
Point-Based Computer Graphics

Eurographics 2003 Tutorial T1

Organizers

Markus Gross
ETH Zürich

Hanspeter Pfister

MERL, Cambridge

Presenters

Marc Alexa
TU Darmstadt

Carsten Dachsbacher

Universität Erlangen-Nürnberg

Markus Gross
ETH Zürich

Mark Pauly
ETH Zürich

Jeroen van Baar

MERL, Cambridge

Matthias Zwicker
ETH Zürich

 2

Contents

Tutorial Schedule ..2
Presenters and Organizers Contact Information ...3
References ...4
Project Pages ...5

Tutorial Schedule

Introduction (Markus Gross)
Acquisition of Point-Sampled Geometry and Appearance (Jeroen van Baar)
Point-Based Surface Representations (Marc Alexa)
Point-Based Rendering (Matthias Zwicker)

Lunch

Sequential Point Trees (Carsten Dachsbacher)
Efficient Simplification of Point-Sampled Geometry (Mark Pauly)
Spectral Processing of Point-Sampled Geometry (Markus Gross)
Pointshop3D: A Framework for Interactive Editing of Point-Sampled Surfaces
(Markus Gross)
Shape Modeling (Mark Pauly)
Pointshop3D Demo (Mark Pauly)
Discussion (all)

 3

Presenters and Organizers Contact Information

Dr. Markus Gross
Professor
Department of Computer Science
Swiss Federal Institute of Technology (ETH)
CH 8092 Zürich
Switzerland
Phone: +41 1 632 7114
FAX: +41 1 632 1596
grossm@inf.ethz.ch
http://graphics.ethz.ch

Dr. Hanspeter Pfister
Associate Director
MERL - A Mitsubishi Electric Research Lab
201 Broadway
Cambridge, MA 02139
USA
Phone: (617) 621-7566
Fax: (617) 621-7550
pfister@merl.com
http://www.merl.com/people/pfister/

Jeroen van Baar
MERL - A Mitsubishi Electric Research Lab
201 Broadway
Cambridge, MA 02139
USA
Phone: (617) 621-7577
Fax: (617) 621-7550
jeroen@merl.com
http://www.merl.com/people/jeroen/

Matthias Zwicker
Department of Computer Science
Swiss Federal Institute of Technology (ETH)
CH 8092 Zürich
Switzerland
Phone: +41 1 632 7437
FAX: +41 1 632 1596
zwicker@inf.ethz.ch
http://graphics.ethz.ch

Mark Pauly
Department of Computer Science
Swiss Federal Institute of Technology (ETH)
CH 8092 Zürich

 4

Switzerland
Phone: +41 1 632 0906
FAX: +41 1 632 1596
pauly@inf.ethz.ch
http://graphics.ethz.ch

Dr. Marc Stamminger
Universität Erlangen-Nürnberg
Am Weichselgarten 9
91058 Erlangen
Germany
Phone: +49 9131 852 9919
FAX: +49 9131 852 9931
Marc.Stamminger@informatik.uni-erlangen.de

Carsten Dachsbacher
Universität Erlangen-Nürnberg
Am Weichselgarten 9
91058 Erlangen
Germany
Phone: +49 9131 852 9925
FAX: +49 9131 852 9931
dachsbacher@informatik.uni-erlangen.de

Dr. Marc Alexa
Interactive Graphics Systems Group
Technische Universität Darmstadt
Fraunhoferstr. 5
64283 Darmstadt
Germany
Phone: +49 6151 155 674
FAX: +49 6151 155 669
alexa@gris.informatik.tu-darmstadt.de
http://www.dgm.informatik.tu-darmstadt.de/staff/alexa/

References

M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, C. Silva.
Point set surfaces. Proceedings of IEEE Visualization 2001, p. 21-28, San Diego,
CA, October 2001.

C. Dachsbacher, C. Vogelsang, M. Stamminger, Sequential point trees.
Proceedings of SIGGRAPH 2003, to appear, San Diego, CA, July 2003.

O. Deussen, C. Colditz, M. Stamminger, G. Drettakis, Interactive visualization of
complex plant ecosystems. Proceedings of IEEE Visualization 2002, Boston, MA,
October 2002.

 5

W. Matusik, H. Pfister, P. Beardsley, A. Ngan, R. Ziegler, L. McMillan, Image-
based 3D photography using opacity hulls. Proceedings of SIGGRAPH 2002, San
Antonio, TX, July 2002.

W. Matusik, H. Pfister, A. Ngan, R. Ziegler, L. McMillan, Acquisition and
rendering of transparent and refractive objects. Thirteenth Eurographics Workshop
on Rendering, Pisa, Italy, June 2002.

M. Pauly, R. Keiser, L. Kobbelt, M. Gross, Shape modelling with point-sampled
geometry, to appear, Proceedings of SIGGRAPH 2003, San Diego, CA, July 2003.

M. Pauly, M. Gross, Spectral processing of point-sampled geometry. Proceedings
of SIGGRAPH 2001, p. 379-386, Los Angeles, CA, August 2001.

M. Pauly, M. Gross, Efficient Simplification of Point-Sampled Surfaces. IEEE
Proceedings of Visualization 2002, Boston, MA, October 2002.

H. Pfister, M. Zwicker, J. van Baar, M. Gross, Surfels - surface
elements as rendering primitives. Proceedings of SIGGRAPH
2000, p. 335-342, New Orleans, LS, July 2000.

M. Stamminger, G. Drettakis, Interactive sampling and rendering for
complex and procedural geometry, Rendering Techniques 2001,
Proceedings of the Eurographics Workshop on Rendering 2001, June 2001.

L. Ren, H. Pfister, M. Zwicker, Object space EWA splatting: a hardware
accelerated approach to high quality point rendering. Proceedings of the
Eurographics 2002, to appear, Saarbrücken, Germany, September 2002.

M. Zwicker, H. Pfister, J. van Baar, M. Gross, EWA volume splatting.
Proceedings of IEEE Visualization 2001, p. 29-36, San Diego, CA, October 2001.

M. Zwicker, H. Pfister, J. van Baar, M. Gross, Surface splatting.
Proceedings of SIGGRAPH 2001, p. 371-378, Los Angeles, CA, August 2001.

M. Zwicker, H. Pfister, J. van Baar, M. Gross, EWA splatting. IEEE Transactions
on Visualization and Computer Graphics.

M. Zwicker, M. Pauly, O. Knoll, M. Gross, Pointshop 3D: an interactive system
for point-based surface editing. Proceedings of SIGGRAPH 2002, San Antonio,
TX, July 2002

Project Pages

• Rendering
http://graphics.ethz.ch/surfels

• Acquisition
http://www.merl.com/projects/3Dimages/

 6

• Sequential point trees
http://www9.informatik.uni-erlangen.de/Persons/Stamminger/Research

• Modeling, processing, sampling and filtering
http://graphics.ethz.ch/points

• Pointshop3D
http://www.pointshop3d.com

1

Point-Based Computer Graphics
Tutorial T1

Marc Alexa, Carsten Dachsbacher,
Markus Gross, Mark Pauly,

Hanspeter Pfister, Marc Stamminger,
Jeroen Van Baar, Matthias Zwicker

2Point-Based Computer Graphics Markus Gross

Surf. Reps. for Graphics

Hierarchical splines

Wavelets

Subdivision schemes

Triangle meshes

Mesh processing
methods

Discrete (point based)
representations

Add connectivityAdd operators

Raise degree

3Point-Based Computer Graphics Markus Gross

Polynomials...

Rigorous mathematical concept
Robust evaluation of geometric entities
Shape control for smooth shapes
Advanced physically-based modeling

Require parameterization
Discontinuity modeling
Topological flexibility

Refine h rather than p !
4Point-Based Computer Graphics Markus Gross

Polynomials -> Triangles

• Piecewise linear approximations
• Irregular sampling of the surface
• Forget about parameterization

Triangle meshes

• Multiresolution modeling
• Compression
• Geometric signal processing

5Point-Based Computer Graphics Markus Gross

Triangles...

Simple and efficient representation
Hardware pipelines support ∆
Advanced geometric processing is being in sight
The widely accepted queen of graphics primitives

Sophisticated modeling is difficult
(Local) parameterizations still needed
Complex LOD management
Compression and streaming is highly non-trivial

Remove connectivity !
6Point-Based Computer Graphics Markus Gross

Triangles -> Points

• From piecewise linear functions to
Delta distributions

• Forget about connectivity

Point clouds

• Points are natural representations within
3D acquisition systems

• Meshes provide an articifical enhancement
of the acquired point samples

2

7Point-Based Computer Graphics Markus Gross

History of Points in Graphics
• Particle systems [Reeves 1983]
• Points as a display primitive [Whitted, Levoy 1985]
• Oriented particles [Szeliski, Tonnesen 1992]
• Particles and implicit surfaces [Witkin, Heckbert 1994]
• Digital Michelangelo [Levoy et al. 2000]
• Image based visual hulls [Matusik 2000]
• Surfels [Pfister et al. 2000]
• QSplat [Rusinkiewicz, Levoy 2000]
• Point set surfaces [Alexa et al. 2001]
• Radial basis functions [Carr et al. 2001]
• Surface splatting [Zwicker et al. 2001]
• Randomized z-buffer [Wand et al. 2001]
• Sampling [Stamminger, Drettakis 2001]
• Opacity hulls [Matusik et al. 2002]
• Pointshop3D [Zwicker, Pauly, Knoll, Gross 2002]...?

8Point-Based Computer Graphics Markus Gross

The Purpose of our Course is …

I) …to introduce points as a versatile and
powerful graphics primitive

II) …to present state of the art concepts
for acquisition, representation,
processing and rendering of point
sampled geometry

III) …to stimulate YOU to help us to
further develop Point Based Graphics

9Point-Based Computer Graphics Markus Gross

Taxonomy

Point-Based Graphics

Rendering
(Zwicker)

Acquisition
(Pfister, Stamminger)

Processing &
Editing

(Gross, Pauly)
Representation

(Alexa)

10Point-Based Computer Graphics Markus Gross

Morning Schedule

• Introduction (Markus Gross)
• Acquisition of Point-Sampled Geometry and

Apprearance (Jeroen van Baar)
• Point-Based Surface Representations (Marc

Alexa)
• Point-Based Rendering (Matthias Zwicker)

11Point-Based Computer Graphics Markus Gross

Afternoon Schedule

• Sequential point trees (Carsten Dachsbacher)
• Efficient simplification of point-sampled geometry

(Mark Pauly)
• Spectral processing of point-sampled geometry

(Markus Gross)
• Pointshop3D: A framework for interactive editing

of point-sampled surfaces (Markus Gross)
• Shape modeling (Mark Pauly)
• Pointshop3D demo (Mark Pauly)
• Discussion (all)

Point-Based Computer Graphics Hanspeter Pfister, MERL 1

Acquisition of Point-Sampled
Geometry and Appearance

Jeroen van Baar and Hanspeter Pfister, MERL
[jeroen,pfister]@merl.com

Wojciech Matusik, MIT
Addy Ngan, MIT

Paul Beardsley, MERL
Remo Ziegler, MERL

Leonard McMillan, MIT

Point-Based Computer Graphics Hanspeter Pfister, MERL 2

The Goal: To Capture Reality

• Fully-automated 3D model creation of real
objects.

• Faithful representation of appearance for
these objects.

Point-Based Computer Graphics Hanspeter Pfister, MERL 3

Image-Based 3D Photography

• An image-based 3D scanning system.
• Handles fuzzy, refractive, transparent objects.
• Robust, automatic
• Point-sampled geometry based on the visual hull.
• Objects can be rendered in novel environments.

Point-Based Computer Graphics Hanspeter Pfister, MERL 4

Previous Work

• Active and passive 3D scanners
• Work best for diffuse materials.
• Fuzzy, transparent, and refractive objects are difficult.

• BRDF estimation, inverse rendering
• Image based modeling and rendering

• Reflectance fields [Debevec et al. 00]

• Light Stage system to capture reflectance fields
• Fixed viewpoint, no geometry

• Environment matting [Zongker et al. 99, Chuang et al. 00]

• Capture reflections and refractions
• Fixed viewpoint, no geometry

Point-Based Computer Graphics Hanspeter Pfister, MERL 5

Outline

• Overview
System

• Geometry
• Reflectance
• Refraction & Transparency

Point-Based Computer Graphics Hanspeter Pfister, MERL 6

Acquisition System

M
ul

ti-
C

ol
or

 M
on

ito
r

Light Array

Cameras

Rotating Platform

Point-Based Computer Graphics Hanspeter Pfister, MERL 7

Acquisition Process

Alpha
Mattes

Visual
Hull

Surface Lightfield Surface Reflectance Fields

Point-Based Computer Graphics Hanspeter Pfister, MERL 8

Acquisition Process

Alpha
Mattes

Visual
Hull

Surface Lightfield Surface Reflectance Fields

Point-Based Computer Graphics Hanspeter Pfister, MERL 9

Acquisition Process

Alpha
Mattes

Visual
Hull

Surface Lightfield Surface Reflectance Fields

Point-Based Computer Graphics Hanspeter Pfister, MERL 10

Acquisition Process

Alpha
Mattes

Visual
Hull

Surface Lightfield Surface Reflectance Fields

Point-Based Computer Graphics Hanspeter Pfister, MERL 11

Outline

• Overview
• System

Geometry
• Reflectance
• Refraction & Transparency

Point-Based Computer Graphics Hanspeter Pfister, MERL 12

Acquisition

• For each viewpoint (6 cameras x 72
positions)
• Alpha mattes

• Use multiple backgrounds [Smith and Blinn 96]

• Reflectance images
• Pictures of the object under different

lighting
(4 lights x 11 positions)

• Environment mattes
• Use similar techniques as [Chuang et al. 2000]

Point-Based Computer Graphics Hanspeter Pfister, MERL 13

Geometry – Opacity Hull

• Visual hull: The maximal object consistent
with a given set of silhouettes.

Point-Based Computer Graphics Hanspeter Pfister, MERL 14

Geometry Example

Point-Based Computer Graphics Hanspeter Pfister, MERL 15

Approximate Geometry

• The approximate visual hull is augmented by
radiance data to render concavities,
reflections, and transparency.

Point-Based Computer Graphics Hanspeter Pfister, MERL 16

Surface Light Fields

• A surface light field is a function that
assigns a color to each ray originating on a
surface. [Wood et al., 2000]

Point-Based Computer Graphics Hanspeter Pfister, MERL 17

Shading Algorithm

• A view-dependent strategy.

Point-Based Computer Graphics Hanspeter Pfister, MERL 18

Color Blending

• Blend colors based on angle between virtual
camera and stored colors.

• Unstructured Lumigraph Rendering
[Buehler et al., SIGGRAPH 2001]

• View-Dependent Texture Mapping
[Debevec, EGRW 98]

Point-Based Computer Graphics Hanspeter Pfister, MERL 19

Point-Based Rendering

• Point-based rendering using LDC tree,
visibility splatting, and view-dependent
shading.

Point-Based Computer Graphics Hanspeter Pfister, MERL 20

Geometry – Opacity Hull

• Store the opacity of each observation at
each point on the visual hull [Matusik et al.
SIG2002].

Point-Based Computer Graphics Hanspeter Pfister, MERL 21

Geometry – Opacity Hull

• Assign view-dependent opacity to each ray
originating on a point of the visual hull.

Red = invisible
White = opaque
Black = transparent

φA
B C

A B C

(θ,φ)

θ
Point-Based Computer Graphics Hanspeter Pfister, MERL 22

Example

Photo

Point-Based Computer Graphics Hanspeter Pfister, MERL 23

Example

Photo

Visual Hull

Point-Based Computer Graphics Hanspeter Pfister, MERL 24

Example

Photo

Visual Hull Opacity
Hull

Point-Based Computer Graphics Hanspeter Pfister, MERL 25

Example

Photo

Visual Hull Opacity
Hull

Surface
Light Field

Point-Based Computer Graphics Hanspeter Pfister, MERL 26

Results

• Point-based rendering using EWA splatting,
A-buffer blending, and edge antialiasing.

Point-Based Computer Graphics Hanspeter Pfister, MERL 27

Results Video

Point-Based Computer Graphics Hanspeter Pfister, MERL 28

Results Video

Point-Based Computer Graphics Hanspeter Pfister, MERL 29

Results Video

Point-Based Computer Graphics Hanspeter Pfister, MERL 30

Results Video

Point-Based Computer Graphics Hanspeter Pfister, MERL 31

Opacity Hull - Discussion

• View dependent opacity vs. geometry
trade-off.

• Sometimes acquiring the geometry is not
possible.

• Sometimes representing true geometry
would be very inefficient.

• Opacity hull stores the “macro” effect.

Point-Based Computer Graphics Hanspeter Pfister, MERL 32

Point-Based Models

• No need to establish topology or
connectivity.

• No need for a consistent surface
parameterization for texture mapping.

• Represent organic models (feather, tree)
much more readily than polygon models.

• Easy to represent view-dependent opacity
and radiance per surface point.

Point-Based Computer Graphics Hanspeter Pfister, MERL 33

Outline

• Overview
• Previous Works
• Geometry

Reflectance
• Refraction & Transparency

Point-Based Computer Graphics Hanspeter Pfister, MERL 34

Light Transport Model

• Assume illumination originates from
infinity.

• The light arriving at a camera pixel can be
described as:

C(x,y) - the pixel value
E - the environment
W - the reflectance field

ωωω dEWyxC)()(),(∫
Ω

=

Point-Based Computer Graphics Hanspeter Pfister, MERL 35

Surface Reflectance Fields

• 6D function:�i

�r

P

),;,;,(),,(rriirrri vuWPW ΦΦ= θθωω

�i

Point-Based Computer Graphics Hanspeter Pfister, MERL 36

Reflectance Functions

• For each viewpoint, 4D function:

(θi,φi)

θi

φi

),;,()(iiixy yxWW Φ= θω

Point-Based Computer Graphics Hanspeter Pfister, MERL 37

Relighting

x

Surface reflectance
field

New
Illumination

= V0

V1

V2

… Vn

Down-
sample

Point-Based Computer Graphics Hanspeter Pfister, MERL 38

• Subdivide images into 8 x 8 pixel blocks.
• Keep blocks containing the object (avg.

compression 1:7)
• PCA compression (avg. compression 1:10)

Compression

PCA

a0 a1 a2 a3 a4 a5

Point-Based Computer Graphics Hanspeter Pfister, MERL 39

Results

Point-Based Computer Graphics Hanspeter Pfister, MERL 40

The Library

Point-Based Computer Graphics Hanspeter Pfister, MERL 41

Surface Reflectance Fields

• Work without accurate geometry
• Surface normals are not necessary
• Capture more than reflectance

• Inter-reflections
• Subsurface scattering
• Refraction
• Dispersion
• Non-uniform material variations

• Simplified version of the BSSRDF

Point-Based Computer Graphics Hanspeter Pfister, MERL 42

Outline

• Overview
• Previous Works
• Geometry
• Reflectance

Refraction & Transparency

Point-Based Computer Graphics Hanspeter Pfister, MERL 43

Acquisition

• We separate the hemisphere into high
resolution �h and low resolution �l.

ωωωξξξ dLWdTWyxC iilh

lh

)()()()(),(∫∫
ΩΩ

+=

Wh Wl
T

L(�
)

Point-Based Computer Graphics Hanspeter Pfister, MERL 44

Acquisition

• For each viewpoint (6 cameras x 72
positions)
• Alpha mattes

• Use multiple backgrounds [Smith and Blinn 96]

• Reflectance images
• Pictures of the object under different

lighting
(4 lights x 11 positions)

• Environment mattes
• Use similar techniques as [Chuang et al. 2000]

Low resolution

High resolution

Point-Based Computer Graphics Hanspeter Pfister, MERL 45

Low-Resolution Reflectance Field

ωωω dLW iil

l

)()(∫
Ω

∑
=

≈
n

i
iiLW

1
for n lights

ξξξ dTW
h

h)()(∫
Ω

=),(yxC ωωω dLW iil

l

)()(∫
Ω

+

Point-Based Computer Graphics Hanspeter Pfister, MERL 46

High-Resolution Reflectance Field

• Use techniques of environment matting
[Chuang et al., SIGGRAPH 00].

ξξξ dTW
h

h)()(∫
Ω

=),(yxC ωωω dLW iil

l

)()(∫
Ω

+

Point-Based Computer Graphics Hanspeter Pfister, MERL 47

High-Resolution Reflectance Field

• Approximate Wh by a sum of up to two
Gaussians:
• Reflective G1.
• Refractive G2.

N G1

G2

2211)(GaGaWh +=ξ

Point-Based Computer Graphics Hanspeter Pfister, MERL 48

Reproject �h

• Project environment mattes onto the new
environment.
• Environment mattes acquired was

parameterized on plane T (the plasma display).
• We need to project the Gaussians to the new

environment map, producing new Gaussians.

Wh
T

Point-Based Computer Graphics Hanspeter Pfister, MERL 49

View Interpolation

• Render low-resolution reflectance field.
• High-resolution reflectance field:

• Match reflected and refracted Gaussians.

• Interpolate direction vectors, not colors.
• Determine new color along interpolated direction.

V1

V2

G1r

G1t

G2r

G2t

N ~

~

~

~

Point-Based Computer Graphics Hanspeter Pfister, MERL 50

Results

• Performance for 6x72 = 432 viewpoints
• 337,824 images taken in total !!

• Acquisition (47 hours)
• Alpha mattes – 1 hour
• Environment mattes – 18 hours
• Reflectance images – 28 hours

• Processing
• Opacity hull ~ 30 minutes
• PCA Compression ~ 20 hours (MATLAB, unoptimized)

• Rendering ~ 5 minutes per frame
• Size

• Opacity hull ~ 30 - 50 MB
• Environment mattes ~ 0.5 - 2 GB
• Reflectance images ~ Raw 370 GB / Compressed 2 - 4 GB

Point-Based Computer Graphics Hanspeter Pfister, MERL 51

Results

hΩHigh-resolution lΩLow-resolution Combined

Point-Based Computer Graphics Hanspeter Pfister, MERL 52

Results

Point-Based Computer Graphics Hanspeter Pfister, MERL 53

Results

Point-Based Computer Graphics Hanspeter Pfister, MERL 54

Results – Ωh

Point-Based Computer Graphics Hanspeter Pfister, MERL 55

Results – Ωl

Point-Based Computer Graphics Hanspeter Pfister, MERL 56

Results – Combined

Point-Based Computer Graphics Hanspeter Pfister, MERL 57

Results

Point-Based Computer Graphics Hanspeter Pfister, MERL 58

Results

Point-Based Computer Graphics Hanspeter Pfister, MERL 59

Conclusions

• Data driven modeling is able to capture
and render any type of object.

• Opacity hulls provide realistic 3D
graphics models.

• Our models can be seamlessly inserted
into new environments.

• Point-based rendering offers high image-
quality for display of acquired models.

Point-Based Computer Graphics Hanspeter Pfister, MERL 60

Future Directions

• Real-time rendering
• Done! [Vlasic et al., I3D 2003]

• Better environment matting
• More than two Gaussians

• Better compression
• MPEG-4 / JPEG 2000

Point-Based Computer Graphics Hanspeter Pfister, MERL 61

Acknowledgements

• Colleagues:
• MIT: Chris Buehler, Tom Buehler
• MERL: Bill Yerazunis, Darren Leigh, Michael

Stern

• Thanks to:
• David Tames, Jennifer Roderick Pfister

• NSF grants CCR-9975859 and EIA-9802220
• Papers available at:

http://www.merl.com/people/pfister/

1

Point-Based Computer Graphics

Marc Alexa, Carsten Dachsbacher,
Markus Gross, Mark Pauly,

Hanspeter Pfister, Marc Stamminger,
Matthias Zwicker

2

Point-based Surface Reps

• Marc Alexa
• Discrete Geometric Modeling Group
• Darmstadt University of Technology
• alexa@informatik.tu-darmstadt.de

3

Motivation

• Many applications need a definition of
surface based on point samples
• Reduction
• Up-sampling
• Interrogation (e.g. ray tracing)

• Desirable surface properties
• Manifold
• Smooth
• Local (efficient computation)

4

Overview

• Introduction & Basics
• Fitting Implicit Surfaces
• Projection-based Surfaces

5

Introduction & Basics
• Terms

• Regular/Irregular, Approximation/Interpolation,
Global/Local

• Standard interpolation/approximation
techniques
• Triangulation, Voronoi-Interpolation, Least

Squares (LS), Radial Basis Functions (RBF),
Moving LS

• Problems
• Sharp edges, feature size/noise

• Functional -> Manifold

6

• Regular (on a grid) or irregular (scattered)
• Neighborhood (topology) is unclear for

irregular data

Terms: Regular/Irregular

2

7

Terms:
Approximation/Interpolation

• Noisy data -> Approximation

• Perfect data -> Interpolation

8

Terms: Global/Local

• Global approximation

• Local approximation

• Locality comes at the expense of
smoothness

9

Triangulation

• Exploit the topology in a triangulation
(e.g. Delaunay) of the data

• Interpolate the data points on the
triangles
• Piecewise linear C0
• Piecewise quadratic C1?
• …

10

• Barycentric interpolation on simplices
(triangles)
• given d+1 points xi with values fi and a

point x inside the simplex defined by xi

• Compute αi from
x = Σi αi ·xi and Σi αi = 1

• Then
f = Σi αi ·fi

Triangulation: Piecewise
linear

11

Voronoi Interpolation

• compute Voronoi diagram
• for any point x in space

• add x to Voronoi diagram
• Voronoi cell τ around x intersects original cells

τi of natural neighbors ni

• interpolate

with

()()
∑

∑ −⋅∇+⋅
=

i i

i i
T
iii

(x)
xxff(x)

f(x)
λ

λ

i

i
i xx
(x)

−⋅
∩

=
τ

ττ
λ

12

Voronoi Interpolation

n1

x

τ1
n2

τ2

n3
τ3

n4
τ4

n5
τ5

τ

3

13

Properties of Voronoi Interpolation:
• linear Precision
• local
• for d = 1 f(x) piecewise cubic
• f(x)∈ C1 on domain
• f(x,x1,...,xn) is continuous in xi

Voronoi Interpolation

14

Least Squares

• Fits a primitive to the data
• Minimizes squared distances between

the pi’s and primitive g

()()∑ −
i

iig xy
pgp 2min

2)(cxbxaxg ++=

15

Least Squares - Example

• Primitive is a polynomial

•

• Linear system of equations

() Txxxg c⋅= ,...,,1)(2

()()
()()∑

∑
−=

⇒−

i

T
iii

j
i

i

T
iii

xxyx

xxy

pppp

ppp

c

c

,...,,120

,...,,1min

2

22

16

Least Squares - Example

• Resulting system

()()



















=







































⇔−=∑

ΜΜΟΜ

Κ

2
2

1

0

432

32

2

2

1

,...,,120

yx
yx
y

c
c
c

xxx
xxx
xx

pppp
i

T
iii

j
i xxyx

c

17

Radial Basis Functions

• Represent interpolant as
• Sum of radial functions r
• Centered at the data points pi

() ()∑ −=
i

ii xprwxf

18

Radial Basis Functions

• Solve

to compute weights wi
• Linear system of equations

()∑ −=
i

jiij xxy
pprwp

() () ()
() () ()
() () ()



















=







































−−
−−
−−

ΜΜΟΜ

Λ

y

y

y

xxxx

xxxx

xxxx

p
p
p

w
w
w

rpprppr
pprrppr
pprpprr

2

1

0

2

1

0

1202

2101

2010

0
0

0

4

19

Radial Basis Functions

• Solvability depends on radial function
• Several choices assure solvability

• (thin plate spline)

• (Gaussian)
• h is a data parameter
• h reflects the feature size or anticipated

spacing among points

() dddr log2=

() 22 /hdedr −=

20

• Monomial, Lagrange, RBF share the
same principle:
• Choose basis of a function space
• Find weight vector for base elements by

solving linear system defined by data
points

• Compute values as linear combinations
• Properties

• One costly preprocessing step
• Simple evaluation of function in any point

Function Spaces!

21

• Problems
• Many points lead to large linear systems
• Evaluation requires global solutions

• Solutions
• RBF with compact support

• Matrix is sparse
• Still: solution depends on every data point,

though drop-off is exponential with distance

• Local approximation approaches

Function Spaces?

22

Shepard Interpolation

• Approach for Rd: f(x)= Σi φi(x) fi

with basis functions

• define f(xi) := fi = limx xi
f(x)

∑
−

−

−

−
=

j

p
j

p
i

i
xx

xx
(x)φ

23

Shepard Interpolation

• f(x) is a convex combination of φi,
because all φi(Rd)⊆ [0,1] and Σi φi(x) ≡ 1.

f(x) is contained in the convex hull of data
points

• for p>1 f(p)∈ C∞ and ∇ xφi(xi) = 0
Data points are saddles

• global interpolation
every f(x) depends on all data points

• Only constant precision, i.e. only constant
functions are reproduced exactly

24

Shepard Interpolation

Localization:
• Set f(x)= Σi µi(x)·φi(x)·fi

with

for reasonable Ri and ν >1
no constant precision because of
possible holes in the data

()




 <−−=

−

sonst
für

0
iRixx1(x) i

i
R
xx

i

ν

µ

5

25

Spatial subdivisions

• Subdivide parameter domain into
overlapping cells τi with centroids ci

• Compute Shepard weights

and localize them using the radius of the
cell

• Interpolate/approximate data points in
each cell by an arbitrary function fi

• The interpolant is given as f(x)= Σi
µi(x)·φi(x)·fi

∑ −

−

−

−
=

j

p
j

p
i

i
cx

cx
(x)φ

26

Spatial subdivisions

27

Moving Least Squares

• Compute a local LS approximation at t
• Weight data points based on distance

to t

()() ()
xxy i

i
ii ptpgp −−∑ θmin 2

2)(cxbxaxg ++=
t

28

Moving Least Squares

• The set

is a smooth curve, iff θ is smooth

() ()() ()
xxy i

i
iigtt ptpgpgtgtf −−= ∑ θmin:),(2

29

Moving Least Squares

• Typical choices for θ:
•
•

• Note: is fixed
• For each t

• Standard weighted LS problem
• Linear iff corresponding LS is linear

()
xii pt −= θθ

() 22 /θ hded −=
() rdd −=θ

30

Typical Problems

• Sharp corners/edges

• Noise vs. feature size

6

31

Functional -> Manifold

• Standard techniques are applicable
if data represents a function

• Manifolds are more general
• No parameter domain
• No knowledge about neighbors, Delaunay

triangulation connects non-neighbors

32

Implicits

• Each orientable n-manifold can be
embedded in n+1 – space

• Idea: Represent n-manifold as zero-
set of a scalar function in n+1 – space
• Inside:
• On the manifold:
• Outside:

() 0<xf
() 0=xf
() 0>xf

33

Implicits - Illustration

• Image courtesy Greg Turk

34

Implicits from point samples

• Function should be
zero in data points
•

• Use standard
approximation
techniques to find f

• Trivial solution:
• Additional constraints

are needed

() 0=if p

0=f

0

35

Implicits from point samples

• Constraints define
inside and outside

• Simple approach
(Turk, O’Brien)
• Sprinkle additional

information manually
• Make additional

information soft
constraints

−

−
−

−

−

−

+

+

+

+

+

+

+

36

Implicits from point samples

• Use normal
information

• Normals could be
computed from scan

• Or, normals have to be
estimated

7

37

Estimating normals

• Normal orientation
(Implicits are signed)
• Use inside/outside

information from scan
• Normal direction

by fitting a tangent
• LS fit to nearest neighbors
• Weighted LS fit
• MLS fit

n

q

38

Estimating normals

• General fitting problem

• Problem is non-linear
because n is constrained
to unit sphere

n
q

()∑ −
= i

ii pqnpq
n

,θ,min 2

1

39

Estimating normals

• The constrained minimization problem

is solved by the eigenvector corresponding
to the smallest eigenvalue of

∑ −
= i

ii θ,min 2

1
npq

n

() () ()
() () ()
() () () 






















−−−

−−−

−−−

∑∑∑
∑∑∑
∑∑∑

i
iiz

i
iiz

i
iiz

i
iiy

i
iiy

i
iiy

i
iix

i
iix

i
iix

zyx

zyx

zyx

pqpqpq

pqpqpq

pqpqpq

θθθ

θθθ

θθθ

222

222

222

40

Implicits from point samples

• Compute non-zero
anchors in the
distance field

• Use normal
information directly
as constraints

+1

+1

+1

+1

+1

+1

+1+1

+1

+1

+1 +1

() 1=+ iif np

41

Implicits from point samples

• Compute non-zero
anchors in the
distance field

• Compute distances
at specific points
• Vertices, mid-points,

etc. in a spatial
subdivision

−2.5

+0.5

+1 +1

+0.5+2.5 +2

+2 +1.5

42

Computing Implicits

• Given N points and normals
and constraints

• Let
• An RBF approximation

leads to a system of linear equations

() () iii dff == cp ,0

iNi cp =+

() ()∑ −=
i

iirwf xpx

ii np ,

8

43

Computing Implicits

• Practical problems: N > 10000
• Matrix solution becomes difficult
• Two solutions

• Sparse matrices allow iterative solution
• Smaller number of RBFs

44

Computing Implicits

• Sparse matrices

• Needed:

• Compactly supported RBFs

() () ()
() () ()
() () ()





















−−
−−
−−

ΟΜ

Λ

0
0

0

120

2101

2010

rpprppr
pprrppr
pprpprr

0)(',0)(==→> crdrcd

cc

45

Computing Implicits

• Smaller number of RBFs
• Greedy approach (Carr et al.)

• Start with random small subset
• Add RBFs where approximation quality is

not sufficient

46

RBF Implicits - Results

• Images courtesy Greg Turk

47

RBF Implicits - Results

• Images courtesy Greg Turk

48

Hoppe’s approach

• Use linear distance
field per point
• Direction is

defined by normal

• In every point in
space use the
distance field of
the closest point

9

49

Hoppe’s approach - smoother

• Direction fields are
interpolated using
Voronoi
interpolation

50

PuO Implicits

• Construct a spatial
subdivision

• Compute local
distance field
approximations
• e.g. Quadrics

• Blend them with
local Shepard
weights

−2.5

+0.5

+1 +1

+0.5+2.5 +2

+2 +1.5

51

CornerCorner
functionfunction

Edge Edge
functionfunction

Standard Standard
quadricquadric

Piecewise quadric
functions

Local analysis of Local analysis of
points andpoints and normalsnormals

PuO Implicits: Sharp features

52

Multi-level PuO Implicits

• Subdivide cells based on local error

53

Multi-level PuO Implicits

• Local computations
• Insensitive to number of

points

• Local adaptation to shape
complexity

• Sensitive to output
complexity

54

Multi-level PuO Implicits

• Aproximation at arbitrary accuracy

10

55

Implicits - Conclusions

• Scalar field is underconstrained
• Constraints only define where the field is

zero, not where it is non-zero
• Additional constraints are needed

• Signed fields restrict surfaces to be
unbounded
• All implicit surfaces define solids

56

Projection

• Idea: Map space to surface
• Surface is defined as fixpoints of

mapping
r

r’

57

Surface definition

• Projection procedure (Levin)
• Local polyonmial approximation

• Inspired by differential geometry

• “Implicit” surface definition

• Infinitely smooth &
• Manifold surface

r
r’

58

Surface Definition

• Constructive definition
• Input point r
• Compute a local

reference plane
Hr=<q,n>

• Compute a local
polynomial over
the plane Gr

• Project point r’=Gr(0)
• Estimate normal

r
Gr

Hr

q

n

59

Local Reference Plane

•Find plane
•

•
• h is feature size/

point spacing

• Hr is independent
of r’s distance

• Manifold property

r

Hr

q

n

Weight function
based on distance to

q, not r
DHr += nq,

()∑ −−
= i

ii pqnpq
nq

θ,min 2

1,

() 22 /dθ hde=

60

Local Reference Plane

•Computing reference plane
• Non-linear optimization problem

•Minimize independent
variables:

• Over n for fixed distance

• Along n for fixed direction n

• q changes -> the weights change
• Only iterative solutions possible

r

Hr

q

n

r

H
r

q

n

qr −

11

61

Local Reference Plane

•Practical computation
• Minimize over n for fixed q

• Eigenvalue problem

• Translate q so that

• Effectively changes

• Minimize along n for
fixed direction n

• Exploit partial derivative

r

Hr

q

n

r

H
r

q

n
nqrqr −+=

qr −

62

Projecting the Point

• MLS polyonomial over Hr
•

• LS problem
• r’=Gr(0)

• Estimate normal

r

Gr

Hr

q

n

()() ()∑ −−−
Π∈ i

iHiiG rd

G pqpnpq θ,min 2

63

Spatial data structure

• Regular grid based on support of θ
• Each point influences only 8 cells

• Each cell is
an octree
• Distant octree cells

are approximated
by one point in
center of mass

r

64

Conclusions

• Projection-based surface definition
• Surface is smooth and manifold
• Surface may be bounded
• Representation error mainly depends on

point density
• Adjustable feature size h allows to

smooth out noise

1

Point-Based Rendering

Matthias Zwicker
Computer Graphics Lab

ETH Zürich

2

Point-Based Rendering

• Introduction and motivation
• Surface elements
• Rendering
• Antialiasing
• Hardware Acceleration
• Conclusions

3

Motivation 1

Quake 2, 1998
10k triangles

Nvidia, 2002
millions of triangles

4

Motivation 1

• Performance of 3D hardware has exploded
(e.g., GeForce4: 136 million vertices per
second)

• Projected triangles are very small (i.e.,
cover only a few pixels)

• Overhead for triangle setup increases
(initialization of texture filtering,
rasterization)

A simpler, more efficient rendering
primitive than triangles?

5

Motivation 2

• Modern 3D scanning devices
(e.g., laser range scanners)
acquire huge point clouds

• Generating consistent triangle
meshes is time consuming and
difficult

A rendering primitive for
direct visualization of point
clouds, without the need to
generate triangle meshes? 4 million pts.

[Levoy et al. 2000]

6

Points as Rendering
Primitives
• Point clouds instead of triangle meshes [Levoy and

Whitted 1985]
• 2D vector versus pixel graphics

triangle mesh (with
textures)

point cloud

2

7

Point-Based Surface
Representation

• Points are samples of the surface
• The point cloud describes:

• 3D geometry of the surface
• Surface reflectance properties (e.g.,

diffuse color, etc.)

• There is no additional information,
such as
• connectivity (i.e., explicit

neighborhood information between
points)

• texture maps, bump maps, etc.

8

Surface Elements - Surfels

• Each point corresponds to a surface
element, or surfel, describing the surface in
a small neighborhood

• Basic surfels:

BasicSurfel {
position;
color;

}

position

color

x

y

z

9

Surfels

• How to represent the surface between the
points?

• Surfels need to interpolate the surface
between the points

• A certain surface area is associated with
each surfel

holes between
the points

10

ExtendedSurfel {
position;
color;
normal;
radius;
etc...

}

Surfels
• Surfels can be extended by storing additional

attributes
• This allows for higher quality rendering or

advanced shading effects

normal
position

color radius

surfel disc

11

Surfels

• Surfels store essential information for
rendering

• Surfels are primarily designed as a
point rendering primitive

• They do not provide a mathematically
smooth surface definition (see [Alexa
2001], point set surfaces)

12

Model Acquisition

• 3D scanning of physical objects
• See Pfister, acquisition
• Direct rendering of acquired point clouds
• No mesh reconstruction necessary

[Matusik et al. 2002]

3

13

Model Acquisition

• Sampling synthetic objects
• Efficient rendering of complex models
• Dynamic sampling of procedural objects

and animated scenes (see Stamminger,
dynamic sampling)

[Zwicker et al. 2001] [Stamminger et al. 2001]

14

Model Acquisition

• Processing and editing of point-sampled
geometry

point-based surface editing
[Zwicker et al. 2002]

(see Pauly, Pointshop3D)

spectral processing
[Pauly, Gross 2002]

(see Gross, spectral processing)

15

Visibility Image
ReconstructionShadingProjection

• Simple, pure forward mapping pipeline
• Surfels carry all information through the pipeline

(„surfel stream“)
• No texture look-ups
• Framebuffer stores RGB, alpha, and Z

Point
Cloud

Frame-
buffer

Point Rendering Pipeline

16

• Perspective projection of each point in
the point cloud

• Analogous to projection of triangle
vertices
• homogeneous matrix-vector product
• perspective division

Point Rendering Pipeline

Visibility Image
ReconstructionShadingProjection

17

• Per-point shading
• Conventional models for shading

(Phong, Torrance-Sparrow,
reflections, etc.)

Point Rendering Pipeline

Visibility Image
ReconstructionShadingProjection

18

• Visibility and image reconstruction is tightly
coupled
• Discard points that are occluded from the

current viewpoint
• Reconstruct continuous surfaces from

projected points (antialiasing)

Point Rendering Pipeline

Visibility Image
ReconstructionShadingProjection

4

19

Visibility and Image
Reconstruction

with visibility and
image reconstruction

without visibility and
image reconstruction

foreground point

occluded background point

surface discontinuity
(“hole”)

20

• Goal: avoid holes and
discard occluded surfels

• Use surfel discs with
radius r to cover
surface completely

• Apply z-buffer to
discard invisible surfels radius r

3D object space

surfel disc

normal

Visibility and Image
Reconstruction

21

• Rasterize a colored quad centered at the projected
point, use z-buffering

• The quad side length is h, where h = 2 * r * s
• The scaling factor s given by perspective

projection and viewport transformation
• Hardware implementation: OpenGL GL_POINTS

x

y

screen space

}h

colored quad

projected
point

Quad Rendering Primitive

22

Visibility: Z-Buffering

• No blending of rendering primitives

y

framebuffer

x

z2

z1

z

z1 > z2{
pixel

23

• Project surfel discs from object to screen space
• Projecting discs results in ellipses in screen space
• Ellipses adapt to the surface orientation

screen space object space

x

y y

z

x

normal

surfel disc

projected surfel disc

Projected Disc Rendering
Primitive

24

Discussion

• Quad and projected disc primitive
• Simple, efficient
• Hardware support
• Low image quality
• Suitable for preview renderers (e.g.

Qsplat [Rusinkiewicz et al. 2000])

• Problem: no blending of primitives

5

25

Splatting

• A splat primitive consists of a colored point
primitive and an alpha mask

colored point
primitive c

alpha mask
w(x,y)

(often a 2D
Gauss function)

splat primitive
c * w(x,y)

y

x

y

x

y

x

* =

26

∑
∑=

i i

i ii

yxw
yxwc

yxc
),(
),(

),(

Splatting

• Normalization is necessary, because the weights do
not sum up to one with irregular point distributions

• The final color c(x,y) is computed by additive
alpha blending, i.e., by computing the weighted
sum

color of splat i alpha of splat i at position (x,y)

1),(≠∑i i yxw

27

Splatting

varying brightness
because of irregular

point distribution

without normalization with normalization

no artifacts

28

Splatting

• Extended z-buffering

z
z-buffer pixel surfel disc

surface 2surface 1

z-threshold
accumulate

splats

discard splats

29

Extended Z-Buffering

DepthTest(x,y) {

if (abs(splat z – z(x,y)) < threshold) {

c(x,y) = c(x,y) + splat color

w(x,y) = w(x,y) + splat w(x,y)

} else if (splat z < z(x,y)) {

z(x,y) = splat z

c(x,y) = splat color

w(x,y) = splat w(x,y)

}

}

30

Splatting Comparison

minif.

magnif. 128 x 192

elliptical
splats

128 x 192

circular splats
with min. radius

128 x 192

surface
splatting

6

31

High Quality Splatting

• High quality splatting requires careful
analysis of aliasing issues
• Review of signal processing theory
• Application to point rendering
• Surface splatting [Zwicker et al. 2001]

32

Aliasing in Computer Graphics

• Aliasing = Sampling of continuous functions
below the Nyquist frequency
• To avoid aliasing, sampling rate must be twice as

high as the maximum frequency in the signal

• Aliasing effects:
• Loss of detail
• Moire patterns, jagged edges
• Disintegration of objects or patterns

• Aliasing in Computer Graphics
• Texture Mapping
• Scan conversion of geometry

33

Aliasing in Computer
Graphics
• Aliasing: high frequencies in the input signal

appear as low frequencies in the
reconstructed signal

34

Occurrence of Aliasing

Spatial Domain Frequency Domain Spatial Domain Frequency Domain

35

Aliasing-Free Reconstruction

Spatial Domain Frequency Domain Spatial Domain Frequency Domain

36

Antialiasing

• Prefiltering
• Band-limit the continuous signal before

sampling
• Eliminates all aliasing (with an ideal low-pass

filter)
• Closed form solution not available in general

• Supersampling
• Raise sampling rate
• Reduces, but does not eliminate all aliasing

artifacts (in practice, many signals have infinite
frequencies)

• Simple implementation (hardware)

7

37

Resampling

1.

warp

2. 3.

4.

discrete input signal discrete output signal

resampling

38

Resampling Filters

Object Space

reconstruction kernels

reconstructed input

position

color

irregular spacing

39

Resampling Filters
Object Space

3. Filter

Screen Space2.
 W

ar
p

Screen Space

4.
 S

am
pl

e

Screen Space

40

Resampling Filters
Object Space

3. Filter

Screen Space2.
 W

ar
p

Screen Space

4.
 S

am
pl

e

Screen Space

low-pass filter convolution

resampling filters

sum of resampling filters

warped reconstruction
kernel

41

Resampling

• Resampling in the context of surface
rendering
• Discrete input function = surface texture

(discrete 2D function)
• Warping = projecting surfaces to the

image plane (2D to 2D projective
mapping)

42

2D Reconstruction Kernels

• 2D reconstruction kernels are given by surfel discs
with alpha masks

• Warping is equivalent to projecting the kernel from
object to screen space

screen space object space

x

y y

z

x

normal

surfel disc with
alpha mask =
reconstruction
kernel

warped reconstruction kernel

8

43

Resampling Filters
• A resampling filter is a convolution of a

warped reconstruction filter and a low-pass
filter

warped
reconstruction

kernel

low-pass filter
(determined by

pixel grid)

resampling filter
(“blurred reconstruction

kernel”)

screen space
pixel grid

“no information falls
inbetween the pixel
grid”convolution

44

resampling filter

Mathematical Formulation

∑ ⊗= −
k kk yxhyxmrcyxc),()),((),(1

pixel color

reconstruction kernel

warping function low pass filter

reconstruction kernel color

45

Gaussian Resampling Filters

• Gaussians are closed under linear
warping and convolution

• With Gaussian reconstruction kernels
and low-pass filters, the resampling
filter is a Gaussian, too

• Efficient rendering algorithms
(surface splatting [Zwicker et al.
2001])

46

Mathematical Formulation

Gaussian
reconstruction kernel

Gaussian
low-pass filter

∑ ⊗= −
k kk yxhyxmrcyxc),()),((),(1

screen space screen space

47

Mathematical Formulation

∑ ⊗= −
k kk yxhyxmrcyxc),()),((),(1

∑=
k kk yxGc),(

Gaussian resampling filter

48

Algorithm

for each point P {

project P to screen space;

shade P;

determine resampling kernel G;

splat G;

}

for each pixel {

normalize;

}

9

49

Properties of 2D Resampling
Filters
warped recon-

struction kernel
low-pass

filter
resampling

filter
minification

magnification
50

Results

• High quality reconstruction and filtering

200k points 4783k points

51

Results

987k points

transparent surfaces scanned objects

[MERL/MIT Matusik et al.]

52

Hardware Implementation

• Based on the object space formulation of
EWA filtering

• Implemented using textured triangles
• All calculations are performed in the

programmable hardware (extensive use of
vertex shaders)

• Presented at EG 2002 ([Ren et al. 2002])

53

Surface Splatting
Performance
• Software implementation

• 500 000 splats/sec on 866 MHz PIII
• 1 000 000 splats/sec on 2 GHz P4

• Hardware implementation [Ren et al. 2002]
• Uses texture mapping and vertex shaders
• 3 000 000 splats/sec on GeForce4 Ti 4400

54

Conclusions
• Points are an efficient rendering primitive for highly complex

surfaces
• Points allow the direct visualization of real world data

acquired with 3D scanning devices
• High performance, low quality point rendering is supported

by 3D hardware (tens of millions points per second)
• High quality point rendering with anisotropic texture filtering

is available
• 3 million points per second with hardware support
• 1 million points per second in software

• Antialiasing technique has been extended to volume
rendering

10

55

Applications

• Direct visualization of point clouds
• Real-time 3D reconstruction and rendering

for virtual reality applications
• Hybrid point and polygon rendering systems
• Rendering animated scenes
• Interactive display of huge meshes
• On the fly sampling and rendering of

procedural objects

56

Future Work

• Dedicated rendering hardware
• Efficient approximations of exact EWA

splatting
• Rendering architecture for on the fly

sampling and rendering

57

Acknowledgments

• Hanspeter Pfister, Jeroen van Baar
(MERL, Cambridge MA)

• Markus Gross, Mark Pauly, CGL
• Liu Ren

http://graphics.ethz.ch/surfels
http://graphics.ethz.ch/pointshop3d

58

References
• [Levoy and Whitted 1985] The use of points as a display primitive,

technical report, University of North Carolina at Chapel Hill, 1985
• [Heckbert 1986] Fundamentals of texture mapping and image warping,

Master‘s Thesis, 1986
• [Grossman and Dally 1998] Point sample rendering, Eurographics

workshop on rendering, 1998
• [Levoy et al. 2000] The digital Michelangelo project, SIGGRAPH 2000
• [Rusinkiewicz et al. 2000] Qsplat, SIGGRAPH 2000
• [Pfister et al. 2000] Surfels: Surface elements as rendering primitives,

SIGGRAPH 2000
• [Zwicker et al. 2001] Surface splatting, SIGGRAPH 2001
• [Zwicker et al. 2002] EWA Splatting, to appear, IEEE TVCG 2002
• [Ren et al. 2002] Object space EWA splatting: A hardware accelerated

approach to high quality point rendering, Eurographics 2002

1

Point-Based Computer Graphics

Marc Alexa, Carsten Dachsbacher,
Markus Gross, Mark Pauly,

Hanspeter Pfister, Marc Stamminger,
Matthias Zwicker

2

Introduction

• point rendering
• how adapt point densities?

• for a given viewing position, how can we get
n points that suffice for that viewer?

• how render the points?
• given n points, how can we render an image

from them ?

3

Introduction

• how render the points?
• project point to pixel, set pixel color
• hardware solution (Radeon 9700 Pro)

• ~80 mio. points per second
• no hole filling

• software solution
• ~8 mio. points per second
• hole filling

• hardware != software

4

Introduction

• even with hardware:
• for (int i = 0; i < N; i++)

renderPointWithNormalAndColor
(x[i],y[i],z[i],nx[i],ny[i],nz[i],…);

→ 10 mio points per second
• for (int i = 0; i < N; i++)

renderPoint(x[i],y[i],z[i]);

→ 20 mio points per second
• float *p = {...}
renderPoints(p);

→ 80 mio points per second

• → best performance with sequential
processing of large chunks !

5

Introduction

• what we want:
• sequential processing and
• adaptive point densities

→ precomputed point lists
→ render continuous segments only

point listrendered segment

6

Hierarchical Processing

• Q-Splat
• Rusinkiewicz et al., Siggraph 2000
• hierarchical point rendering

based on Bounding Sphere Hierarchy

© S. Rusinkiewicz

2

7

Hierarchical Processing

• Q-Splat hierarchy

R

R R R

R R R

8

Hierarchical Processing

• Q-Splat recursive rendering
render(Node n) {
// compute screen size of node
s = n.R / distanceToCamera(n);
// screen size too big?
if (s > threshold)
// → render children
forall children c
render(c);

else
// else draw node
renderPoint(n.xyz);

}

9

Hierarchical Processing

• not sequential
• no array, but tree structure
• most work on CPU
• CPU is bottleneck: ~8 mio points per second

→ sequential version ?

10

Sequential Point Trees

• store with node dmin = n.R / 1 Pixel

• render(Node n) {
// node too close?
if (distanceToCamera(n) < n.dmin)

// → render children
forall children c

render(c);
else

// else draw node
renderPoint(n.xyz);

}

11

Sequential Point Trees

• node n is rendered if:
• n is not too close and
• parent is not rendered

• or
• distToCam(n) < n.dmin

• distToCam(n.parent) ≥ n.parent.dmin

• parent is too close, but node is far
enough

12

Sequential Point Trees

• assume
• distToCam(n) ≈ distToCam(n.parent)

• store with n

• n.dmax = n.parent.dmin

• then a node is rendered if
• n.dmin ≤ distToCam(n) < n.dmax

3

13

Sequential Point Trees

• example tree

14

Sequential Point Trees

• sequential version

• foreach tree node n
if (n.dmin < distToCam(n) &&

distToCam(n) < n.dmax)
renderPoint(n);

• how enumerate nodes?

15

Sequential Point Trees

• sort nodes by
dmax

po
in

t
tr

ee
se

qu
en

ti
al

po
in

t
tr

ee

16

imax

Sequential Point Trees

• compute lower bound dbmin on
distToCam(n) with bounding volume

• all elements with dmax < dbmin can be skipped
• only prefix must be considered

imax imax

17

Sequential Point Trees

• account for d ≠ d(parent):
• dmax = dmin(parent) + distance to parent
• partially parent and some children

selected
• no visible artifacts from this

18

Sequential Point Trees

• culling by GPU necessary, because d is not constant
over object

4

19

Sequential Point Trees

• CPU does per frame:
• compute dbmin

• search last node imax with dmax>dbmin

• send first imax points to GPU

• GPU then does for every node n
• compute d = distToCam(n)
• if n.dmin ≤ d ≤ n.dmax

• render node

20

Sequential Point Trees

• CPU does first interval selection by dbmin

• GPU does fine granularity selection

sequential point tree

prefix with dbmin < dmax

culled because d > n.dmax

rendered
culled because d < n.dmin

21

Sequential Point Trees

• Result
• culling by GPU: only 10 - 40%
• on a 2,4 GHz Pentium with Radeon 9700:
• CPU-Load < 20% (usually much less)
• > 50 Mio points after culling

22

Sequential Point Trees

• better error measurement
• in flat regions

• increase dmin, dmax

• render larger points

23

Sequential Point Trees

• geometric
• perpendicular

error

• tangential
error

24

Sequential Point Trees

• example

5

25

Sequential Point Trees

• also add texture criterion
• necessary for flat textured regions

26

Sequential Point Trees

• if significant color variation in child
nodes:
• modify tangential error
• increase error to node diameter

• prevents washed out colors in flat
regions

27

Sequential Point Trees

• perpendicular, tangential, texture
error

• scale with 1/(view distance)

• fits into sequential point trees

28

Sequential Point Trees

• combine errors
• perpendicular ep

• tangential et

• texture etex

• ecom =

• => screen error = ecom / viewDistance

r if texture variation

else22
tp ee +

29

Sequential Point Trees

• can be combined with polygons

30

Sequential Point Trees

• combine with polygonal rendering
• for every triangle

• compute dmax (longest side / dmax = ε)
• remove all points from triangle with smaller dmax

• sort triangles for dmax

• during rendering
• for every object, compute upper bound dbmax on

distance
• send triangles with dmax < dbmax to GPU
• on the GPU (vertex program)

• test d < dmax

• cull by alpha-test

6

31

Sequential Point Trees

• pros
• very simple!
• CPU-load low
• most work moved to GPU
• GPU runs at maximum efficiency

• cons
• no view frustum culling
• currently: bad splatting support by GPU

1

Point-Based Computer Graphics Mark Pauly 1

Efficient Simplification of
Point-sampled Surfaces

Point-Based Computer Graphics Mark Pauly 2

Overview

• Introduction
• Local surface analysis
• Simplification methods
• Error measurement
• Comparison

Point-Based Computer Graphics Mark Pauly 3

Introduction
• Point-based models are often sampled very densely
• Many applications require coarser approximations,

e.g. for efficient

• Storage
• Transmission
• Processing
• Rendering

We need simplification methods for reducing the
complexity of point-based surfaces

Point-Based Computer Graphics Mark Pauly 4

Introduction

• Example: Level-of-detail (LOD) rendering

10k 20k 60k 200k 2000k

Point-Based Computer Graphics Mark Pauly 5

Introduction

• We transfer different simplification methods from
triangle meshes to point clouds:

• Hierarchical clustering
• Iterative simplification
• Particle simulation

• Depending on the intended use, each method has
its pros and cons (see comparison)

Point-Based Computer Graphics Mark Pauly 6

Local Surface Analysis

• Cloud of point samples describes underlying
(manifold) surface

• We need:
• Mechanisms for locally approximating the

surface MLS approach

• Fast estimation of tangent plane and curvature
principal component analysis of local

neighborhood

2

Point-Based Computer Graphics Mark Pauly 7

Neighborhood

• No explicit connectivity between samples (as with
triangle meshes)

• Replace geodesic proximity with spatial proximity
(requires sufficiently high sampling density!)

• Compute neighborhood according to Euclidean
distance

Point-Based Computer Graphics Mark Pauly 8

Neighborhood

• K-nearest neighbors

• Can be quickly computed using spatial data-
structures (e.g. kd-tree, octree, bsp-tree)

• Requires isotropic point distribution

Point-Based Computer Graphics Mark Pauly 9

Neighborhood

• Improvement: Angle criterion (Linsen)

• Project points onto tangent plane
• Sort neighbors according to angle
• Include more points if angle between

subsequent points is above some threshold

Point-Based Computer Graphics Mark Pauly 10

Neighborhood

• Local Delaunay triangulation (Floater)

• Project points into tangent plane
• Compute local Voronoi diagram

Point-Based Computer Graphics Mark Pauly 11

Covariance Analysis

• Covariance matrix of local neighborhood N:

• with centroid

Ni j
i

i

T

i

i

nn

∈
















−

−
⋅

















−

−
= ,

11

pp

pp

pp

pp
C ΛΛ

∑
∈

=
Ni

iN
pp 1

Point-Based Computer Graphics Mark Pauly 12

Covariance Analysis

• Consider the eigenproblem:

• C is a 3x3, positive semi-definite matrix
All eigenvalues are real-valued
The eigenvector with smallest eigenvalue defines the
least-squares plane through the points in the
neighborhood, i.e. approximates the surface normal

}2,1,0{, ∈⋅=⋅ llll vvC λ

3

Point-Based Computer Graphics Mark Pauly 13

Covariance Analysis

• Covariance ellipsoid spanned by the eigenvectors
scaled with corresponding eigenvalue

Point-Based Computer Graphics Mark Pauly 14

Covariance Analysis
• The total variation is given as:

• We define surface variation as:

• Measures the fraction of variation along the surface
normal, i.e. quantifies how strong the surface deviates
from the tangent plane estimate for curvature

210
210

0 ,)(λλλ
λλλ

λσ ≤≤
++

=pn

210
2 λλλ ++=−∑

∈ Ni
i pp

Point-Based Computer Graphics Mark Pauly 15

Covariance Analysis

• Comparison with curvature:

original mean curvature variation n=20 variation n=50

Point-Based Computer Graphics Mark Pauly 16

Surface Simplification

• Hierarchical clustering

• Iterative simplification

• Particle simulation

Point-Based Computer Graphics Mark Pauly 17

Hierarchical Clustering

• Top-down approach using binary space partition:

• Split the point cloud if:

• Size is larger than user-specified maximum or

• Surface variation is above maximum threshold

• Split plane defined by centroid and axis of greatest
variation (= eigenvector of covariance matrix with
largest associated eigenvector)

• Leaf nodes of the tree correspond to clusters
• Replace clusters by centroid

Point-Based Computer Graphics Mark Pauly 18

Hierarchical Clustering

• 2D example

covariance
ellipsoid split plane

centroid

root

4

Point-Based Computer Graphics Mark Pauly 19

Hierarchical Clustering

• 2D example

Point-Based Computer Graphics Mark Pauly 20

Hierarchical Clustering

• 2D example

Point-Based Computer Graphics Mark Pauly 21

Hierarchical Clustering

• 2D example

Point-Based Computer Graphics Mark Pauly 22

Hierarchical Clustering

4,280 Clusters436 Clusters43 Clusters

Point-Based Computer Graphics Mark Pauly 23

Hierarchical Clustering

• Adaptive Clustering

Point-Based Computer Graphics Mark Pauly 24

Iterative Simplification

• Iteratively contracts point pairs
Each contraction reduces the number of points by one

• Contractions are arranged in priority queue
according to quadric error metric (Garland and
Heckbert)

• Quadric measures cost of contraction and
determines optimal position for contracted sample

• Equivalent to QSlim except for definition of
approximating planes

5

Point-Based Computer Graphics Mark Pauly 25

Iterative Simplification

• Quadric measures the squared distance to a set of
planes defined over edges of neighborhood
• plane spanned by vectors andppe −= i1 nee ×= 12

1e

ip

p2e

n

Point-Based Computer Graphics Mark Pauly 26

Iterative Simplification

• 2D example

• Compute fundamental
quadrics

• Compute initial point-pair
contraction candidates

• Compute edge costs

Point-Based Computer Graphics Mark Pauly 27

Iterative Simplification

• 2D example

0.564

0.447

0.3610

0.2711

0.223

0.1313

0.111

0.099

0.045

0.0414

0.032

0.026

priority queue

edge cost

Point-Based Computer Graphics Mark Pauly 28

Iterative Simplification

• 2D example

0.564

0.447

0.3610

0.2711

0.223

0.1313

0.111

0.099

0.045

0.0414

0.032

0.026

priority queue

edge cost

Point-Based Computer Graphics Mark Pauly 29

Iterative Simplification

• 2D example

0.564

0.497

0.3610

0.2711

0.233

0.1313

0.111

0.099

0.065

0.0414

0.032

0.026

priority queue

edge cost

Point-Based Computer Graphics Mark Pauly 30

Iterative Simplification

• 2D example

0.564

0.497

0.3610

0.2711

0.233

0.1313

0.111

0.099

0.065

0.0414

0.032

priority queue

edge cost

6

Point-Based Computer Graphics Mark Pauly 31

Iterative Simplification

• 2D example

0.564

0.497

0.3610

0.2711

0.233

0.1313

0.111

0.099

0.065

0.0414

0.032

priority queue

edge cost

Point-Based Computer Graphics Mark Pauly 32

Iterative Simplification

• 2D example

0.564

0.497

0.3610

0.2711

0.233

0.1313

0.111

0.099

0.065

0.0414

priority queue

edge cost

Point-Based Computer Graphics Mark Pauly 33

Iterative Simplification

• 2D example

0.564

0.497

0.3610

0.2711

priority queue

edge cost

Point-Based Computer Graphics Mark Pauly 34

Iterative Simplification

original model
(296,850 points)

simplified model
(2,000 points)

remaining point pair
contraction candidates

Point-Based Computer Graphics Mark Pauly 35

Particle Simulation

• Resample surface by distributing particles
on the surface

• Particles move on surface according to
inter-particle repelling forces

• Particle relaxation terminates when
equilibrium is reached (requires damping)

• Can also be used for up-sampling!

Point-Based Computer Graphics Mark Pauly 36

Particle Simulation

• Initialization
• Randomly spread particles

• Repulsion
• Linear repulsion force

only need to consider neighborhood of radius r

• Projection
• Keep particles on surface by projecting onto

tangent plane of closest point
• Apply full MLS projection at end of simulation

)()()(iii rkF ppppp −⋅−−=

7

Point-Based Computer Graphics Mark Pauly 37

Particle Simulation

• 2D example

Point-Based Computer Graphics Mark Pauly 38

Particle Simulation

• 2D example
• Initialization

• randomly spread particles

Point-Based Computer Graphics Mark Pauly 39

Particle Simulation

• 2D example

• Repulsion
• linear repulsion force

)()()(iii rkF ppppp −⋅−−=

• Initialization
• randomly spread particles

Point-Based Computer Graphics Mark Pauly 40

Particle Simulation

• 2D example

• Repulsion
• linear repulsion force

)()()(iii rkF ppppp −⋅−−=

• Initialization
• randomly spread particles

Point-Based Computer Graphics Mark Pauly 41

Particle Simulation

• 2D example

• Repulsion
• linear repulsion force

)()()(iii rkF ppppp −⋅−−=

• Initialization
• randomly spread particles

• Projection
• project particles onto

surface

Point-Based Computer Graphics Mark Pauly 42

Particle Simulation

• 2D example

• Repulsion
• linear repulsion force

)()()(iii rkF ppppp −⋅−−=

• Initialization
• randomly spread particles

• Projection
• project particles onto

surface

8

Point-Based Computer Graphics Mark Pauly 43

Particle Simulation

• Adaptive simulation
• Adjust repulsion radius according to surface variation

more samples in regions of high variation

variation
estimation

simplified model
(3,000 points)

Point-Based Computer Graphics Mark Pauly 44

Particle Simulation

• User-controlled simulation
• Adjust repulsion radius according to user input

uniform original selective

Point-Based Computer Graphics Mark Pauly 45

Measuring Error

• Measure the distance between two point-sampled
surfaces using a sampling approach

• Maximum error:

Two-sided Hausdorff distance

• Mean error:

Area-weighted integral of point-to-surface distances

• is an up-sampled version of the point cloud that
describes the surface

),(max),(max SdSS Q ′=′∆ ∈ qq

∑
∈

′=′∆
Q

Sd
Q

SS
q

q),(1),(avg

S
Q

Point-Based Computer Graphics Mark Pauly 46

Measuring Error

• measures the distance of point to
surface using the MLS projection operator with
linear basis functions

),(Sd ′q q
S ′

Point-Based Computer Graphics Mark Pauly 47

Measuring Error

original simplified upsampled error

Point-Based Computer Graphics Mark Pauly 48

Comparison

• Error estimate for Michelangelo’s David simplified
from 2,000,000 points to 5,000 points

9

Point-Based Computer Graphics Mark Pauly 49

Comparison

• Execution time as a function of input model
size (reduction to 1%)

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500 3000 3500

hierarchical clustering

iterative simplification

particle simulation

time
(sec)

input size

Point-Based Computer Graphics Mark Pauly 50

Comparison

• Execution time as a function of target
model size (input: dragon, 535,545 points)

0

10

20

30

40

50

60

70

020406080100120140160180

hierarchical clustering

iterative simplification

particle simulation

target size

time
(sec)

Point-Based Computer Graphics Mark Pauly 51

Comparison

• Summary

-

o

+

Implementation

++oParticle
Simulation

o+-Iterative
Simplification

--+Hierarchical
Clustering

ControlSurface
Error

Efficiency

Point-Based Computer Graphics Mark Pauly 52

Point-based vs. Mesh
Simplification

point-based simplification saves an expensive
surface reconstruction on the dense point cloud!

point-based simplification with
subsequent mesh reconstruction

mesh reconstruction with subsequent
mesh simplification (QSlim)

Point-Based Computer Graphics Mark Pauly 53

References

• Pauly, Gross: Efficient Simplification of Point-
sampled Surfaces, IEEE Visualization 2002

• Shaffer, Garland: Efficient Adaptive Simplification
of Massive Meshes, IEEE Visualization 2001

• Garland, Heckbert: Surface Simplification using
Quadric Error Metrics, SIGGRAPH 1997

• Turk: Re-Tiling Polygonal Surfaces, SIGGRAPH 1992
• Alexa et al. Point Set Surfaces, IEEE Visualization

2001

1

Spectral Processing of Point-
Sampled Geometry

Markus Gross

2Point-Based Computer Graphics Markus Gross

Overview

• Introduction
• Fourier transform
• Spectral processing pipeline
• Applications

• Spectral filtering
• Adaptive subsampling

• Summary

3Point-Based Computer Graphics Markus Gross

Introduction

• Idea: Extend the Fourier transform to
manifold geometry

Spectral representation of point-based objects

Powerful methods for digital geometry processing

4Point-Based Computer Graphics Markus Gross

Introduction

• Applications:

• Spectral filtering:
• Noise removal
• Microstructure analysis
• Enhancement

• Adaptive resampling:
• Complexity reduction

• Continuous LOD

5Point-Based Computer Graphics Markus Gross

Fourier Transform

• 1D example:

• Benefits:
• Sound concept of frequency
• Extensive theory
• Fast algorithms

∑
=

−
=

N

k

N
nkj

kn exX
1

2π

input signal

spectral basis function

output signal

6Point-Based Computer Graphics Markus Gross

Fourier Transform

• Requirements:
• Fourier transform defined on Euclidean domain

we need a global parameterization

• Basis functions are eigenfunctions of Laplacian
operator

requires regular sampling pattern so that basis
functions can be expressed in analytical form (fast
evaluation)

• Limitations:
• Basis functions are globally defined

Lack of local control

2

7Point-Based Computer Graphics Markus Gross

Approach

• Split model into patches that:
• are parameterized over the unit-square

mapping must be continuous and should minimize
distortion

• are re-sampled onto a regular grid
adjust sampling rate to minimize information loss

• provide sufficient granularity for intended
application (local analysis)

process each patch individually and blend
processed patches

8Point-Based Computer Graphics Markus Gross

Spectral Pipeline

9Point-Based Computer Graphics Markus Gross

Patch Layout Creation

Clustering Optimization

Samples Clusters Patches

10Point-Based Computer Graphics Markus Gross

Patch Layout Creation

• Iterative, local optimization method

• Merge patches according to quality metric:

RegBNCS Φ⋅Φ⋅Φ⋅Φ=Φ

curvature

patch Size

patch boundary

spring energy regularization

NCΦ

BΦ

RegΦ

SΦ

11Point-Based Computer Graphics Markus Gross

Patch Layout Creation

• Parameterize patches by orthogonal projection
onto base plane

• Bound normal cone to control distortion of
mapping using smallest enclosing sphere

12Point-Based Computer Graphics Markus Gross

Patch Resampling

• Patches are irregularly sampled:

3

13Point-Based Computer Graphics Markus Gross

Patch Resampling

• Resample patch onto regular grid using hierarchical
push-pull filter (scattered data approximation)

14Point-Based Computer Graphics Markus Gross

Spectral Analysis

• 2D discrete Fourier transform (DFT)
Direct manipulation of spectral coefficients

• Filtering as convolution:

Convolution: O(N2) multiplication: O(N)

• Inverse Fourier transform
Filtered patch surface

)()()(yFxFyxF ⋅=⊗

15Point-Based Computer Graphics Markus Gross

Spectral Filters

ideal low-pass Gaussian low-pass original

transfer function: spectral domain

transfer function: spatial domain

• Smoothing filters

16Point-Based Computer Graphics Markus Gross

Spectral Filters

• Microstructure analysis and enhancement

17Point-Based Computer Graphics Markus Gross

Spectral Resampling

• Low-pass filtering
Band-limitation

• Regular Resampling
Optimal sampling rate
(sampling theorem)

Error control
(Parseval’s theorem)

Power Spectrum

18Point-Based Computer Graphics Markus Gross

Reconstruction

• Filtering can lead to discontinuities at
patch boundaries

Create patch overlap, blend adjacent patches

region of overlap

Sampling rates

Point positions

Normals

4

19Point-Based Computer Graphics Markus Gross

Reconstruction

• Blending the sampling rate

blended sampling
rate in region of
patch overlap

discretized
sampling rate
on regular grid

pre-computed
sampling patterns

20Point-Based Computer Graphics Markus Gross

Timings

Clustering

Patch
Merging

SDA

Analysis

Reconstruction

Time
9%

38%

23%

4%

26%

21Point-Based Computer Graphics Markus Gross

Applications

• Surface Restoration

Original Gaussian low-pass Wiener filter Patch layout

22Point-Based Computer Graphics Markus Gross

Applications

• Interactive filtering

23Point-Based Computer Graphics Markus Gross

Applications

• Adaptive Subsampling

4,128,614 pts. = 100% 287,163 pts. = 6.9%

24Point-Based Computer Graphics Markus Gross

Summary

• Versatile spectral decomposition of point-
based models

• Effective filtering

• Adaptive resampling

• Efficient processing of large point-sampled
models

5

25Point-Based Computer Graphics Markus Gross

Reference

• Pauly, Gross: Spectral Processing of Point-sampled
Geometry, SIGGRAPH 2001

1

An Interactive System for Point-based
Surface Editing

2Point-Based Computer Graphics Markus Gross

Overview

• Introduction
• Pointshop3D System Components

• Point Cloud Parameterization
• Resampling Scheme
• Editing Operators

• Summary

3Point-Based Computer Graphics Markus Gross

PointShop3D

• Interactive system for point-based surface
editing

• Generalizes 2D photo editing concepts and
functionality to 3D point-sampled surfaces

• Uses 3D surface pixels (surfels) as versatile
display and modeling primitive

4Point-Based Computer Graphics Markus Gross

Concept

Resampling Editing Operator

u

Parameterization

v

5Point-Based Computer Graphics Markus Gross

• Point cloud parameterization
• brings surface and brush into common reference frame

• Dynamic resampling
• creates one-to-one correspondence of surface and brush

samples

• Editing operator
• combines surface and brush samples

Key Components

Φ

))()),(((BSS ΨΦΨΩ=′

Ψ

Ω

brushoriginal surfacemodified surface

6Point-Based Computer Graphics Markus Gross

Parameterization

• Constrained minimum distortion
parameterization of point clouds

32

)(
)(
)(

)(]1,0[RP
z
y
x

X ⊂∈=















=⇒∈ x

u
u
u

uu

2

7Point-Based Computer Graphics Markus Gross

Parameterization

contraints = matching
of feature points

minimum distortion =
maximum smoothness

8Point-Based Computer Graphics Markus Gross

Parameterization

• Find mapping X that minimizes objective
function:

{∑ ∫
∈

+−=
Mj P

jj dXXC uuxp)())(()(2 γε
{

fitting constraints
distortion

surface pointsbrush points

9Point-Based Computer Graphics Markus Gross

Parameterization

• Measuring distortion

• Integrates squared curvature using local polar
re-parameterization

θθγ
θ

drX
r

2

2

2

),()(∫ 







∂
∂= uu

θ

u
r

















+=

)sin(
)cos(

),(
θ
θ

θ rXrX uu

10Point-Based Computer Graphics Markus Gross

Parameterization

• Discrete formulation:

• Approximation: mapping is piecewise linear

2

1

2
~
)()()()(~ ∑ ∑∑

∈ = ∈











∂
∂−

∂
∂+−=

Mj

n

i Nj j

i

j

i
jj

i

UUUC
v
x

v
xp εu

11Point-Based Computer Graphics Markus Gross

Parameterization

• Directional derivatives as extension of divided
differences based on k-nearest neighbors

12Point-Based Computer Graphics Markus Gross

Parameterization

• Multigrid solver for efficient computation of
resulting sparse linear least squares problem

2
2

1
,)(~ ubub AaUC

j
i

n

i
ijj −=







 −=∑ ∑
=

3

13Point-Based Computer Graphics Markus Gross

Reconstruction
• Parameterized scattered data approximation

• Fitting functions
• Compute local fitting functions using local

parameterizations
• Map to global parameterization using global parameter

coordinates of neighboring points

∑
∑Φ

=

i
i

i
ii

r

r
X

)(

)()(
)(

u

uu
u

fitting functions weight functions

normalization factor

14Point-Based Computer Graphics Markus Gross

Reconstruction

reconstruction with
linear fitting functions

weight functions in
parameter space

15Point-Based Computer Graphics Markus Gross

Reconstruction

• Reconstruction with linear fitting functions is
equivalent to surface splatting!

we can use the surface splatting renderer to reconstruct
our surface function (see chapter on rendering)

• This provides:

• Fast evaluation

• Anti-aliasing (Band-limit the weight functions before
sampling using Gaussian low-pass filter)

• Distortions of splats due to parameterization can be
computed efficiently using local affine mappings

16Point-Based Computer Graphics Markus Gross

Sampling

• Three sampling strategies:
• Resample the brush, i.e., sample at the original

surface points

• Resample the surface, i.e., sample at the brush
points

• Adaptive resampling, i.e., sample at surface or
brush points depending on the respective
sampling density

17Point-Based Computer Graphics Markus Gross

Editing Operators

• Painting
• Texture, material properties, transparency

18Point-Based Computer Graphics Markus Gross

Editing Operators

• Sculpting
• Carving, normal displacement

displacement mapstexture map
carved and texture mapped

point-sampled surface

4

19Point-Based Computer Graphics Markus Gross

Editing Operators

• Filtering
• Scalar attributes, geometry

20Point-Based Computer Graphics Markus Gross

Summary

• Pointshop3D provides sophisticated editing
operations on point-sampled surfaces

points are a versatile and powerful modeling
primitive

• Limitation: only works on “clean” models
• sufficiently high sampling density
• no outliers
• little noise

requires model cleaning (integrated or as pre-
process)

21Point-Based Computer Graphics Markus Gross

Reference

• Zwicker, Pauly, Knoll, Gross: Pointshop3D: An
interactive system for Point-based Surface Editing,
SIGGRAPH 2002

• check out:

www.pointshop3D.com

1

Shape Modeling

Mark Pauly

2Point-Based Computer Graphics Mark Pauly

Motivation

• 3D content creation pipeline

3Point-Based Computer Graphics Mark Pauly

Motivation

• Surface representations
• Implicit surfaces

• Level sets
• Radial basis functions
• Algebraic surfaces

• Parametric surfaces
• Polygonal meshes
• Subdivision surfaces
• NURBS

+ Extreme deformations
+ Changes of topology

+ Sharp features
+ Efficient rendering
+ Intuitive Editing

4Point-Based Computer Graphics Mark Pauly

Motivation

• Surface representations
• Implicit surfaces

• Level sets
• Radial basis functions
• Algebraic surfaces

• Parametric surfaces
• Polygonal meshes
• Subdivision surfaces
• Nurbs

Hybrid Representation
• Explicit cloud of point

samples
• Implicit dynamic

surface model

5Point-Based Computer Graphics Mark Pauly

Motivation

• Point cloud representation
• Minimal consistency requirements for extreme

deformations (dynamic re-sampling)
• Fast inside/outside classification for boolean

operations and collision detection
• Explicit modeling and rendering of sharp feature

curves
• Integrated, intuitive editing of shape and

appearance

6Point-Based Computer Graphics Mark Pauly

Interactive Modeling

• Interactive design and editing of
point-sampled models
• Shape Modeling

• Boolean operations
• Free-form deformation

• Appearance Modeling
• Painting & texturing
• Embossing & engraving

2

7Point-Based Computer Graphics Mark Pauly

Boolean Operations

+ - -

8Point-Based Computer Graphics Mark Pauly

Boolean Operations

• Create new shapes by combining existing
models using union, intersection, or
difference operations

• Powerful and flexible editing paradigm
mostly used in industrial design applications
(CAD/CAM)

9Point-Based Computer Graphics Mark Pauly

Boolean Operations

• Easily performed on implicit
representations
• Requires simple computations on the

distance function

• Difficult for parametric surfaces
• Requires surface-surface intersection

• Topological complexity of resulting
surface depends on geometric
complexity of input models

10Point-Based Computer Graphics Mark Pauly

Boolean Operations

• Point-Sampled Geometry
• Classification

• Inside-outside test using signed distance
function induced by MLS projection

• Sampling
• Compute exact intersection of two MLS

surfaces to sample the intersection curve

• Rendering
• Accurate depiction of sharp corners and

creases using point-based rendering

11Point-Based Computer Graphics Mark Pauly

Boolean Operations

• Classification:
• given a smooth, closed

surface S and point p. Is p
inside or outside of the
volume V bounded by S?

S

p V

12Point-Based Computer Graphics Mark Pauly

Boolean Operations

• Classification:
• given a smooth, closed

surface S and point p. Is p
inside or outside of the
volume V bounded by S?

1.find closest point q on S

S

p

q

V

3

13Point-Based Computer Graphics Mark Pauly

Boolean Operations

• Classification:
• given a smooth, closed

surface S and point p. Is p
inside or outside of the
volume V bounded by S?

1.find closest point q on S
2.d=(p-q)·n defines signed

distance of p to S

p

q
n

S

V

14Point-Based Computer Graphics Mark Pauly

Boolean Operations

• Classification:
• given a smooth, closed

surface S and point p. Is p
inside or outside of the
volume V bounded by S?

1.find closest point q on S
2.d=(p-q)·n defines signed

distance of p to S
3.classify p as

– inside V, if d < 0
– outside V, if d > 0

p

q
n

S

V

15Point-Based Computer Graphics Mark Pauly

Boolean Operations

• Classification:
• represent smooth surface S

by point cloud P
m P

S

V

16Point-Based Computer Graphics Mark Pauly

Boolean Operations

• Classification:
• represent smooth surface S

by point cloud P
m

1.find closest point q in P
p

P

q
n

S

V

17Point-Based Computer Graphics Mark Pauly

Boolean Operations

• Classification:
• represent smooth surface S

by point cloud P
m

1.find closest point q in P
2.classify p as

– inside V, if (p-q)·n < 0
– outside V, if (p-q)·n > 0

p

P

q
n

S

V

18Point-Based Computer Graphics Mark Pauly

Boolean Operations

• Classification:
• apply full MLS projection for points close

to the surface

q

p

n)(pPΨ

4

19Point-Based Computer Graphics Mark Pauly

Boolean Operations

• Sampling the intersection curve

20Point-Based Computer Graphics Mark Pauly

Boolean Operations

• Newton scheme:
1.identify pairs of closest points

21Point-Based Computer Graphics Mark Pauly

Boolean Operations

• Newton scheme:
1.identify pairs of closest points

1q 2q

22Point-Based Computer Graphics Mark Pauly

Boolean Operations

• Newton scheme:
1. identify pairs of closest points
2. compute closest point on intersection of

tangent spaces

r

1q 2q

23Point-Based Computer Graphics Mark Pauly

Boolean Operations

• Newton scheme:
1. identify pairs of closest points
2. compute closest point on intersection of

tangent spaces
3. re-project point on both surfaces

1q′
2q′

r

1q 2q

24Point-Based Computer Graphics Mark Pauly

Boolean Operations

• Newton scheme:
1. identify pairs of closest points
2. compute closest point on intersection of

tangent spaces
3. re-project point on both surfaces
4. iterate

r ′
1q′

2q′

5

25Point-Based Computer Graphics Mark Pauly

Boolean Operations

• Rendering sharp creases
• represent points on intersection curve with

two surfels that mutually clip each other

26Point-Based Computer Graphics Mark Pauly

Boolean Operations

• Rendering sharp creases

27Point-Based Computer Graphics Mark Pauly

Boolean Operations

• Rendering sharp creases
• easily extended to handle corners by

allowing multiple clipping

28Point-Based Computer Graphics Mark Pauly

Boolean Operations

• Boolean operations can create intricate
shapes with complex topology

BA + BA ⋅

BA − AB −

29Point-Based Computer Graphics Mark Pauly

Boolean Operations

• Singularities lead to numerical instabilities
(intersection of almost parallel planes)

30Point-Based Computer Graphics Mark Pauly

Boolean Operations

• Sharp creases can be blended using
oriented particles (Szeliski, Tonnesen)

6

31Point-Based Computer Graphics Mark Pauly

Free-form Deformation

32Point-Based Computer Graphics Mark Pauly

Free-form Deformation

• Smooth deformation field F:R3→R3 that
warps 3D space

• Can be applied directly to point samples

33Point-Based Computer Graphics Mark Pauly

Free-form Deformation

• How to define the deformation field?
Painting metaphor

• How to detect and handle self-
intersections?

Point-based collision detection, boolean
union, particle-based blending

• How the handle strong distortions?
Dynamic re-sampling

34Point-Based Computer Graphics Mark Pauly

Free-form Deformation

• Intuitive editing paradigm using
painting metaphor
• Define rigid surface part (zero-region)

and handle (one-region) using interactive
painting tool

• Displace handle using combination of
translation and rotation

• Create smooth blend towards zero-region

35Point-Based Computer Graphics Mark Pauly

Free-form Deformation

one-region

zero-region

original
surface

deformed
surface

36Point-Based Computer Graphics Mark Pauly

Free-form Deformation

• Definition of deformation field:
• Continuous scale parameter tx

• tx = β (d0 / (d0 + d1))
• d0 : distance of x to zero-region
• d1 : distance of x to one-region

• Blending function
• β : [0,1] → [0,1]
• β ∈ C0, β (0) = 0, β (1) = 1

• tx = 0 if x in zero-region
• tx = 1 if x in one-region

x
d0

d1

7

37Point-Based Computer Graphics Mark Pauly

Free-form Deformation

• Definition of deformation field:
• Deformation function

• F (x) = FT (x) + FR (x)

• Translation
• FT (x) = x + tx · v

• Rotation
• FR (x) = M(tx) · x

x
d0

d1

38Point-Based Computer Graphics Mark Pauly

Free-form Deformation

• Translation for three different blending functions

blending
function

deformed
surface

39Point-Based Computer Graphics Mark Pauly

Free-form Deformation

• Rotational deformation along two different
rotation axes

deformed
surface

original
surface

color-coded
scale parameter

40Point-Based Computer Graphics Mark Pauly

• Embossing effect

Free-form Deformation

bitmap
image

zero- and
one-regions

deformed
surface

41Point-Based Computer Graphics Mark Pauly

Collision Detection

• Deformations can lead to self-
intersections

• Apply boolean inside/outside
classification to detect collisions

• Restricted to collisions between
deformable region and zero-region to
ensure efficient computations

42Point-Based Computer Graphics Mark Pauly

Collision Detection

• Exploiting temporal coherence

8

43Point-Based Computer Graphics Mark Pauly

Collision Detection

collision
detected

boolean union
performed

particle-based
blending

• Interactive modeling session

44Point-Based Computer Graphics Mark Pauly

Dynamic Sampling

• Large model deformations can lead to
strong surface distortions

• Requires adaptation of the sampling
density

• Dynamic insertion and deletion of
point samples

45Point-Based Computer Graphics Mark Pauly

Dynamic Sampling

• Surface distortion varies locally

color-coded
surface stretch

surface after
dynamic re-sampling

46Point-Based Computer Graphics Mark Pauly

Dynamic Sampling

1. Measure local surface stretch from first
fundamental form

2. Split samples that exceed stretch
threshold

3. Regularize distribution by relaxation
4. Interpolate scalar attributes

47Point-Based Computer Graphics Mark Pauly

Dynamic Sampling

• 2D illustration

48Point-Based Computer Graphics Mark Pauly

Free-form Deformation

• Interactive modeling session with dynamic sampling

original surface
with zero- and

one-regions

intermediate steps
of deformation

final
surface

9

49Point-Based Computer Graphics Mark Pauly

Results

• 3D shape modeling functionality has been
integrated into Pointshop3D to create a
complete system for point-based shape and
appearance modeling
• Boolean operations
• Free-form deformation
• Painting & texturing
• Sculpting
• Filtering
• Etc.

50Point-Based Computer Graphics Mark Pauly

Results

• Ab-initio design of an Octopus
• Free-form deformation with dynamic sampling

from 69,706 to 295,222 points

51Point-Based Computer Graphics Mark Pauly

Results

• Modeling with synthetic and scanned data
• Combination of free-form deformation with

collision detection, boolean operations,
particle-based blending, embossing and
texturing

52Point-Based Computer Graphics Mark Pauly

Results

• Boolean operations on scanned data
• Irregular sampling pattern, low resolution

models

53Point-Based Computer Graphics Mark Pauly

Results

• Interactive modeling with scanned data
• noise removal, free-form deformation, cut-and-

paste editing, interactive texture mapping

54Point-Based Computer Graphics Mark Pauly

Conclusion

• Points are a versatile shape modeling
primitive
• Combines advantages of implicit and

parametric surfaces
• Integrates boolean operations and free-

form deformation
• Dynamic restructuring
• Time and space efficient

implementations

10

55Point-Based Computer Graphics Mark Pauly

Conclusion

• Complete and versatile point-based
3D shape and appearance modeling
system
• Directly applicable to scanned data
• Suitable for low-cost 3D content creation

and rapid proto-typing

56Point-Based Computer Graphics Mark Pauly

References
• Pauly: Point Primitives for Interactive Modeling and

Processing of 3D Geometry, PhD Thesis, ETH Zurich, 2003
• Pauly, Keiser, Kobbelt, Gross: Shape Modeling with Point-

sampled Geometry, SIGGRAPH 03
• Pauly, Kobbelt, Gross: Multiresolution Modeling with Point-

sampled Geometry, ETH Technical Report, 2002
• Zwicker, Pauly, Knoll, Gross: Pointshop3D: An Interactive

System for Point-based Surface Editing, SIGGRAPH 02
• Adams, Dutre: Boolean Operations on Surfel-Bounded Solids,

SIGGRAPH 03
• Szeliski, Tonnesen: Surface Modeling with Oriented Particle

Systems, SIGGRAPH 92
• www.pointshop3d.com

