal E \circ \mathcal D \left (\mathbf {z}^{j}_{1|t}\right )\right )\right ).  





















   











  (8)

This correction term is then added to Eq. (7) as the fi-

nal estimated clean latent. The correction has two nice

properties. First, if the VAE reconstruction is perfect, then

E(D(z)) = z, and ∆z = 0. Therefore, no correction is

done. Second, when there is only one single identity view

(N = 1), we recover ẑ
j

1|t = z
j

1|t, the original predicted

clean latent, as expected. Figure 5 compares different steps

presented in this section, and shows the effectiveness of the

residual correction in maintaining the vibrant colors.

4.2. Laplacian Pyramid Warping (LPW)

While the above modifications enable using latent diffusion

and flow models for creating ambiguous images with arbi-

trary 2D transformations, applying it to the generation of

anamorphoses still presents a few challenges. First, a view

in anamorphosis rarely covers the entirety of the main im-

age. As such, boundaries can create visible artifacts and

seams that are undesirable. Second, having views that have

varying degrees of stretching can lead to degraded high fre-

quency details (see Figure 6).

We identify the key problem being using the averaging

operation as aggregation of views. When images of differ-

ent views are transformed to the canonical view, they can

have different frequency components. One view may map

to a small pixel subset in the canonical view or undergo

large stretching. Averaging pixels of these views with an-

other view not stretched so much ignores the frequency mis-

matching problem. To solve this problem, we propose to

use Laplacian pyramid [6] for blending the views.

After decoding the predicted clean latent, Inverse Lapla-

cian Warping π−1 is used to map the image to a Laplacian

pyramid in the canonical view. The canonical views are

then aggregated through Laplacian Pyramid Blending. Af-

terwards, the canonical views are transformed back to im-

ages through Forward Laplacian Warping π.

Forward Laplacian Warping. Given an image x and

a view projection π, we propose a Level-of-Detail-Aware

(LOD-aware) method to compute y = π(x). First,

we build a Gaussian pyramid from our image G(x) =
{G0(x), ...,GL−1(x)}. Then, we compute a LOD level

map using π and image-space derivatives. For a given pixel

(x, y), the LOD level is given by:

 \label {eq:lod} \adjustbox {max width=0.85\linewidth }{ $l = \log _2 \left ( \max \left ( \sqrt {\left ( \frac {\partial u}{\partial x} \right )^2 + \left ( \frac {\partial u}{\partial y} \right )^2}, \sqrt {\left ( \frac {\partial v}{\partial x} \right )^2 + \left ( \frac {\partial v}{\partial y} \right )^2} \right ) \right ).$ } 











































 (9)

The transformed image is obtained by sampling the pyramid

G(x) with the LOD map using nearest or trilinear interpola-

tion. This approach is commonly used in computer graphics

when rendering textures to avoid aliasing. Our contribution

lies in connecting the method to our problem and repurpos-

ing the idea for image warping. For clarity, we simplify the

equation as y = π(G(x)).

Inverse Laplacian Warping. To transform an image y,

into a Laplacian pyramid in the canonical view G(x) =
π−1(y), we define the inverse Laplacian warping operation.

As inverting an arbitrarily complex image transformation is

infeasible, we make use of the gradient of Forward Lapla-

cian Warping. Consider a dummy zero image x0 = 0, our

inverted image pyramid is given by:

 \label {eq:inversion} \mathbb G(\mathbf {x}) = -\nabla _{\mathbf {x}^0}\left [\frac 1 2 \| \pi (\mathbf {x}^0) - \mathbf {y}\|^2\right ].  












 (10)

28



w/o Laplacian Warping w/ Laplacian Warping (ours)

v
ie

w
 2

𝜋
!"
!

(v
ie

w
 2

)
fi

n
a

l 
re

su
lt

Figure 6. Inverse Laplacian Warping. In this conic mirror ex-

ample, we use a challenging pair of prompts to demonstrate our

inverse warping. The main view shows “a jungle,” while the mir-

ror view reveals “a portrait of Einstein.” Without inverse Lapla-

cian warping, gaps from the inverse transformation cause striped

artifacts and distortions. Our Inverse Laplacian Warping (Sec. 4.2)

correctly assigns values at the right frequencies, eliminating arti-

facts and making the mirror view more recognizable.

This effectively transports the pixels in y to the correspond-

ing location and level in the pyramid. We then propagate the

changes of lower levels to higher ones, and extract a Lapla-

cian pyramid out of the resulting pyramid. More details can

be found in the supplementary material.

Laplacian Pyramid Blending is used for aggregating

different canonical views to obtain a synchronized image

for the given denoising step. Each level is averaged and the

final image is reconstructed from the resulting Laplacian

pyramid. In the case of anamorphic illusions, most views

will only cover the identity space partially, so the blending

is weighted by a set of masks at each level. Special care

need to be taken at the boundary of the masks, as well

as during averaging, which we further discuss in the

supplementary material.

4.3. Design Choices & Further Improvements

Model choice. Our method is designed to work with la-

tent rectified flow and diffusion models. However, we ob-

served that different models behave differently to our syn-

chronization scheme, which we discuss in the supplemen-

tary. For the majority of our experiments, we use Stable

Diffusion 3.5 because of their higher visual quality.

Improved consistency with time travel. Similar to

DDNM [40], RePaint [26] and Bansal et al. [1], we found

Algorithm 1: LookingGlass

Input: ∀i ∈ 0, ..., N − 1: view transformations πi

and text prompts yi, with N being the

number of views. Pretrained RF model uθ.

Output: Final images in each view x0
1, ...,x

N−1
1

1 z00, ..., z
N−1
0 ∼ N (0, I)

2 for t← 0 : T do

3 for i← 0 : N − 1 do

4 zi
1|t ← zit + uθ(z

i
t; t, y)(1− t) \triangleright Eq. (4)

5 xi
1|t ← VAE DECODE (zi

1|t)

6 ∆zi
1|t ← zi

1|t− VAE ENCODE (xi
1|t)

7 end

8 x̂1|t ← LAPLACIAN BLENDING

(π−1
0 (x0

1|t), ..., π
−1
N−1

(xN−1

1|t ))

9 ∆ẑ1|t ← LAPLACIAN BLENDING

(π−1
0 (∆z01|t), ..., π

−1
N−1

(∆zN−1

1|t ))

10 for i← 0 : N − 1 do

11 x̂i
1|t ← πi(x̂1|t)

12 ẑi
1|t ← VAE ENCODE (x̂i

1|t) \triangleright Eq. (7)

13 ∆ẑi
1|t ← πi

(

∆ẑ1|t
)

\triangleright Eq. (8)

14 ẑi
1|t ← ẑi

1|t +∆ẑi
1|t

15 zit+1 ← DENOISING STEP

(

ẑi
1|t, z

i
t

)

16 end

17 end

18 {xi
1}i ← VAE DECODE

(

{ziT }i
)

return x0
1, ...,x

N−1
1

repeating segments of the denoising process allows the

model to blend different views better. To keep the infer-

ence efficient, similar to FreeDoM [42], we only apply time

traveling at intermediate timesteps between 20% and 80%

of the denoising process and use segments of size 1.

Prioritizing a single view. We observed that a key com-

ponent to the success of previous works [3, 17, 36] lies in

the fact that generated images generally lack detail. This

makes it easier for human imagination to interpret image

features differently based on different prompts. With la-

tent flow models, our method generates highly detailed im-

ages at 1K resolution. This poses a new challenge, as high-

frequency details are rarely compatible between the views

and easily give away hidden views. As this is an inherent

problem with high resolution images, we propose to priori-

tize one of the views, which is defined by the user. We set

a portion of the last timesteps of the denoising process to

be solely denoising for the chosen view. This encourages

the model to create coherent details towards the end, while

hiding the remaining views better.
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Figure 7. Generative Anamorphoses. Generated results with our approach for 2D transformations, and the three types of anamorphoses:

a cylindrical mirror, a conic mirror, and Nicéron’s lens. A rendering of the physical setup is shown in the top row when applicable.

5. Experiments

5.1. Views Considered

In this section we briefly describe the views considered for

generating illusions, which are shown in Figure 2 (c).

• 2D transforms. As in Visual Anagrams [17], we generate

vertical flip and 90◦ rotation illusions. Since our method

can handle arbitrary view projections, we also create op-

tical illusions involving 135◦ rotations.

• Mirror cone. A conic mirror placed at the center of an

image reveals a hidden picture when viewed from the top.

• Mirror cylinder. A cylindrical mirror located over an im-

age shows a hidden picture when viewed from an angle.

• Nicéron’s lens. We replicate the setting described by

Nicéron [28]. Given an image, and looking at it through

a lens sculpted with polygonal faces, the irregular refrac-

tion will generate novel images.

Note that in our examples, we always set one view as

the identity view (i.e. the canonical view), but this is not re-

quired. Transforms πi can be defined relative to a canonical

space C without explicitly specifying the latter.

5.2. Quantitative Results

We compare our method quantitatively with Visual Ana-

grams [17], Diffusion Illusions [3], SyncTweedies [22], and

Tancik [36]. Following Geng et al., CLIP is used [32]

to measure the alignment score A and the concealment

score C. We generate 50 pairs of prompts and create im-

ages for these prompts using standard denoising (no optical

illusion), as well as with our method. The results are re-

ported in Table 1 for three tasks: simple vertical flip, a more

complex 135◦ rotation, and the cylindrical mirror anamor-

phosis. Our results are generated with Stable Diffusion 3.5

Medium on a Nvidia GeForce RTX 4090 GPU. Using 30 in-

ference steps, with time-traveling between 20% and 80% of

the diffusion process repeated twice, we generate an image

pair in approximately 80 seconds.

Method A ↑ A0.9 ↑ C ↑ C0.9 ↑ FID ↓ KID ↓

Vertical

Flip

Geng et al. [17] 0.306 0.340 0.695 0.786 149.24 0.057

Tancik SD 3.5 [36] 0.306 0.349 0.693 0.806 132.52 0.049

Burgert et al. [3] 0.281 0.324 0.679 0.778 219.84 0.115

SyncTweedies [22] 0.302 0.341 0.707 0.801 132.62 0.054

LookingGlass (ours) 0.297 0.338 0.680 0.779 124.67 0.049

135◦

Rotation

Geng et al. [17] 0.262 0.308 0.563 0.652 293.00 0.254

Tancik SD 3.5 [36] 0.194 0.216 0.498 0.509 439.35 0.545

Burgert et al. [3] 0.280 0.326 0.654 0.760 223.21 0.120

SyncTweedies [22] 0.283 0.335 0.647 0.753 166.03 0.083

LookingGlass (ours) 0.295 0.338 0.666 0.767 129.74 0.055

Cylindrical

Mirror

Geng et al. [17] 0.171 0.198 0.506 0.546 285.23 0.216

Tancik SD 3.5 [36] 0.171 0.198 0.505 0.547 284.97 0.215

Burgert et al. [3] 0.261 0.304 0.706 0.795 229.65 0.138

SyncTweedies [22] 0.241 0.284 0.673 0.763 138.69 0.082

LookingGlass (ours) 0.272 0.318 0.698 0.810 130.27 0.070

Table 1. Quantitative Comparison. Sample quality is assessed

with FID/KID against a reference dataset of 3.2k images generated

from the same set of prompts. Image-prompt alignment is assessed

using CLIP alignment score A, and concealment score C intro-

duced in [17]. While all methods achieve comparable results for

the vertical flip, LookingGlass surpasses previous approaches on

more complex transformations, including anamorphoses. Please

see the supplementary material for more quantitative evaluations.

30



Geng et al. Tancik Burgert et al. Ours (view 1) Ours (view 2)

a watercolor painting of… a village in the mountains / a ship

V
e

rt
ic

a
l 

F
li

p

a painting of… a turtle / a gorilla

1
3

5
°

R
o

ta
ti

o
n

a lithograph of… a frozen waterfall / a cougar

C
o

n
ic

 M
ir

ro
r

an oil painting of… a sunlit canyon with straight cliffs / a bull

C
y

li
n

d
ri

ca
l 

M
ir

ro
r

a vintage poster of… a dense tropical forest / a deer

N
ic

é
ro

n
’s

Le
n

s

Figure 8. Qualitative Comparison. We compare our method

against prior work for the considered views (Sec. 5.1). Note that

all transformations except the vertical flip are not supported by

Geng et al. [17] and Tancik [36] due to their inherent limitations.

5.3. Ablations

We perform an ablation of the proposed approach. Figure 5

shows that warping the clean image estimate significantly

improves image quality compared to warping the predicted

noise. Additionally, the proposed VAE encoding/decoding

and latent residual correction enhance detail preservation

and reduce reconstruction errors. Table 2 suggests that time

traveling improves visual quality, as reflected by the FID

metric, but may lead to reduced prompt alignment. Further

qualitative ablations on time traveling and the effects of pri-

oritizing a single view can be found in the Appendix.

A ↑ A0.9 ↑ C ↑ C0.9 ↑ FID ↓ KID ↓

Geng et al. SD 3 [17] 0.219 0.249 0.516 0.571 335.24 0.297

+ Final Estimate (Eq. 4) 0.273 0.320 0.657 0.757 171.61 0.106

+ VAE (Sec. 4.1) 0.293 0.333 0.717 0.814 160.17 0.083

+ LPW (Sec. 4.2) 0.300 0.336 0.723 0.814 153.27 0.074

+ Time Travel (Sec. 4.3) 0.295 0.331 0.716 0.816 150.01 0.074

Table 2. Ablation Study. Starting from the baseline of Geng et al.

[17], we ablate the contributions introduced by our approach. We

also show the 90th-percentile of the CLIP-based metrics, as we are

interested in the best case performance.

5.4. Qualitative Results

Figures 8 and 7 show example images generated using our

method in combination with Stable Diffusion 3.5. Figure 3

features a real-life demonstration of the cylindrical exam-

ple, confirming that the generated results function as in-

tended in practice. Additional results for all three types of

anamorphoses are provided in the Appendix. These results

are selected from a set of curated prompts that worked best,

as not all prompt combinations are expected to work well.

5.5. User Study

We conducted a user study with 27 participants. A total of

10 prompt pairs, the same for all three types of illusions,

were selected to generate results using different methods,

with the same random seed (no hand-picked samples). Par-

ticipants ranked the samples from 1 (best) to 5 (worst) based

on prompt fidelity, style adherence and overall visual qual-

ity. The results are reported in Figure 9.

Figure 9. User Study. A survey of 27 participants shows that our

method (blue) is consistently preferred to prior works.

6. Conclusion and Discussion

We presented LookingGlass, a method for generating high-

quality, ambiguous anamorphic illusions with latent RF

models. Our contributions are twofold. First, we extended

Geng et al. [17] to latent space models without introducing

artifacts, enabling the first feed-forward generation of high-

quality illusions with common models. This makes illusion

generation more accessible and allows for possible integra-

tion with modern generative techniques like ControlNet and

DreamBooth. Second, we introduced Laplacian Pyramid

Warping (LPW), a warping method that preserves fine de-

tails while handling extreme distortions. While essential for

illusion generation, LPW is also compatible with pixel dif-

fusion models and has potential applications in generative

mesh texturing and panorama synthesis.

Despite these advances, selecting effective prompts re-

mains a challenge, as not all prompts lead to high-quality

illusions. Additionally, while our method is significantly

more efficient than optimization-based approaches like

Burgert et al. [3], it is computationally more expensive than

Geng et al. [17] due to the VAE intermediate steps. We

leave this to future work.
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