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In the supplementary material, we first provide more implementation details
in Sec. A and discuss the benefits of our design choices in Sec. B. Following
that, we provide additional experiments in Sec. C, including robustness
analysis and efficiency comparisons. More visual results, e.g., in-the-wild
samples and stereo video conversion, are also presented in Sec. D. Finally,
we discuss the limitations and potential directions for future works in Sec. E.
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ALGORITHM 1: Texture Bridge Training
Input: pixel-splatted view vtgt, ground-truth target view xtgt
repeat

ztgt = LatentEncoder(xtgt ) ; // Encode ground-truth view

𝜖 ∼ N(0, I) ; // Sample Gaussian noise

ẑtgt = Diffusion(𝜖, ztgt ) ; // Apply texture degradation

f𝑖enc = LatentEncoder𝑖 (vtgt ) ; // Get splatting features

f𝑖dec = LatentDecoder𝑖 (ẑtgt ) ; // Get diffusion features

{f𝑖fuse} = TextureBridge({f𝑖enc}, {f𝑖dec}) ;
// Feature fusion via texture bridge

x̂tgt = LatentDecoder({f𝑖fuse}) ; // Decode novel view
Take gradient descent step based on L(x̂tgt, xtgt ) ;

until converged;

Authors’ addresses: Xiang Zhang, ETH Zürich, Zürich, Switzerland and DisneyRe-
search|Studios, Zürich, Switzerland, xiang.zhang@inf.ethz.ch; Yang Zhang, DisneyRe-
search|Studios, Zürich, Switzerland, yang.zhang@disneyresearch.com; Lukas Mehl,
DisneyResearch|Studios, Zürich, Switzerland, lukas.mehl.-nd@disneyresearch.com;
Markus Gross, ETH Zürich, Zürich, Switzerland and DisneyResearch|Studios, Zürich,
Switzerland, grossm@inf.ethz.ch; Christopher Schroers, DisneyResearch|Studios,
Zürich, Switzerland, christopher.schroers@disneyresearch.com.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1540-2/2025/08
https://doi.org/10.1145/3721238.3730669

A MORE IMPLEMENTATION DETAILS

A.1 Texture Bridge Training
Algorithm 1 shows the complete training pipeline of the proposed
texture bridge. In practice, the texture degradation technique can be
pre-applied to generate degraded latents, i.e., ẑtgt, for the training
dataset to accelerate the training process.

A.2 Training Datasets of Baselines
Tab. 1 lists the training datasets for all baselines in our paper. For fair
comparisons, we mainly follow Flash3D [Szymanowicz et al. 2024]
to conduct experiments on the RealEstate10K dataset, and we follow
DepthSplat [Xu et al. 2024] for the evaluations on DL3DV-10K and
DTU datasets. For the evaluation on the Spring dataset and in-the-
wild samples, we use the same model trained on the DL3DV-10K
dataset without additional fine-tuning. Benefiting from our texture
bridge, SplatDiff is robust to varying resolutions, delivering stable
performance across the DL3DV-10K dataset (256×448), the Spring
dataset (512×768), and real-world samples (576×1024).

B DESIGN CHOICE DISCUSSIONS

B.1 Diffusion Conditioning
The choice of diffusion conditioning is crucial for achieving precise
camera control and fine-grained details in the synthesized novel
views. A commonly adopted approach is to use 3D correspondences,
e.g., 3D points in Diffusion as Shader [Gu et al. 2025], as condi-
tioning. However, such methods often incur detail loss and require
learning complex conditioning-to-color mappings. By contrast, our
pixel-splatted views preserve fine-grained details and provide ex-
plicit guidance to video diffusion, boosting novel view synthesis
performance as shown in Tab. 2.

B.2 Aligned Synthesis
To enable aligned synthesis for diffusion models, we generate the
input view v̂tgt by our Training Pair Alignment (TPA) and Splatting
Error Simulation (SES) and employ the aligned pairs {v̂tgt, xtgt} in-
stead of {vtgt, xtgt} for training. The key difference between v̂tgt and
vtgt is their alignment with ground-truth views. Generally, train-
ing with aligned pairs is important to achieve aligned synthesis,
and having splatting errors during training helps a model learn
to correct them. However, vtgt is often too misaligned with the
ground-truth views due to depth estimation errors, harming the
learning process. Thus, we found it crucial to create aligned pairs
using TPA and simultaneously introduce splatting errors through
SES for high-quality novel view synthesis.
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Table 1. List of training datasets. & indicates that datasets are used jointly for training. / means that different datasets are used to train separate models,
depending on experimental settings. - means that the model is training-free.

Method Main Task Training Datasets

Syn-Sin Single-view NVS RealEstate10K [Zhou et al. 2018]
SV-MPI Single-view NVS RealEstate10K [Zhou et al. 2018]
BTS Single-view NVS KITTI [Geiger et al. 2013] & KITTI-360 [Liao et al. 2022] & RealEstate10K [Zhou et al. 2018]
Splatter Image Single-view NVS RealEstate10K [Zhou et al. 2018]
MINE Single-view NVS RealEstate10K [Zhou et al. 2018]
AdaMPI Single-view NVS COCO [Caesar et al. 2018]
Flash3D Single-view NVS RealEstate10K [Zhou et al. 2018]
GenWarp Single-view NVS RealEstate10K [Zhou et al. 2018] & ACID [Liu et al. 2021] & ScanNet [Dai et al. 2017]
ViewCrafter Single-view NVS RealEstate10K [Zhou et al. 2018] & DL3DV-10K [Ling et al. 2024]
Diffusion as Shader Single-view NVS MiraData [Ju et al. 2024]
NVS-Solver Single-view NVS -
DepthSplat Sparse-view NVS RealEstate10K [Zhou et al. 2018] / DL3DV-10K [Ling et al. 2024]
pixelSplat Sparse-view NVS RealEstate10K [Zhou et al. 2018]
MVSplat Sparse-view NVS RealEstate10K [Zhou et al. 2018] / DL3DV-10K [Ling et al. 2024]
TranSplat Sparse-view NVS RealEstate10K [Zhou et al. 2018]
StereoCrafter Stereo Conversion Private stereo datasets
SplatDiff (Ours) All RealEstate10K [Zhou et al. 2018] / DL3DV-10K [Ling et al. 2024]

B.3 Texture Bridge
Latent diffusion models are widely used to balance the performance
and complexity [Rombach et al. 2022; Xing et al. 2025]. However,
texture details are often compressed by the latent encoder during
pixel-to-latent conversion, making the recovery of high-fidelity
texture ill-posed. Rather than designing complex texture synthesis
modules in latent space (e.g., ControlNet [Zhang et al. 2023]), our
texture bridge directly re-uses the rich features from the latent
encoder, allowing simple layers to achieve remarkable performance
(e.g., see Tab. 2).

B.4 Texture Degradation
The goal of our texture bridge is to adaptively fuse the splatted
view and the diffusion output for high-quality view synthesis. As
depicted in Fig. 1, the splatted view shows better textures (green
box) but contains unknown regions and splatting errors. Although
the diffusion output generates reasonable contents for the unknown
regions (red box), they often suffer from texture hallucination (green
box). Ideally, the texture bridge should learn to detect the problem-
atic regions, e.g., splatting errors and hallucinated textures, and
adaptively utilize better features for synthesis. However, directly
using the diffusion output often leads to sub-optimal training per-
formance mainly due to the inconsistent contents in the unknown
regions (red box in Fig. 1). To address this, we propose the texture
degradation strategy and generate the degraded views for training.
As shown in Fig. 1, the degraded view shares similar contents with
the target view while imitating the texture hallucination effects in
real diffusion outputs. By substituting the diffusion output with the
degraded view for training, our texture bridge better learns to rely
more on the generated contents for the unknown regions while
maintaining the ability to detect hallucinated textures.

C ADDITIONAL EXPERIMENTS

C.1 Model Robustness
View transformation errors (e.g., distortions or misalignments) and
large viewpoint shifts pose significant challenges to novel view syn-
thesis. To test the robustness of our SplatDiff, we add an additional
super hard set on the DL3DV-10K dataset and introduce two metrics
to evaluate the difficulty of each setting:

• Relative Splatting Error (RSE):

RSE =
1
𝑁

𝑁∑︁
𝑘=1

|xsplat
𝑘

− xgt
𝑘
|

xgt
𝑘

where 𝑁 is the number of valid splatted pixels, and xsplat
𝑘

, xgt
𝑘

correspond to the pixel values in splatted and ground-truth
views. Higher RSE reflects more view transformation errors.

• Valid Splatting Ratio (VSR):

VSR =
𝑁

𝑁total
,

with 𝑁total being the total pixels in splatted views. Lower VSR
implies more disocclusions and larger viewpoint shifts.

In Tab. 2, we perform comparisons across easy, hard, and super hard
sets with varying RSE and VSR levels (visual examples for each set
can be found in Fig. 2). Due to the large disocclusion regions in
the input images, we follow previous works to compute pixel-level
metrics PSNR and SSIM only on the valid splatting regions (denoted
by mPSNR and mSSIM). Tab. 2 highlights the strong performance
of SplatDiff not only in common but also in challenging scenarios.
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Splatted View Diffusion Output Degraded View Target View

Fig. 1. Example of texture degradation. Although the original diffusion output fills the unknown regions in the splatted view, the generated contents
usually differ from the target view (red box), resulting in sub-optimal training performance. Thus, we employ the degraded view for training, which shares
similar contents with the target view while imitating the texture hallucination effects (green box) in real diffusion outputs. Images credited to [Ling et al. 2024].

Table 2. Performance comparisons on DL3DV-10K dataset under varying levels of viewpoint shifts and transformation errors. The Relative Splatting
Error (RSE) and Valid Splatting Ratio (VSR) metrics are introduced to measure the difficulty of each setting (Higher RSE reflects more view transformation
errors, and lower VSR implies more disocclusions and larger viewpoint shifts). To exclude the disoccluded regions in pixel-level metrics, we compute masked
PSNR and SSIM (denoted by mPSNR and mSSIM) only on the valid splatting regions. * denotes methods with two input views. Best and second-best results
are marked.

Easy (RSE=0.565, VSR=91.98%) Hard (RSE=0.652, VSR=78.86%) Super Hard (RSE=0.744, VSR=64.16%)Method mPSNR mSSIM LPIPS DISTS FID mPSNR mSSIM LPIPS DISTS FID mPSNR mSSIM LPIPS DISTS FID

Diffusion as Shader 16.80 0.471 0.363 0.150 62.07 15.20 0.442 0.457 0.190 89.55 14.47 0.451 0.507 0.219 108.11
NVS-Solver 19.58 0.644 0.309 0.155 81.68 17.29 0.590 0.374 0.183 100.42 15.50 0.543 0.437 0.201 112.59
ViewCrafter 21.06 0.684 0.182 0.349 46.60 19.43 0.651 0.249 0.349 59.56 18.39 0.640 0.321 0.357 72.77
DepthSplat* 22.89 0.801 0.168 0.109 52.01 21.79 0.773 0.221 0.124 61.37 20.94 0.758 0.280 0.140 73.60
SplatDiff (Ours) 26.27 0.865 0.113 0.068 24.23 23.18 0.810 0.181 0.092 41.22 21.53 0.781 0.252 0.113 54.19

Input Images Easy Set Hard Set Super Hard Set

Fig. 2. Visual examples of easy, hard, and super hard sets on the DL3DV-10K dataset. Images credited to [Ling et al. 2024].

C.2 Impact of Texture Degradation
Texture degradation is designed to improve the feature selection
ability of our texture bridge. Significant deviation between diffu-
sion outputs and ground-truth views in disoccluded regions often

misguides the texture bridge’s feature selection during training. In
contrast, the degraded views align better with the ground-truth
in disoccluded regions, encouraging the texture bridge to leverage
and improve diffusion features for reconstruction. To verify this
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Table 3. Impact of texture degradation. Best results are marked.

Super Hard Set on DL3DV-10KMethod PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓ FID ↓

w/o texture degradation 20.00 0.655 0.261 0.123 60.94
w/ texture degradation 20.30 0.658 0.252 0.113 54.19

Table 4. Texture-bridge-only ablation. Best and second-best results are
marked.

Texture Aligned DL3DV-10K DatasetID Bridge Synthesis PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓ FID ↓

A-1 23.21 0.694 0.182 0.349 46.60
A-2 ✓ 25.56 0.824 0.142 0.077 31.89
A-3 ✓ ✓ 26.05 0.825 0.118 0.070 25.49

Splatted View Model A-2 Model A-3

Fig. 3. Example results of texture-bridge-only model. The model ID
is consistent with Tab. 4, where model A-2 only uses texture bridge, and
model A-3 combines texture bridge and aligned synthesis. Images credited
to [Ling et al. 2024].

point, we perform experiments on the super hard set on DL3DV-10K,
which contains large disoccluded regions, and Tab. 3 confirms the
benefits of texture degradation.

C.3 Texture-Bridge-Only Ablation
By utilizing splatting features from the latent encoder, the texture-
bridge-only model (model A-2) achieves promising quantitative
results as shown in Tab. 4. However, it often struggles with un-
natural transitions at disocclusion boundaries, due to inconsistent
color/geometry between pixel-splatted views and diffusion outputs
(e.g., see Fig. 3). Our aligned synthesis method significantly improves
the consistency between the splatted view and the diffusion outputs,
leading to better view synthesis performance as shown in Tab. 4
and Fig. 3.

C.4 Importance of Video Diffusion Prior
Compared with image diffusion models, the video prior in video
diffusion models benefits novel view synthesis tasks, as synthesizing
novel views can be regarded as generating videos captured around
target scenes. To verify this, we introduce an Inter-view Alignment

Table 5. Inter-view consistency. We use masked PSNR and SSIM to com-
pute the inter-view alignment error, which are denoted by IAE-PSNR and
IAE-SSIM, respectively. Best and second-best results are marked.

Method Diffusion Type IAE-PSNR ↑ IAE-SSIM ↑

GenWarp Image Diffusion 15.30 0.365
ViewCrafter Video Diffusion 21.71 0.662
SplatDiff (Ours) Video Diffusion 25.15 0.786

Table 6. Efficiency comparisons.We compare the peak GPU memory, the
number of model parameters, and the inference speed on the DL3DV-10K
dataset with a NVIDIA GeForce RTX 4090 GPU. Note that only the diffusion
part is taken into account for comparisons. * uses NVIDIA A100 GPU due
to out-of-memory. Best and second-best results are marked.

Method Peak GPU Mem. #Parameters Speed

Diffusion as Shader* 28.44 G 13.11 B 378.09 s
NVS-Solver 21.60 G 2.25 B 100.37 s
ViewCrafter 16.30 G 2.22 B 26.66 s
SplatDiff (Ours) 17.69 G 2.28 B 26.75 s

Error (IAE) to measure the inter-view consistency:

IAE =
1

2(𝑇 − 1)

𝑇−1∑︁
𝑘=1

(
𝜎 (Warp(x̂𝑘 ,m𝑘+1

𝑘
), x̂𝑘+1)

+𝜎 (Warp(x̂𝑘+1,m𝑘
𝑘+1), x̂𝑘 )

)
,

where 𝑇, x̂𝑘 ,m𝑘+1
𝑘

are the number of synthesized views, the 𝑘-th
synthesized view, and the transformation from the 𝑘-th view to
𝑘+1-th view, respectively. We use masked PSNR and SSIM as 𝜎 (·)
(denoted by IAE-PSNR and IAE-SSIM). Tab. 5 demonstrates the
better consistency of video diffusion. SplatDiff also outperforms
ViewCrafter by addressing texture/geometry hallucination.

C.5 Efficiency Comparisons
We compare the peak GPU memory, the number of model param-
eters, and the inference speed of our SplatDiff with recent state-
of-the-art NVS approaches. Combining Tab. 2 and Tab. 6, SplatDiff
achieves state-of-the-art performance while maintaining competi-
tive efficiency.

D MORE VISUAL RESULTS

D.1 Visual Comparisons in Ablation Study
Fig. 4 provides visual results for the ablation study (Tab. 2 in themain
paper). We also compute the absolute difference map between the
splatted views and the corresponding novel views to visualize the
difference regions. It is obvious that the baseline model synthesizes
misaligned novel views and produces hallucinated textures, leading
to significant difference regions across the entire image. With the
aligned synthesis strategy, the model (#3 in Tab. 2 of the main
paper) generates geometry-consistent results but still suffers from
texture hallucination as shown in the green box of Fig. 4. By contrast,
our SplatDiff utilizes the information from the splatted view with
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Splatted View Baseline (#1) w/ Aligned Synthesis (#3) w/ All (#5)

Unkown Region Diff. Map (Baseline) Diff. Map (w/ Aligned Synthesis) Diff. Map (w/ All)

Fig. 4. Visual comparisons of ablation study. The difference map shows the absolute difference between the splatted view and the corresponding novel
view. The model ID is consistent with Tab. 2 in the main paper. The baseline model generates a misaligned novel view with the conditioned splatted view,
showing significant differences across the image. With the proposed aligned synthesis strategy, model #3 better follows the conditioning but still suffers from
texture hallucination (green box). Combining the aligned synthesis and the texture bridge, our model (#5) synthesizes geometry-aligned novel views while
recovering high-fidelity texture.

the proposed texture bridge, achieving high-fidelity novel view
synthesis.

D.2 Zero-Shot Performance
To verify the zero-shot performance of SplatDiff, we provide addi-
tional visual comparisons on diverse in-the-wild samples, includ-
ing landscapes, buildings, animals, and paintings (Fig. 5). Previous
approaches, e.g., ViewCrafter [Yu et al. 2024], often synthesize con-
tents that differ from the inputs, like the hallucinated lighting and
the rooftop texture in the first-row example of Fig. 5. In contrast,
our method preserves the geometric layout while recovering fine-
grained details as shown in the green box of Fig. 5. In addition,
benefiting from the aligned synthesis strategy, our method corrects
the splatting errors and fills reasonable contents for the unknown re-
gions, e.g., the green boxes in the bird and the axe examples depicted
in Fig. 5.

D.3 Video Results in Stereo Conversion
In Fig. 6, we provide more stereo video conversion results on the
Spring dataset [Mehl et al. 2023]. Since ViewCrafter is trained only
on static scenes, it is challenging for it to handle dynamic inputs, re-
sulting in severe content hallucination as shown in Fig. 6. Although
our method is trained on the same static datasets as ViewCrafter,
SplatDiff exhibits promising zero-shot performance in dynamic
scenes. This is because our texture bridge module leverages the
splatted views to maintain the same motion as the input video.
Meanwhile, with our aligned synthesis strategy, the diffusion model
performs similarly to inpainting models and fills reasonable con-
tents for the unknown regions, e.g., disocclusions in the last two
rows of Fig. 6a, achieving high-quality synthesis of the stereo video.

Compared with StereoCrafter [Zhao et al. 2024] which is designed
specifically for stereo video conversion, our method still shows supe-
rior performance in synthesis quality and consistency. As depicted

in Fig. 6a, StereoCrafter tends to produce novel views with smoothed
details, e.g., the rocks on the road, and fills blurred contents for the
disocclusion regions. For consistency, while StereoCrafter generates
better novel views than ViewCrafter, inconsistent details are often
observed in the outputs of StereoCrafter, such as the girl’s eyes in
the green box of Fig. 6b. Compared with previous approaches, our
method produces the best stereo conversion results with consis-
tent geometry and realistic details, verifying the effectiveness and
versatility of SplatDiff.

E LIMITATIONS AND FUTURE WORKS
While our SplatDiff achieves remarkable performance on many
novel view synthesis tasks, limitations still exist: (i)View-Dependent
Effects: Compared with the popular Gaussian splatting techniques,
SplatDiff has demonstrated the effectiveness of the pixel splatting
method under limited input views. However, since current pixel
splatting methods generally assume the brightness constancy across
different viewpoints, how to handle the view-dependent effects,
e.g., reflective surfaces, remains an open problem (e.g., see failure
case in Fig. 7a). Although Gaussians are capable of modeling view-
dependent effects, estimating accurate Gaussian parameters from
limited observations is challenging. One potential solution is to
leverage the rich prior from foundation models to facilitate the mod-
eling of view-dependent effects, and we leave it for future works. (ii)
Long-Range Consistency: Most existing video diffusion models
are designed to output a pre-defined number of images, and thus
multiple inferences are required to handle long-range inputs, e.g.,
long videos in stereo conversion. However, due to the generative
nature of diffusion models, the synthesized contents are usually
different in multiple inferences. Although our approach utilizes the
texture bridge to maintain the consistency on the splatted regions,
the contents on the unknown regions, e.g., disocclusions, might
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Input View Splatted View ViewCrafter SplatDiff (Ours)

Fig. 5. Qualitative comparisons on in-the-wild high-resolution (576×1024) samples.
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Input Views (Left) ViewCrafter StereoCrafter SplatDiff (Ours)

(a) Visual comparisons on details

Input Views (Left) ViewCrafter StereoCrafter SplatDiff (Ours)

(b) Visual comparisons on consistency

Fig. 6. Stereo video conversion results on the Spring dataset. Right-eye views are synthesized based on the input left-eye views. Images credited to
[Mehl et al. 2023].
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Input View Splatted View Synthesized Novel View Target View

(a) View-dependent effects

Frame 20 in the first inference Frame 25 in the first inference Frame 5 in the second inference Frame 10 in the second inference

(b) Long-range consistency

Fig. 7. Visual examples of failure cases. (a) Due to the assumption of brightness constancy in pixel splatting, our method can fail to model view-dependent
effects, e.g., the reflective surface in the green box. (b) Since the number of output frames is set to 25 in our experiments, our method might fail to generate
consistent content in disoccluded regions for long videos with more than 25 frames. Images credited to [Ling et al. 2024] and [Mehl et al. 2023].

differ. As the example shown in Fig. 7b, although our model main-
tains strong consistency within each inference (e.g., Frame 20 and
25 in the first inference), different contents might be generated
for the disoccluded region in different inferences (e.g., Frame 25 in
the first inference v.s. Frame 5 in the second inference). To achieve
long-range consistency, one could draw inspiration from the recent
video-based methods, e.g., rolling inference [Ke et al. 2024], for im-
proved consistency of diffusion outputs, and combine the techniques
in our SplatDiff for high-fidelity view synthesis.
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