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Point-Based Computer Graphics
Tutorial T1
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Hanspeter Pfister, Marc Stamminger, 
Jeroen Van Baar, Matthias Zwicker
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Surf. Reps. for Graphics

Hierarchical splines

Wavelets

Subdivision schemes

Triangle meshes

Mesh processing
methods

Discrete (point based) 
representations

Add connectivityAdd operators

Raise degree

3Point-Based Computer Graphics Markus Gross

Polynomials...

Rigorous mathematical concept
Robust evaluation of geometric entities
Shape control for smooth shapes
Advanced physically-based modeling

Require parameterization
Discontinuity modeling
Topological flexibility

Refine h rather than p !
4Point-Based Computer Graphics Markus Gross

Polynomials -> Triangles

• Piecewise linear approximations
• Irregular sampling of the surface
• Forget about parameterization

Triangle meshes

• Multiresolution modeling
• Compression
• Geometric signal processing

5Point-Based Computer Graphics Markus Gross

Triangles...

Simple and efficient representation 
Hardware pipelines support ∆
Advanced geometric processing is being in sight
The widely accepted queen of graphics primitives

Sophisticated modeling is difficult
(Local) parameterizations still needed
Complex LOD management
Compression and streaming is highly non-trivial

Remove connectivity !
6Point-Based Computer Graphics Markus Gross

Triangles -> Points

• From piecewise linear functions to 
Delta distributions

• Forget about connectivity

Point clouds

• Points are natural representations within 
3D acquisition systems

• Meshes provide an articifical enhancement 
of the acquired point samples
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History of Points in Graphics
• Particle systems [Reeves 1983]
• Points as a display primitive [Whitted, Levoy 1985]
• Oriented particles [Szeliski, Tonnesen 1992]
• Particles and implicit surfaces [Witkin, Heckbert 1994]
• Digital Michelangelo [Levoy et al. 2000]
• Image based visual hulls [Matusik 2000]
• Surfels [Pfister et al. 2000]
• QSplat [Rusinkiewicz, Levoy 2000]
• Point set surfaces [Alexa et al. 2001]
• Radial basis functions [Carr et al. 2001]
• Surface splatting [Zwicker et al. 2001]
• Randomized z-buffer [Wand et al. 2001]
• Sampling [Stamminger, Drettakis 2001]
• Opacity hulls [Matusik et al. 2002]
• Pointshop3D [Zwicker, Pauly, Knoll, Gross 2002]...?

8Point-Based Computer Graphics Markus Gross

The Purpose of our Course is …

I) …to introduce points as a versatile and 
powerful graphics primitive

II) …to present state of the art concepts 
for acquisition, representation, 
processing and rendering of point 
sampled geometry

III) …to stimulate YOU to help us to 
further develop Point Based Graphics

9Point-Based Computer Graphics Markus Gross

Taxonomy

Point-Based Graphics

Rendering
(Zwicker)

Acquisition
(Pfister, Stamminger)

Processing &
Editing

(Gross, Pauly)
Representation

(Alexa)
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Morning Schedule

• Introduction (Markus Gross)
• Acquisition of Point-Sampled Geometry and 

Apprearance (Jeroen van Baar)
• Point-Based Surface Representations (Marc 

Alexa)
• Point-Based Rendering (Matthias Zwicker)

11Point-Based Computer Graphics Markus Gross

Afternoon Schedule

• Sequential point trees (Carsten Dachsbacher)
• Efficient simplification of point-sampled geometry 

(Mark Pauly)
• Spectral processing of point-sampled geometry 

(Markus Gross)
• Pointshop3D: A framework for interactive editing 

of point-sampled surfaces (Markus Gross)
• Shape modeling (Mark Pauly)
• Pointshop3D demo (Mark Pauly)
• Discussion (all)
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Acquisition of Point-Sampled 
Geometry and Appearance 

Jeroen van Baar and Hanspeter Pfister, MERL
[jeroen,pfister]@merl.com

Wojciech Matusik, MIT
Addy Ngan, MIT

Paul Beardsley, MERL
Remo Ziegler, MERL

Leonard McMillan, MIT
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The Goal: To Capture Reality

• Fully-automated 3D model creation of real 
objects. 

• Faithful representation of appearance for 
these objects.
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Image-Based 3D Photography

• An image-based 3D scanning system.
• Handles fuzzy, refractive, transparent objects.
• Robust, automatic
• Point-sampled geometry based on the visual hull.
• Objects can be rendered in novel environments. 
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Previous Work

• Active and passive 3D scanners
• Work best for diffuse materials.
• Fuzzy, transparent, and refractive objects are difficult.

• BRDF estimation, inverse rendering
• Image based modeling and rendering

• Reflectance fields [Debevec et al. 00]

• Light Stage system to capture reflectance fields
• Fixed viewpoint, no geometry

• Environment matting [Zongker et al. 99, Chuang et al. 00]

• Capture reflections and refractions
• Fixed viewpoint, no geometry

Point-Based Computer Graphics Hanspeter Pfister, MERL 5

Outline

• Overview
System

• Geometry
• Reflectance
• Refraction & Transparency
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Acquisition System
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Light Array

Cameras

Rotating Platform
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Acquisition Process

Alpha 
Mattes

Visual
Hull

Surface Lightfield Surface Reflectance Fields
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Acquisition Process

Alpha 
Mattes

Visual
Hull

Surface Lightfield Surface Reflectance Fields
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Acquisition Process

Alpha 
Mattes

Visual
Hull

Surface Lightfield Surface Reflectance Fields
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Acquisition Process

Alpha 
Mattes

Visual
Hull

Surface Lightfield Surface Reflectance Fields

Point-Based Computer Graphics Hanspeter Pfister, MERL 11

Outline

• Overview
• System

Geometry
• Reflectance
• Refraction & Transparency
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Acquisition

• For each viewpoint ( 6 cameras x 72 
positions )
• Alpha mattes

• Use multiple backgrounds [Smith and Blinn 96]

• Reflectance images
• Pictures of the object under different 

lighting 
(4 lights x 11 positions)

• Environment mattes
• Use similar techniques as [Chuang et al. 2000]
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Geometry – Opacity Hull

• Visual hull: The maximal object consistent 
with a  given set of silhouettes.
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Geometry Example
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Approximate Geometry

• The approximate visual hull is augmented by 
radiance data to render concavities, 
reflections, and transparency.
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Surface Light Fields

• A surface light field is a function that 
assigns a color to each ray originating on a 
surface. [Wood et al., 2000]
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Shading Algorithm

• A view-dependent strategy.
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Color Blending

• Blend colors based on angle between virtual 
camera and stored colors.

• Unstructured Lumigraph Rendering
[Buehler et al., SIGGRAPH 2001]

• View-Dependent Texture Mapping
[Debevec, EGRW 98]
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Point-Based Rendering

• Point-based rendering using LDC tree, 
visibility splatting, and view-dependent 
shading.
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Geometry – Opacity Hull

• Store the opacity of each observation at 
each point on the visual hull [Matusik et al. 
SIG2002].
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Geometry – Opacity Hull

• Assign view-dependent opacity to each ray 
originating on a point of the visual hull. 

Red = invisible
White = opaque
Black = transparent

φA
B C

A B C

(θ,φ)

θ
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Example

Photo
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Example

Photo

Visual Hull
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Example

Photo

Visual Hull Opacity
Hull
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Example

Photo

Visual Hull Opacity
Hull

Surface
Light Field
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Results

• Point-based rendering using EWA splatting, 
A-buffer blending, and edge antialiasing.
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Results Video
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Results Video
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Results Video
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Results Video
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Opacity Hull - Discussion

• View dependent opacity vs. geometry 
trade-off.

• Sometimes acquiring the geometry is not 
possible.

• Sometimes representing true geometry 
would be very inefficient.

• Opacity hull stores the “macro” effect.

Point-Based Computer Graphics Hanspeter Pfister, MERL 32

Point-Based Models

• No need to establish topology or 
connectivity.

• No need for a consistent surface 
parameterization for texture mapping.

• Represent organic models (feather, tree) 
much more readily than polygon models.

• Easy to represent view-dependent opacity 
and radiance per surface point. 

Point-Based Computer Graphics Hanspeter Pfister, MERL 33

Outline

• Overview
• Previous Works
• Geometry

Reflectance
• Refraction & Transparency
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Light Transport Model

• Assume illumination originates from 
infinity.

• The light arriving at a camera pixel can be 
described as:

C(x,y) - the pixel value
E - the environment
W - the reflectance field

ωωω dEWyxC )()(),( ∫
Ω

=
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Surface Reflectance Fields

• 6D function:�i

�r

P

),;,;,(),,( rriirrri vuWPW ΦΦ= θθωω

�i
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Reflectance Functions

• For each viewpoint, 4D function:

(θi,φi)

θi

φi

),;,()( iiixy yxWW Φ= θω
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Relighting

x

Surface reflectance 
field

New 
Illumination

= V0

V1

V2

… Vn

Down-
sample
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• Subdivide images into 8 x 8 pixel blocks.
• Keep blocks containing the object (avg. 

compression 1:7)
• PCA compression (avg. compression 1:10)

Compression

PCA

a0 a1 a2 a3 a4 a5

Point-Based Computer Graphics Hanspeter Pfister, MERL 39

Results

Point-Based Computer Graphics Hanspeter Pfister, MERL 40

The Library

Point-Based Computer Graphics Hanspeter Pfister, MERL 41

Surface Reflectance Fields

• Work without accurate geometry
• Surface normals are not necessary
• Capture more than reflectance

• Inter-reflections
• Subsurface scattering
• Refraction
• Dispersion
• Non-uniform material variations

• Simplified version of the BSSRDF

Point-Based Computer Graphics Hanspeter Pfister, MERL 42

Outline

• Overview
• Previous Works
• Geometry
• Reflectance

Refraction & Transparency
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Acquisition

• We separate the hemisphere into high 
resolution �h and low resolution �l.

ωωωξξξ dLWdTWyxC iilh

lh

)()()()(),( ∫∫
ΩΩ

+=

Wh Wl
T

L(�
)
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Acquisition

• For each viewpoint ( 6 cameras x 72 
positions )
• Alpha mattes

• Use multiple backgrounds [Smith and Blinn 96]

• Reflectance images
• Pictures of the object under different 

lighting 
(4 lights x 11 positions)

• Environment mattes
• Use similar techniques as [Chuang et al. 2000]

Low resolution

High resolution
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Low-Resolution Reflectance Field

ωωω dLW iil
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High-Resolution Reflectance Field

• Use techniques of environment matting 
[Chuang et al., SIGGRAPH 00].

ξξξ dTW
h

h )()(∫
Ω

=),( yxC ωωω dLW iil
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+
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High-Resolution Reflectance Field

• Approximate Wh by a sum of up to two
Gaussians:
• Reflective G1.
• Refractive G2.

N G1

G2

2211)( GaGaWh +=ξ
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Reproject �h

• Project environment mattes onto the new 
environment.
• Environment mattes acquired was 

parameterized on plane T (the plasma display).
• We need to project the Gaussians to the new 

environment map, producing new Gaussians. 

Wh
T
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View Interpolation

• Render low-resolution reflectance field.
• High-resolution reflectance field:

• Match reflected and refracted Gaussians.

• Interpolate direction vectors, not colors.
• Determine new color along interpolated direction.

V1

V2

G1r

G1t

G2r

G2t

N ~

~

~

~
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Results

• Performance for 6x72 = 432 viewpoints
• 337,824 images taken in total !!

• Acquisition (47 hours)
• Alpha mattes – 1 hour
• Environment mattes – 18 hours
• Reflectance images – 28 hours

• Processing
• Opacity hull ~ 30 minutes
• PCA Compression ~ 20 hours (MATLAB, unoptimized)

• Rendering ~ 5 minutes per frame
• Size

• Opacity hull ~ 30 - 50 MB
• Environment mattes ~ 0.5 - 2 GB
• Reflectance images ~ Raw 370 GB / Compressed 2 - 4 GB

Point-Based Computer Graphics Hanspeter Pfister, MERL 51

Results

hΩHigh-resolution lΩLow-resolution Combined
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Results

Point-Based Computer Graphics Hanspeter Pfister, MERL 53

Results
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Results – Ωh
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Results – Ωl
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Results – Combined
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Results
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Results

Point-Based Computer Graphics Hanspeter Pfister, MERL 59

Conclusions

• Data driven modeling is able to capture 
and render any type of object.

• Opacity hulls provide realistic 3D 
graphics models.

• Our models can be seamlessly inserted 
into new environments.

• Point-based rendering offers high image-
quality for display of acquired models.

Point-Based Computer Graphics Hanspeter Pfister, MERL 60

Future Directions

• Real-time rendering 
• Done! [Vlasic et al., I3D 2003]

• Better environment matting
• More than two Gaussians

• Better compression
• MPEG-4 / JPEG 2000
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Point-based Surface Reps

• Marc Alexa
• Discrete Geometric Modeling Group
• Darmstadt University of Technology
• alexa@informatik.tu-darmstadt.de

3

Motivation

• Many applications need a definition of 
surface based on point samples
• Reduction
• Up-sampling
• Interrogation (e.g. ray tracing)

• Desirable surface properties
• Manifold
• Smooth
• Local (efficient computation)

4

Overview

• Introduction & Basics
• Fitting Implicit Surfaces
• Projection-based Surfaces

5

Introduction & Basics
• Terms

• Regular/Irregular, Approximation/Interpolation, 
Global/Local

• Standard interpolation/approximation 
techniques
• Triangulation, Voronoi-Interpolation, Least 

Squares (LS), Radial Basis Functions (RBF), 
Moving LS

• Problems
• Sharp edges, feature size/noise

• Functional -> Manifold

6

• Regular (on a grid) or irregular (scattered)
• Neighborhood (topology) is unclear for 

irregular data

Terms: Regular/Irregular
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7

Terms: 
Approximation/Interpolation

• Noisy data -> Approximation

• Perfect data -> Interpolation

8

Terms: Global/Local

• Global approximation

• Local approximation

• Locality comes at the expense of 
smoothness

9

Triangulation

• Exploit the topology in a triangulation 
(e.g. Delaunay) of the data

• Interpolate the data points on the 
triangles
• Piecewise linear C0
• Piecewise quadratic C1?
• …

10

• Barycentric interpolation on simplices
(triangles)
• given d+1 points xi with values fi and a

point x inside the simplex defined by xi

• Compute αi from
x = Σi αi ·xi and Σi αi  = 1

• Then
f = Σi αi ·fi

Triangulation: Piecewise 
linear

11

Voronoi Interpolation

• compute Voronoi diagram
• for any point x in space

• add x to Voronoi diagram
• Voronoi cell τ around x intersects original cells

τi of natural neighbors ni

• interpolate

with

( )( )
∑

∑ −⋅∇+⋅
=

i i

i i
T
iii

(x)
xxff(x)

f(x)
λ

λ

i

i
i xx
(x)

−⋅
∩

=
τ

ττ
λ
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Voronoi Interpolation

n1

x

τ1
n2

τ2

n3
τ3

n4
τ4

n5
τ5

τ
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Properties of Voronoi Interpolation:
• linear Precision
• local
• for d = 1 f(x) piecewise cubic
• f(x)∈ C1 on domain
• f(x,x1,...,xn ) is continuous in xi

Voronoi Interpolation

14

Least Squares

• Fits a primitive to the data
• Minimizes squared distances between 

the pi’s and primitive g

( )( )∑ −
i
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pgp 2min

2)( cxbxaxg ++=

15

Least Squares - Example

• Primitive is a polynomial

•

• Linear system of equations
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Least Squares - Example

• Resulting system
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Radial Basis Functions

• Represent interpolant as
• Sum of radial functions r
• Centered at the data points pi

( ) ( )∑ −=
i

ii xprwxf

18

Radial Basis Functions

• Solve

to compute weights wi
• Linear system of equations 
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Radial Basis Functions

• Solvability depends on radial function
• Several choices assure solvability

• (thin plate spline)

• (Gaussian)
• h is a data parameter
• h reflects the feature size or anticipated 

spacing among points

( ) dddr log2=

( ) 22 /hdedr −=

20

• Monomial, Lagrange, RBF share the 
same principle:
• Choose basis of a function space
• Find weight vector for base elements by 

solving linear system defined by data 
points

• Compute values as linear combinations
• Properties

• One costly preprocessing step
• Simple evaluation of function in any point

Function Spaces!

21

• Problems
• Many points lead to large linear systems
• Evaluation requires global solutions

• Solutions
• RBF with compact support

• Matrix is sparse
• Still: solution depends on every data point, 

though drop-off is exponential with distance

• Local approximation approaches

Function Spaces?

22

Shepard Interpolation

• Approach for Rd: f(x)= Σi φi(x) fi

with basis functions

• define f(xi ) := fi = limx xi
f(x)

∑
−

−

−

−
=

j

p
j

p
i

i
xx

xx
(x)φ

23

Shepard Interpolation

• f(x) is a convex combination of φi, 
because all φi(Rd)⊆ [0,1] and Σi φi(x) ≡ 1.

f(x) is contained in the convex hull of data 
points

• for p>1 f(p)∈ C∞ and ∇ xφi(xi) = 0
Data points are saddles

• global interpolation 
every f(x) depends on all data points

• Only constant precision, i.e. only constant 
functions are reproduced exactly

24

Shepard Interpolation

Localization:
• Set f(x)= Σi µi(x)·φi(x)·fi

with

for reasonable Ri and ν >1
no constant precision because of 
possible holes in the data

( )




 <−−=

−

sonst
für

0
iRixx1(x) i

i
R
xx

i

ν

µ
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25

Spatial subdivisions

• Subdivide parameter domain into 
overlapping cells τi with centroids ci

• Compute Shepard weights

and localize them using the radius of the 
cell

• Interpolate/approximate data points in 
each cell by an arbitrary function fi

• The interpolant is given as f(x)= Σi 
µi(x)·φi(x)·fi

∑ −

−

−

−
=

j

p
j

p
i

i
cx

cx
(x)φ

26

Spatial subdivisions

27

Moving Least Squares

• Compute a local LS approximation at t
• Weight data points based on distance 

to t

( )( ) ( )
xxy i

i
ii ptpgp −−∑ θmin 2

2)( cxbxaxg ++=
t

28

Moving Least Squares

• The set

is a smooth curve, iff θ is smooth

( ) ( )( ) ( )
xxy i

i
iigtt ptpgpgtgtf −−= ∑ θmin:),( 2

29

Moving Least Squares

• Typical choices for θ:
•
•

• Note:                           is fixed
• For each t

• Standard weighted LS problem
• Linear iff corresponding LS is linear

( )
xii pt −= θθ

( ) 22 /θ hded −=
( ) rdd −=θ

30

Typical Problems

• Sharp corners/edges

• Noise vs. feature size
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31

Functional -> Manifold

• Standard techniques are applicable
if data represents a function

• Manifolds are more general
• No parameter domain
• No knowledge about neighbors, Delaunay 

triangulation connects non-neighbors

32

Implicits

• Each orientable n-manifold can be 
embedded in n+1 – space 

• Idea: Represent n-manifold as zero-
set of a scalar function in n+1 – space 
• Inside:
• On the manifold:
• Outside: 

( ) 0<xf
( ) 0=xf
( ) 0>xf

33

Implicits - Illustration

• Image courtesy Greg Turk

34

Implicits from point samples

• Function should be 
zero in data points
•

• Use standard 
approximation 
techniques to find f

• Trivial solution:
• Additional constraints 

are needed

( ) 0=if p

0=f

0

35

Implicits from point samples

• Constraints define 
inside and outside

• Simple approach 
(Turk, O’Brien)
• Sprinkle additional 

information manually
• Make additional 

information soft 
constraints

−

−
−

−

−

−

+

+

+

+

+

+

+

36

Implicits from point samples

• Use normal 
information 

• Normals could be 
computed from scan

• Or, normals have to be 
estimated
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37

Estimating normals

• Normal orientation
(Implicits are signed)
• Use inside/outside

information from scan
• Normal direction

by fitting a tangent
• LS fit to nearest neighbors
• Weighted LS fit
• MLS fit

n

q

38

Estimating normals

• General fitting problem

• Problem is non-linear
because n is constrained
to unit sphere

n
q

( )∑ −
= i

ii pqnpq
n

,θ,min 2

1

39

Estimating normals

• The constrained minimization problem

is solved by the eigenvector corresponding 
to the smallest eigenvalue of

∑ −
= i

ii θ,min 2

1
npq

n
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40

Implicits from point samples

• Compute non-zero 
anchors in the 
distance field

• Use normal 
information directly 
as constraints

+1

+1

+1

+1

+1

+1

+1+1

+1

+1

+1 +1

( ) 1=+ iif np

41

Implicits from point samples

• Compute non-zero 
anchors in the 
distance field

• Compute distances 
at specific points
• Vertices, mid-points, 

etc. in a spatial 
subdivision

−2.5

+0.5

+1 +1

+0.5+2.5 +2

+2 +1.5

42

Computing Implicits

• Given N points and normals         
and constraints

• Let 
• An RBF approximation

leads to a system of linear equations

( ) ( ) iii dff == cp ,0

iNi cp =+

( ) ( )∑ −=
i

iirwf xpx

ii np ,
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Computing Implicits

• Practical problems: N > 10000
• Matrix solution becomes difficult
• Two solutions

• Sparse matrices allow iterative solution
• Smaller number of RBFs

44

Computing Implicits

• Sparse matrices

• Needed: 

• Compactly supported RBFs
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45

Computing Implicits

• Smaller number of RBFs
• Greedy approach (Carr et al.)

• Start with random small subset
• Add RBFs where approximation quality is 

not sufficient

46

RBF Implicits - Results

• Images courtesy Greg Turk

47

RBF Implicits - Results

• Images courtesy Greg Turk

48

Hoppe’s approach

• Use linear distance
field per point
• Direction is 

defined by normal

• In every point in
space use the
distance field of
the closest point
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Hoppe’s approach - smoother

• Direction fields are 
interpolated using 
Voronoi 
interpolation

50

PuO Implicits

• Construct a spatial 
subdivision

• Compute local 
distance field 
approximations
• e.g. Quadrics

• Blend them with
local Shepard 
weights

−2.5

+0.5

+1 +1

+0.5+2.5 +2

+2 +1.5

51

CornerCorner
functionfunction

Edge Edge 
functionfunction

Standard Standard 
quadricquadric

Piecewise quadric 
functions

Local analysis of Local analysis of 
points andpoints and normalsnormals

PuO Implicits: Sharp features

52

Multi-level PuO Implicits

• Subdivide cells based on local error

53

Multi-level PuO Implicits

• Local computations
• Insensitive to number of 

points

• Local adaptation to shape 
complexity

• Sensitive to output 
complexity

54

Multi-level PuO Implicits

• Aproximation at arbitrary accuracy
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Implicits - Conclusions

• Scalar field is underconstrained
• Constraints only define where the field is 

zero, not where it is non-zero
• Additional constraints are needed

• Signed fields restrict surfaces to be 
unbounded
• All implicit surfaces define solids

56

Projection

• Idea: Map space to surface
• Surface is defined as fixpoints of 

mapping
r

r’

57

Surface definition

• Projection procedure (Levin)
• Local polyonmial approximation

• Inspired by differential geometry

• “Implicit” surface definition

• Infinitely smooth &
• Manifold surface

r
r’

58

Surface Definition

• Constructive definition
• Input point r
• Compute a local

reference plane
Hr=<q,n>

• Compute a local
polynomial over
the plane Gr

• Project point r’=Gr(0)
• Estimate normal

r
Gr

Hr

q

n

59

Local Reference Plane

•Find plane
•

•
• h is feature size/

point spacing

• Hr is independent
of r’s distance

• Manifold property

r

Hr

q

n

Weight function 
based on distance to 

q, not r
DHr += nq,

( )∑ −−
= i

ii pqnpq
nq

θ,min 2

1,

( ) 22 /dθ hde=

60

Local Reference Plane

•Computing reference plane
• Non-linear optimization problem

•Minimize independent 
variables:

• Over n for fixed distance

• Along n for fixed direction n

• q changes -> the weights change
• Only iterative solutions possible

r

Hr

q

n

r

H
r

q

n

qr −
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Local Reference Plane

•Practical computation
• Minimize over n for fixed q

• Eigenvalue problem

• Translate q so that

• Effectively changes

• Minimize along n for
fixed direction n

• Exploit partial derivative

r

Hr

q

n

r

H
r

q

n
nqrqr −+=

qr −

62

Projecting the Point

• MLS polyonomial over Hr
•

• LS problem
• r’=Gr(0) 

• Estimate normal

r

Gr

Hr

q

n

( )( ) ( )∑ −−−
Π∈ i

iHiiG rd

G pqpnpq θ,min 2

63

Spatial data structure

• Regular grid based on support of θ
• Each point influences only 8 cells

• Each cell is
an octree
• Distant octree cells

are approximated
by one point in
center of mass

r

64

Conclusions

• Projection-based surface definition
• Surface is smooth and manifold
• Surface may be bounded
• Representation error mainly depends on 

point density
• Adjustable feature size h allows to 

smooth out noise
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Point-Based Rendering

Matthias Zwicker
Computer Graphics Lab

ETH Zürich

2

Point-Based Rendering

• Introduction and motivation
• Surface elements
• Rendering
• Antialiasing
• Hardware Acceleration
• Conclusions

3

Motivation 1

Quake 2, 1998
10k triangles

Nvidia, 2002 
millions of triangles

4

Motivation 1

• Performance of 3D hardware has exploded
(e.g., GeForce4: 136 million vertices per 
second)

• Projected triangles are very small (i.e., 
cover only a few pixels)

• Overhead for triangle setup increases
(initialization of texture filtering, 
rasterization)

A simpler, more efficient rendering
primitive than triangles?

5

Motivation 2

• Modern 3D scanning devices
(e.g., laser range scanners) 
acquire huge point clouds

• Generating consistent triangle 
meshes is time consuming and 
difficult

A rendering primitive for
direct visualization of point
clouds, without the need to
generate triangle meshes? 4 million pts.

[Levoy et al. 2000]

6

Points as Rendering
Primitives
• Point clouds instead of triangle meshes [Levoy and 

Whitted 1985]
• 2D vector versus pixel graphics

triangle mesh (with 
textures)

point cloud
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Point-Based Surface 
Representation

• Points are samples of the surface
• The point cloud describes:

• 3D geometry of the surface
• Surface reflectance properties (e.g., 

diffuse color, etc.)

• There is no additional information, 
such as
• connectivity (i.e., explicit 

neighborhood information between 
points)

• texture maps, bump maps, etc.

8

Surface Elements - Surfels

• Each point corresponds to a surface 
element, or surfel, describing the surface in 
a small neighborhood

• Basic surfels:

BasicSurfel {
position;
color; 

}

position

color

x

y

z

9

Surfels

• How to represent the surface between the 
points?

• Surfels need to interpolate the surface 
between the points

• A certain surface area is associated with 
each surfel

holes between 
the points

10

ExtendedSurfel {
position;
color; 
normal;
radius;
etc... 

}

Surfels
• Surfels can be extended by storing additional 

attributes
• This allows for higher quality rendering or 

advanced shading effects

normal
position

color radius

surfel disc

11

Surfels

• Surfels store essential information for 
rendering

• Surfels are primarily designed as a 
point rendering primitive

• They do not provide a mathematically 
smooth surface definition (see [Alexa 
2001], point set surfaces)

12

Model Acquisition

• 3D scanning of physical objects
• See Pfister, acquisition
• Direct rendering of acquired point clouds
• No mesh reconstruction necessary

[Matusik et al. 2002]
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Model Acquisition

• Sampling synthetic objects
• Efficient rendering of complex models
• Dynamic sampling of procedural objects

and animated scenes (see Stamminger, 
dynamic sampling)

[Zwicker et al. 2001] [Stamminger et al. 2001]

14

Model Acquisition

• Processing and editing of point-sampled 
geometry

point-based surface editing
[Zwicker et al. 2002]

(see Pauly, Pointshop3D)

spectral processing
[Pauly, Gross 2002]

(see Gross, spectral processing)

15

Visibility Image
ReconstructionShadingProjection

• Simple, pure forward mapping pipeline
• Surfels carry all information through the pipeline

(„surfel stream“)
• No texture look-ups
• Framebuffer stores RGB, alpha, and Z

Point
Cloud

Frame-
buffer

Point Rendering Pipeline

16

• Perspective projection of each point in 
the point cloud

• Analogous to projection of triangle 
vertices
• homogeneous matrix-vector product
• perspective division

Point Rendering Pipeline

Visibility Image
ReconstructionShadingProjection

17

• Per-point shading
• Conventional models for shading

(Phong, Torrance-Sparrow, 
reflections, etc.)

Point Rendering Pipeline

Visibility Image
ReconstructionShadingProjection

18

• Visibility and image reconstruction is tightly 
coupled
• Discard points that are occluded from the 

current viewpoint
• Reconstruct continuous surfaces from 

projected points (antialiasing)

Point Rendering Pipeline

Visibility Image
ReconstructionShadingProjection
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Visibility and Image 
Reconstruction

with visibility and 
image reconstruction

without visibility and 
image reconstruction

foreground point

occluded background point

surface discontinuity 
(“hole”)

20

• Goal: avoid holes and 
discard occluded surfels

• Use surfel discs with 
radius r to cover 
surface completely

• Apply z-buffer to 
discard invisible surfels radius r

3D object space

surfel disc

normal

Visibility and Image 
Reconstruction

21

• Rasterize a colored quad centered at the projected
point, use z-buffering

• The quad side length is h, where h = 2 * r * s
• The scaling factor s given  by perspective 

projection and viewport transformation
• Hardware implementation: OpenGL GL_POINTS

x

y

screen space

}h

colored quad

projected 
point

Quad Rendering Primitive

22

Visibility: Z-Buffering

• No blending of rendering primitives

y

framebuffer

x

z2

z1

z

z1  > z2{
pixel

23

• Project surfel discs from object to screen space
• Projecting discs results in ellipses in screen space
• Ellipses adapt to the surface orientation

screen space object space

x

y y

z

x

normal

surfel disc

projected surfel disc

Projected Disc Rendering 
Primitive

24

Discussion

• Quad and projected disc primitive
• Simple, efficient
• Hardware support
• Low image quality
• Suitable for preview renderers (e.g. 

Qsplat [Rusinkiewicz et al. 2000] )

• Problem: no blending of primitives
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Splatting

• A splat primitive consists of a colored point 
primitive and an alpha mask

colored point 
primitive c

alpha mask 
w(x,y)

(often a 2D 
Gauss function)

splat primitive
c * w(x,y)

y

x

y

x

y

x

* =

26

∑
∑=

i i

i ii

yxw
yxwc

yxc
),(
),(

),(

Splatting

• Normalization is necessary, because the weights do 
not sum up to one with irregular point distributions

• The final color c(x,y) is computed by additive 
alpha blending, i.e., by computing the weighted 
sum

color of splat i alpha of splat i at position (x,y)

1),( ≠∑i i yxw

27

Splatting

varying brightness 
because of irregular 

point distribution

without normalization with normalization

no artifacts

28

Splatting

• Extended z-buffering

z
z-buffer pixel surfel disc

surface 2surface 1

z-threshold
accumulate 

splats

discard splats

29

Extended Z-Buffering

DepthTest(x,y) {

if (abs(splat z – z(x,y)) < threshold) {

c(x,y) = c(x,y) + splat color

w(x,y) = w(x,y) + splat w(x,y)

} else if (splat z < z(x,y)) {

z(x,y) = splat z

c(x,y) = splat color

w(x,y) = splat w(x,y)

}

}

30

Splatting Comparison

minif.

magnif. 128 x 192

elliptical
splats

128 x 192

circular splats
with min. radius

128 x 192

surface
splatting
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High Quality Splatting

• High quality splatting requires careful 
analysis of aliasing issues
• Review of signal processing theory
• Application to point rendering
• Surface splatting [Zwicker et al. 2001]

32

Aliasing in Computer Graphics

• Aliasing = Sampling of continuous functions 
below the Nyquist frequency
• To avoid aliasing, sampling rate must be twice as 

high as the maximum frequency in the signal

• Aliasing effects:
• Loss of detail
• Moire patterns, jagged edges
• Disintegration of objects or patterns

• Aliasing in Computer Graphics
• Texture Mapping
• Scan conversion of geometry

33

Aliasing in Computer 
Graphics
• Aliasing: high frequencies in the input signal 

appear as low frequencies in the 
reconstructed signal

34

Occurrence of Aliasing

Spatial Domain Frequency Domain Spatial Domain Frequency Domain

35

Aliasing-Free Reconstruction

Spatial Domain Frequency Domain Spatial Domain Frequency Domain

36

Antialiasing

• Prefiltering
• Band-limit the continuous signal before 

sampling
• Eliminates all aliasing (with an ideal low-pass 

filter)
• Closed form solution not available in general

• Supersampling
• Raise sampling rate
• Reduces, but does not eliminate all aliasing 

artifacts (in practice, many signals have infinite 
frequencies)

• Simple implementation (hardware)
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Resampling

1.

warp

2. 3.

4.

discrete input signal discrete output signal

resampling

38

Resampling Filters

Object Space

reconstruction kernels

reconstructed input

position

color

irregular spacing

39

Resampling Filters
Object Space

3. Filter

Screen Space2.
 W

ar
p

Screen Space

4.
 S

am
pl

e

Screen Space

40

Resampling Filters
Object Space

3. Filter

Screen Space2.
 W

ar
p

Screen Space

4.
 S

am
pl

e

Screen Space

low-pass filter convolution

resampling filters

sum of resampling filters

warped reconstruction 
kernel

41

Resampling

• Resampling in the context of surface 
rendering
• Discrete input function = surface texture

(discrete 2D function)
• Warping = projecting surfaces to the

image plane (2D to 2D projective 
mapping)

42

2D Reconstruction Kernels

• 2D reconstruction kernels are given by surfel discs 
with alpha masks

• Warping is equivalent to projecting the kernel from 
object to screen space

screen space object space

x

y y

z

x

normal

surfel disc with 
alpha mask = 
reconstruction 
kernel

warped reconstruction kernel
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Resampling Filters
• A resampling filter is a convolution of a 

warped reconstruction filter and a low-pass 
filter

warped 
reconstruction 

kernel

low-pass filter 
(determined by 

pixel grid)

resampling filter
(“blurred reconstruction 

kernel”)

screen space 
pixel grid

“no information falls 
inbetween the pixel 
grid”convolution

44

resampling filter

Mathematical Formulation

∑ ⊗= −
k kk yxhyxmrcyxc ),()),((),( 1

pixel color

reconstruction kernel

warping function low pass filter

reconstruction kernel color

45

Gaussian Resampling Filters

• Gaussians are closed under linear 
warping and convolution

• With Gaussian reconstruction kernels
and low-pass filters, the resampling 
filter is a Gaussian, too

• Efficient rendering algorithms
(surface splatting [Zwicker et al. 
2001])

46

Mathematical Formulation

Gaussian
reconstruction kernel

Gaussian
low-pass filter

∑ ⊗= −
k kk yxhyxmrcyxc ),()),((),( 1

screen space screen space

47

Mathematical Formulation

∑ ⊗= −
k kk yxhyxmrcyxc ),()),((),( 1

∑=
k kk yxGc ),(

Gaussian resampling filter

48

Algorithm

for each point P {

project P to screen space;

shade P;

determine resampling kernel G;

splat G;

}

for each pixel {

normalize;

}
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Properties of 2D Resampling
Filters
warped recon-

struction kernel
low-pass

filter
resampling

filter
minification

magnification
50

Results

• High quality reconstruction and filtering

200k points 4783k points

51

Results

987k points

transparent surfaces scanned objects

[MERL/MIT Matusik et al.]

52

Hardware Implementation

• Based on the object space formulation of 
EWA filtering

• Implemented using textured triangles
• All calculations are performed in the 

programmable hardware (extensive use of 
vertex shaders)

• Presented at EG 2002 ([Ren et al. 2002])

53

Surface Splatting 
Performance
• Software implementation

• 500 000 splats/sec on 866 MHz PIII
• 1 000 000 splats/sec on 2 GHz P4

• Hardware implementation [Ren et al. 2002]
• Uses texture mapping and vertex shaders
• 3 000 000 splats/sec on GeForce4 Ti 4400

54

Conclusions
• Points are an efficient rendering primitive for highly complex 

surfaces
• Points allow the direct visualization of real world data 

acquired with 3D scanning devices
• High performance, low quality point rendering is supported 

by 3D hardware (tens of millions points per second)
• High quality point rendering with anisotropic texture filtering 

is available 
• 3 million points per second with hardware support
• 1 million points per second in software

• Antialiasing technique has been extended to volume 
rendering
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Applications

• Direct visualization of point clouds
• Real-time 3D reconstruction and rendering 

for virtual reality applications
• Hybrid point and polygon rendering systems
• Rendering animated scenes
• Interactive display of huge meshes
• On the fly sampling and rendering of 

procedural objects

56

Future Work

• Dedicated rendering hardware
• Efficient approximations of exact EWA 

splatting
• Rendering architecture for on the fly 

sampling and rendering

57
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Point-Based Computer Graphics

Marc Alexa, Carsten Dachsbacher, 
Markus Gross, Mark Pauly, 

Hanspeter Pfister, Marc Stamminger, 
Matthias Zwicker

2

Introduction

• point rendering
• how adapt point densities?

• for a given viewing position, how can we get
n points that suffice for that viewer?

• how render the points?
• given n points, how can we render an image 

from them ?

3

Introduction

• how render the points?
• project point to pixel, set pixel color
• hardware solution (Radeon 9700 Pro)

• ~80 mio. points per second
• no hole filling

• software solution
• ~8 mio. points per second
• hole filling

• hardware != software

4

Introduction

• even with hardware:
• for (int i = 0; i < N; i++)

renderPointWithNormalAndColor
(x[i],y[i],z[i],nx[i],ny[i],nz[i],…);

→ 10 mio points per second
• for (int i = 0; i < N; i++)

renderPoint(x[i],y[i],z[i]);

→ 20 mio points per second
• float *p = {...}
renderPoints(p);

→ 80 mio points per second

• → best performance with sequential
processing of large chunks !

5

Introduction

• what we want:
• sequential processing and
• adaptive point densities

→ precomputed point lists
→ render continuous segments only

point listrendered segment

6

Hierarchical Processing

• Q-Splat
• Rusinkiewicz et al., Siggraph 2000
• hierarchical point rendering

based on Bounding Sphere Hierarchy

© S. Rusinkiewicz
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7

Hierarchical Processing

• Q-Splat hierarchy

R

R R R

R R R

8

Hierarchical Processing

• Q-Splat recursive rendering
render( Node n ) {
// compute screen size of node
s = n.R / distanceToCamera( n );
// screen size too big?
if ( s > threshold )
// → render children
forall children c
render( c );

else
// else draw node
renderPoint( n.xyz );

}

9

Hierarchical Processing

• not sequential
• no array, but tree structure
• most work on CPU
• CPU is bottleneck: ~8 mio points per second

→ sequential version ?

10

Sequential Point Trees

• store with node dmin = n.R / 1 Pixel

• render( Node n ) {
// node too close?
if ( distanceToCamera( n ) < n.dmin )

// → render children
forall children c

render( c );
else

// else draw node
renderPoint( n.xyz );

}

11

Sequential Point Trees

• node n is rendered if:
• n is not too close and
• parent is not rendered

• or
• distToCam( n ) < n.dmin

• distToCam( n.parent ) ≥ n.parent.dmin

• parent is too close, but node is far 
enough

12

Sequential Point Trees

• assume
• distToCam(n) ≈ distToCam(n.parent)

• store with n

• n.dmax = n.parent.dmin

• then a node is rendered if
• n.dmin ≤ distToCam(n) < n.dmax
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13

Sequential Point Trees

• example tree

14

Sequential Point Trees

• sequential version

• foreach tree node n
if ( n.dmin < distToCam(n) &&

distToCam(n) < n.dmax )
renderPoint(n);

• how enumerate nodes?

15

Sequential Point Trees

• sort nodes by
dmax
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16

imax

Sequential Point Trees

• compute lower bound dbmin on 
distToCam(n) with bounding volume

• all elements with dmax < dbmin can be skipped
• only prefix must be considered

imax imax

17

Sequential Point Trees

• account for d ≠ d(parent):
• dmax = dmin(parent) + distance to parent
• partially parent and some children

selected
• no visible artifacts from this

18

Sequential Point Trees

• culling by GPU necessary, because d is not constant
over object



4

19

Sequential Point Trees

• CPU does per frame:
• compute dbmin

• search last node imax with dmax>dbmin

• send first imax points to GPU

• GPU then does for every node n
• compute d = distToCam(n)
• if n.dmin ≤ d ≤ n.dmax

• render node

20

Sequential Point Trees

• CPU does first interval selection by dbmin

• GPU does fine granularity selection

sequential point tree

prefix with dbmin < dmax

culled because d > n.dmax

rendered
culled because d < n.dmin

21

Sequential Point Trees

• Result
• culling by GPU: only 10 - 40%
• on a 2,4 GHz Pentium with Radeon 9700:
• CPU-Load < 20% (usually much less)
• > 50 Mio points after culling

22

Sequential Point Trees

• better error measurement
• in flat regions

• increase dmin, dmax

• render larger points

23

Sequential Point Trees

• geometric
• perpendicular

error

• tangential
error

24

Sequential Point Trees

• example
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25

Sequential Point Trees

• also add texture criterion
• necessary for flat textured regions

26

Sequential Point Trees

• if significant color variation in child
nodes:
• modify tangential error
• increase error to node diameter

• prevents washed out colors in flat
regions

27

Sequential Point Trees

• perpendicular, tangential, texture
error

• scale with 1/(view distance)

• fits into sequential point trees

28

Sequential Point Trees

• combine errors
• perpendicular ep

• tangential et

• texture etex

• ecom = 

• => screen error = ecom / viewDistance

r if texture variation

else22
tp ee +

29

Sequential Point Trees

• can be combined with polygons

30

Sequential Point Trees

• combine with polygonal rendering
• for every triangle

• compute dmax (longest side / dmax = ε)
• remove all points from triangle with smaller dmax

• sort triangles for dmax

• during rendering
• for every object, compute upper bound dbmax on 

distance
• send triangles with dmax < dbmax to GPU
• on the GPU (vertex program)

• test d < dmax

• cull by alpha-test
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31

Sequential Point Trees

• pros
• very simple!
• CPU-load low
• most work moved to GPU
• GPU runs at maximum efficiency

• cons
• no view frustum culling
• currently: bad splatting support by GPU
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Point-Based Computer Graphics Mark Pauly 1

Efficient Simplification of 
Point-sampled Surfaces

Point-Based Computer Graphics Mark Pauly 2

Overview

• Introduction
• Local surface analysis
• Simplification methods
• Error measurement
• Comparison

Point-Based Computer Graphics Mark Pauly 3

Introduction
• Point-based models are often sampled very densely
• Many applications require coarser approximations, 

e.g. for efficient

• Storage
• Transmission
• Processing
• Rendering

We need simplification methods for reducing the 
complexity of point-based surfaces

Point-Based Computer Graphics Mark Pauly 4

Introduction

• Example: Level-of-detail (LOD) rendering

10k 20k 60k 200k 2000k

Point-Based Computer Graphics Mark Pauly 5

Introduction

• We transfer different simplification methods from 
triangle meshes to point clouds:

• Hierarchical clustering
• Iterative simplification
• Particle simulation

• Depending on the intended use, each method has 
its pros and cons (see comparison)

Point-Based Computer Graphics Mark Pauly 6

Local Surface Analysis

• Cloud of point samples describes underlying 
(manifold) surface

• We need:
• Mechanisms for locally approximating the 

surface MLS approach

• Fast estimation of tangent plane and curvature 
principal component analysis of local 

neighborhood
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Point-Based Computer Graphics Mark Pauly 7

Neighborhood

• No explicit connectivity between samples (as with 
triangle meshes)

• Replace geodesic proximity with spatial proximity 
(requires sufficiently high sampling density!)

• Compute neighborhood according to Euclidean 
distance

Point-Based Computer Graphics Mark Pauly 8

Neighborhood

• K-nearest neighbors

• Can be quickly computed using spatial data-
structures (e.g. kd-tree, octree, bsp-tree)

• Requires isotropic point distribution

Point-Based Computer Graphics Mark Pauly 9

Neighborhood

• Improvement: Angle criterion (Linsen)

• Project points onto tangent plane
• Sort neighbors according to angle
• Include more points if angle between 

subsequent points is above some threshold

Point-Based Computer Graphics Mark Pauly 10

Neighborhood

• Local Delaunay triangulation (Floater)

• Project points into tangent plane
• Compute local Voronoi diagram

Point-Based Computer Graphics Mark Pauly 11

Covariance Analysis

• Covariance matrix of local neighborhood N:

• with centroid
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Point-Based Computer Graphics Mark Pauly 12

Covariance Analysis

• Consider the eigenproblem:

• C is a 3x3, positive semi-definite matrix
All eigenvalues are real-valued
The eigenvector with smallest eigenvalue defines the 
least-squares plane through the points in the 
neighborhood, i.e. approximates the surface normal

}2,1,0{, ∈⋅=⋅ llll vvC λ
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Point-Based Computer Graphics Mark Pauly 13

Covariance Analysis

• Covariance ellipsoid spanned by the eigenvectors 
scaled with corresponding eigenvalue

Point-Based Computer Graphics Mark Pauly 14

Covariance Analysis
• The total variation is given as:

• We define surface variation as:

• Measures the fraction of variation along the surface 
normal, i.e. quantifies how strong the surface deviates 
from the tangent plane estimate for curvature
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Point-Based Computer Graphics Mark Pauly 15

Covariance Analysis

• Comparison with curvature:

original mean curvature variation n=20 variation n=50

Point-Based Computer Graphics Mark Pauly 16

Surface Simplification

• Hierarchical clustering

• Iterative simplification

• Particle simulation

Point-Based Computer Graphics Mark Pauly 17

Hierarchical Clustering

• Top-down approach using binary space partition:

• Split the point cloud if:

• Size is larger than user-specified maximum or

• Surface variation is above maximum threshold

• Split plane defined by centroid and axis of greatest 
variation (= eigenvector of covariance matrix with 
largest associated eigenvector)

• Leaf nodes of the tree correspond to clusters
• Replace clusters by centroid

Point-Based Computer Graphics Mark Pauly 18

Hierarchical Clustering

• 2D example

covariance 
ellipsoid split plane

centroid

root
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Point-Based Computer Graphics Mark Pauly 19

Hierarchical Clustering

• 2D example

Point-Based Computer Graphics Mark Pauly 20

Hierarchical Clustering

• 2D example

Point-Based Computer Graphics Mark Pauly 21

Hierarchical Clustering

• 2D example

Point-Based Computer Graphics Mark Pauly 22

Hierarchical Clustering

4,280 Clusters436 Clusters43 Clusters

Point-Based Computer Graphics Mark Pauly 23

Hierarchical Clustering

• Adaptive Clustering

Point-Based Computer Graphics Mark Pauly 24

Iterative Simplification

• Iteratively contracts point pairs
Each contraction reduces the number of points by one

• Contractions are arranged in priority queue 
according to quadric error metric (Garland and 
Heckbert)

• Quadric measures cost of contraction and 
determines optimal position for contracted sample

• Equivalent to QSlim except for definition of 
approximating planes
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Point-Based Computer Graphics Mark Pauly 25

Iterative Simplification

• Quadric measures the squared distance to a set of 
planes defined over edges of neighborhood
• plane spanned by vectors                   andppe −= i1 nee ×= 12

1e

ip

p2e

n

Point-Based Computer Graphics Mark Pauly 26

Iterative Simplification

• 2D example

• Compute fundamental 
quadrics

• Compute initial point-pair 
contraction candidates

• Compute edge costs

Point-Based Computer Graphics Mark Pauly 27

Iterative Simplification

• 2D example
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0.223
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0.026

priority queue

edge      cost
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Iterative Simplification

• 2D example

0.564
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0.2711

0.223

0.1313
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0.099
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0.0414
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Iterative Simplification

• 2D example

0.564

0.497
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Point-Based Computer Graphics Mark Pauly 30

Iterative Simplification

• 2D example

0.564

0.497

0.3610

0.2711

0.233

0.1313

0.111

0.099

0.065

0.0414

0.032

priority queue

edge      cost
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Iterative Simplification

• 2D example

0.564
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0.233
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Iterative Simplification

• 2D example

0.564

0.497

0.3610

0.2711

0.233

0.1313

0.111

0.099

0.065

0.0414

priority queue

edge      cost

Point-Based Computer Graphics Mark Pauly 33

Iterative Simplification

• 2D example

0.564

0.497

0.3610

0.2711

priority queue

edge      cost

Point-Based Computer Graphics Mark Pauly 34

Iterative Simplification

original model 
(296,850 points)

simplified model 
(2,000 points)

remaining point pair 
contraction candidates

Point-Based Computer Graphics Mark Pauly 35

Particle Simulation

• Resample surface by distributing particles 
on the surface

• Particles move on surface according to 
inter-particle repelling forces

• Particle relaxation terminates when 
equilibrium is reached (requires damping)

• Can also be used for up-sampling!

Point-Based Computer Graphics Mark Pauly 36

Particle Simulation

• Initialization
• Randomly spread particles

• Repulsion
• Linear repulsion force                                      

only need to consider neighborhood of radius r

• Projection
• Keep particles on surface by projecting onto 

tangent plane of closest point
• Apply full MLS projection at end of simulation

)()()( iii rkF ppppp −⋅−−=
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Particle Simulation

• 2D example

Point-Based Computer Graphics Mark Pauly 38

Particle Simulation

• 2D example
• Initialization

• randomly spread particles

Point-Based Computer Graphics Mark Pauly 39

Particle Simulation

• 2D example

• Repulsion
• linear repulsion force          

)()()( iii rkF ppppp −⋅−−=

• Initialization
• randomly spread particles

Point-Based Computer Graphics Mark Pauly 40

Particle Simulation

• 2D example

• Repulsion
• linear repulsion force          

)()()( iii rkF ppppp −⋅−−=

• Initialization
• randomly spread particles

Point-Based Computer Graphics Mark Pauly 41

Particle Simulation

• 2D example

• Repulsion
• linear repulsion force          

)()()( iii rkF ppppp −⋅−−=

• Initialization
• randomly spread particles

• Projection
• project particles onto 

surface                               

Point-Based Computer Graphics Mark Pauly 42

Particle Simulation

• 2D example

• Repulsion
• linear repulsion force          

)()()( iii rkF ppppp −⋅−−=

• Initialization
• randomly spread particles

• Projection
• project particles onto 

surface                               
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Particle Simulation

• Adaptive simulation
• Adjust repulsion radius according to surface variation     

more samples in regions of high variation

variation 
estimation

simplified model 
(3,000 points)

Point-Based Computer Graphics Mark Pauly 44

Particle Simulation

• User-controlled simulation
• Adjust repulsion radius according to user input

uniform original selective

Point-Based Computer Graphics Mark Pauly 45

Measuring Error

• Measure the distance between two point-sampled 
surfaces using a sampling approach

• Maximum error: 

Two-sided Hausdorff distance

• Mean error:

Area-weighted integral of point-to-surface distances

• is an up-sampled version of the point cloud that 
describes the surface
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Point-Based Computer Graphics Mark Pauly 46

Measuring Error

• measures the distance of point     to 
surface      using the MLS projection operator with 
linear basis functions

),( Sd ′q q
S ′

Point-Based Computer Graphics Mark Pauly 47

Measuring Error

original simplified upsampled error

Point-Based Computer Graphics Mark Pauly 48

Comparison

• Error estimate for Michelangelo’s David simplified 
from 2,000,000 points to 5,000 points
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Comparison

• Execution time as a function of input model 
size (reduction to 1%)
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Comparison

• Execution time as a function of target 
model size (input: dragon, 535,545 points)
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Comparison

• Summary

-

o

+

Implementation

++oParticle 
Simulation

o+-Iterative 
Simplification

--+Hierarchical 
Clustering

ControlSurface 
Error

Efficiency

Point-Based Computer Graphics Mark Pauly 52

Point-based vs. Mesh 
Simplification

point-based simplification saves an expensive 
surface reconstruction on the dense point cloud!

point-based simplification with 
subsequent mesh reconstruction

mesh reconstruction with subsequent 
mesh simplification (QSlim)

Point-Based Computer Graphics Mark Pauly 53
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Spectral Processing of Point-
Sampled Geometry

Markus Gross

2Point-Based Computer Graphics Markus Gross

Overview

• Introduction
• Fourier transform
• Spectral processing pipeline
• Applications

• Spectral filtering
• Adaptive subsampling

• Summary

3Point-Based Computer Graphics Markus Gross

Introduction

• Idea: Extend the Fourier transform to 
manifold geometry

Spectral representation of point-based objects

Powerful methods for digital geometry processing

4Point-Based Computer Graphics Markus Gross

Introduction

• Applications:

• Spectral filtering:
• Noise removal 
• Microstructure analysis
• Enhancement

• Adaptive resampling:
• Complexity reduction

• Continuous LOD

5Point-Based Computer Graphics Markus Gross

Fourier Transform

• 1D example:

• Benefits:
• Sound concept of frequency
• Extensive theory
• Fast algorithms

∑
=
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spectral basis function
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6Point-Based Computer Graphics Markus Gross

Fourier Transform

• Requirements:
• Fourier transform defined on Euclidean domain

we need a global parameterization

• Basis functions are eigenfunctions of Laplacian 
operator

requires regular sampling pattern so that basis 
functions can be expressed in analytical form (fast 
evaluation)

• Limitations:
• Basis functions are globally defined 

Lack of local control
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Approach

• Split model into patches that:
• are parameterized over the unit-square

mapping must be continuous and should minimize        
distortion

• are re-sampled onto a regular grid
adjust sampling rate to minimize information loss

• provide sufficient granularity for intended 
application (local analysis)

process each patch individually and blend 
processed patches

8Point-Based Computer Graphics Markus Gross

Spectral Pipeline

9Point-Based Computer Graphics Markus Gross

Patch Layout Creation

Clustering    Optimization

Samples      Clusters      Patches

10Point-Based Computer Graphics Markus Gross

Patch Layout Creation

• Iterative, local optimization method

• Merge patches according to quality metric:

RegBNCS Φ⋅Φ⋅Φ⋅Φ=Φ

curvature

patch Size

patch boundary

spring energy regularization

NCΦ

BΦ

RegΦ

SΦ

11Point-Based Computer Graphics Markus Gross

Patch Layout Creation

• Parameterize patches by orthogonal projection 
onto base plane

• Bound normal cone to control distortion of 
mapping using smallest enclosing sphere

12Point-Based Computer Graphics Markus Gross

Patch Resampling

• Patches are irregularly sampled:
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13Point-Based Computer Graphics Markus Gross

Patch Resampling

• Resample patch onto regular grid using hierarchical 
push-pull filter (scattered data approximation)

14Point-Based Computer Graphics Markus Gross

Spectral Analysis

• 2D discrete Fourier transform (DFT)
Direct manipulation of spectral coefficients

• Filtering as convolution:

Convolution: O(N2) multiplication: O(N)

• Inverse Fourier transform
Filtered patch surface 

)()()( yFxFyxF ⋅=⊗

15Point-Based Computer Graphics Markus Gross

Spectral Filters

ideal low-pass       Gaussian low-pass           original

transfer function: spectral domain

transfer function: spatial domain

• Smoothing filters

16Point-Based Computer Graphics Markus Gross

Spectral Filters

• Microstructure analysis and enhancement

17Point-Based Computer Graphics Markus Gross

Spectral Resampling

• Low-pass filtering
Band-limitation

• Regular Resampling
Optimal sampling rate   
(sampling theorem)

Error control 
(Parseval’s theorem)

Power Spectrum

18Point-Based Computer Graphics Markus Gross

Reconstruction

• Filtering can lead to discontinuities at 
patch boundaries

Create patch overlap, blend adjacent patches

region of overlap

Sampling rates

Point positions

Normals
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Reconstruction

• Blending the sampling rate

blended sampling 
rate in region of 
patch overlap

discretized
sampling rate       
on regular grid

pre-computed 
sampling patterns

20Point-Based Computer Graphics Markus Gross

Timings

Clustering

Patch
Merging

SDA

Analysis

Reconstruction

Time
9%

38%

23%

4%

26%

21Point-Based Computer Graphics Markus Gross

Applications

• Surface Restoration

Original           Gaussian low-pass     Wiener filter           Patch layout

22Point-Based Computer Graphics Markus Gross

Applications

• Interactive filtering

23Point-Based Computer Graphics Markus Gross

Applications

• Adaptive Subsampling

4,128,614 pts. = 100% 287,163 pts. = 6.9%

24Point-Based Computer Graphics Markus Gross

Summary

• Versatile spectral decomposition of point-
based models

• Effective filtering

• Adaptive resampling

• Efficient processing of large point-sampled 
models
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Reference

• Pauly, Gross: Spectral Processing of Point-sampled 
Geometry, SIGGRAPH 2001
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An Interactive System for Point-based 
Surface Editing

2Point-Based Computer Graphics Markus Gross

Overview

• Introduction
• Pointshop3D System Components

• Point Cloud Parameterization
• Resampling Scheme
• Editing Operators

• Summary

3Point-Based Computer Graphics Markus Gross

PointShop3D

• Interactive system for point-based surface 
editing

• Generalizes 2D photo editing concepts and 
functionality to 3D point-sampled surfaces

• Uses 3D surface pixels (surfels) as versatile 
display and modeling primitive

4Point-Based Computer Graphics Markus Gross

Concept

Resampling Editing Operator

u

Parameterization

v

5Point-Based Computer Graphics Markus Gross

• Point cloud parameterization
• brings surface and brush into common reference frame

• Dynamic resampling
• creates one-to-one correspondence of surface and brush 

samples

• Editing operator
• combines surface and brush samples

Key Components

Φ

))()),((( BSS ΨΦΨΩ=′
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6Point-Based Computer Graphics Markus Gross

Parameterization

• Constrained minimum distortion 
parameterization of point clouds
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Parameterization

contraints = matching 
of feature points

minimum distortion = 
maximum smoothness

8Point-Based Computer Graphics Markus Gross

Parameterization

• Find mapping X that minimizes objective 
function:

{∑ ∫
∈
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Parameterization

• Measuring distortion

• Integrates squared curvature using local polar 
re-parameterization
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Parameterization

• Discrete formulation:

• Approximation: mapping is piecewise linear
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Parameterization

• Directional derivatives as extension of divided 
differences based on k-nearest neighbors

12Point-Based Computer Graphics Markus Gross

Parameterization

• Multigrid solver for efficient computation of 
resulting sparse linear least squares problem
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Reconstruction
• Parameterized scattered data approximation

• Fitting functions
• Compute local fitting functions using local 

parameterizations
• Map to global parameterization using global parameter 

coordinates of neighboring points
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14Point-Based Computer Graphics Markus Gross

Reconstruction

reconstruction with 
linear fitting functions

weight functions in 
parameter space
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Reconstruction

• Reconstruction with linear fitting functions is 
equivalent to surface splatting!

we can use the surface splatting renderer to reconstruct 
our surface function (see chapter on rendering)

• This provides:

• Fast evaluation

• Anti-aliasing (Band-limit the weight functions before 
sampling using Gaussian low-pass filter)

• Distortions of splats due to parameterization can be 
computed efficiently using local affine mappings
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Sampling

• Three sampling strategies:
• Resample the brush, i.e., sample at the original 

surface points

• Resample the surface, i.e., sample at the brush 
points

• Adaptive resampling, i.e., sample at surface or 
brush points depending on the respective 
sampling density
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Editing Operators

• Painting
• Texture, material properties, transparency

18Point-Based Computer Graphics Markus Gross

Editing Operators

• Sculpting
• Carving, normal displacement

displacement mapstexture map
carved and texture mapped 

point-sampled surface
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Editing Operators

• Filtering
• Scalar attributes, geometry

20Point-Based Computer Graphics Markus Gross

Summary

• Pointshop3D provides sophisticated editing 
operations on point-sampled surfaces

points are a versatile and powerful modeling 
primitive

• Limitation: only works on “clean” models
• sufficiently high sampling density
• no outliers
• little noise

requires model cleaning (integrated or as pre-
process)

21Point-Based Computer Graphics Markus Gross

Reference

• Zwicker, Pauly, Knoll, Gross: Pointshop3D: An 
interactive system for Point-based Surface Editing, 
SIGGRAPH 2002

• check out:

www.pointshop3D.com
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Shape Modeling

Mark Pauly
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Motivation

• 3D content creation pipeline

3Point-Based Computer Graphics Mark Pauly

Motivation

• Surface representations
• Implicit surfaces

• Level sets
• Radial basis functions
• Algebraic surfaces

• Parametric surfaces
• Polygonal meshes
• Subdivision surfaces
• NURBS

+ Extreme deformations
+ Changes of topology

+ Sharp features
+ Efficient rendering
+ Intuitive Editing
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Motivation

• Surface representations
• Implicit surfaces

• Level sets
• Radial basis functions
• Algebraic surfaces

• Parametric surfaces
• Polygonal meshes
• Subdivision surfaces
• Nurbs

Hybrid Representation
• Explicit cloud of point 

samples
• Implicit dynamic 

surface model
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Motivation

• Point cloud representation
• Minimal consistency requirements for extreme 

deformations (dynamic re-sampling)
• Fast inside/outside classification for boolean 

operations and collision detection
• Explicit modeling and rendering of sharp feature 

curves
• Integrated, intuitive editing of shape and 

appearance

6Point-Based Computer Graphics Mark Pauly

Interactive Modeling

• Interactive design and editing of 
point-sampled models
• Shape Modeling

• Boolean operations
• Free-form deformation

• Appearance Modeling
• Painting & texturing
• Embossing & engraving
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Boolean Operations

+ - -
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Boolean Operations

• Create new shapes by combining existing 
models using union, intersection, or 
difference operations

• Powerful and flexible editing paradigm 
mostly used in industrial design applications 
(CAD/CAM)
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Boolean Operations

• Easily performed on implicit 
representations
• Requires simple computations on the 

distance function

• Difficult for parametric surfaces
• Requires surface-surface intersection

• Topological complexity of resulting 
surface depends on geometric 
complexity of input models
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Boolean Operations

• Point-Sampled Geometry
• Classification

• Inside-outside test using signed distance 
function induced by MLS projection

• Sampling
• Compute exact intersection of two MLS 

surfaces to sample the intersection curve

• Rendering
• Accurate depiction of sharp corners and 

creases using point-based rendering

11Point-Based Computer Graphics Mark Pauly

Boolean Operations

• Classification:
• given a smooth, closed 

surface S and point p. Is p 
inside or outside of the 
volume V bounded by S?

S

p V
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Boolean Operations

• Classification:
• given a smooth, closed 

surface S and point p. Is p 
inside or outside of the 
volume V bounded by S?

1.find closest point q on S

S

p

q

V
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Boolean Operations

• Classification:
• given a smooth, closed 

surface S and point p. Is p 
inside or outside of the 
volume V bounded by S?

1.find closest point q on S
2.d=(p-q)·n defines signed 

distance of p to S

p

q
n

S

V
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Boolean Operations

• Classification:
• given a smooth, closed 

surface S and point p. Is p 
inside or outside of the 
volume V bounded by S?

1.find closest point q on S
2.d=(p-q)·n defines signed 

distance of p to S 
3.classify p as

– inside V, if d < 0
– outside V, if d > 0

p

q
n

S

V
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Boolean Operations

• Classification:
• represent smooth surface S

by point cloud P
m P

S

V
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Boolean Operations

• Classification:
• represent smooth surface S

by point cloud P
m

1.find closest point q in P
p

P

q
n

S

V
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Boolean Operations

• Classification:
• represent smooth surface S

by point cloud P
m

1.find closest point q in P
2.classify p as

– inside V, if (p-q)·n < 0
– outside V, if (p-q)·n > 0

p

P

q
n

S

V
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Boolean Operations

• Classification:
• apply full MLS projection for points close 

to the surface

q

p

n)(pPΨ
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Boolean Operations

• Sampling the intersection curve

20Point-Based Computer Graphics Mark Pauly

Boolean Operations

• Newton scheme:
1.identify pairs of closest points

21Point-Based Computer Graphics Mark Pauly

Boolean Operations

• Newton scheme:
1.identify pairs of closest points

1q 2q
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Boolean Operations

• Newton scheme:
1. identify pairs of closest points
2. compute closest point on intersection of 

tangent spaces

r

1q 2q
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Boolean Operations

• Newton scheme:
1. identify pairs of closest points
2. compute closest point on intersection of 

tangent spaces
3. re-project point on both surfaces

1q′
2q′

r

1q 2q
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Boolean Operations

• Newton scheme:
1. identify pairs of closest points
2. compute closest point on intersection of 

tangent spaces
3. re-project point on both surfaces
4. iterate

r ′
1q′

2q′
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Boolean Operations

• Rendering sharp creases
• represent points on intersection curve with 

two surfels that mutually clip each other
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Boolean Operations

• Rendering sharp creases
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Boolean Operations

• Rendering sharp creases
• easily extended to handle corners by 

allowing multiple clipping
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Boolean Operations

• Boolean operations can create intricate 
shapes with complex topology

BA + BA ⋅

BA − AB −
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Boolean Operations

• Singularities lead to numerical instabilities 
(intersection of almost parallel planes)
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Boolean Operations

• Sharp creases can be blended using 
oriented particles (Szeliski, Tonnesen)
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Free-form Deformation
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Free-form Deformation

• Smooth deformation field F:R3→R3 that 
warps 3D space

• Can be applied directly to point samples
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Free-form Deformation

• How to define the deformation field?
Painting metaphor

• How to detect and handle self-
intersections?

Point-based collision detection, boolean 
union, particle-based blending

• How the handle strong distortions?
Dynamic re-sampling
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Free-form Deformation

• Intuitive editing paradigm using 
painting metaphor
• Define rigid surface part (zero-region) 

and handle (one-region) using interactive 
painting tool

• Displace handle using combination of 
translation and rotation

• Create smooth blend towards zero-region

35Point-Based Computer Graphics Mark Pauly

Free-form Deformation

one-region

zero-region

original
surface

deformed
surface
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Free-form Deformation

• Definition of deformation field:
• Continuous scale parameter tx

• tx = β (d0 / (d0 + d1))
• d0 : distance of x to zero-region
• d1 : distance of x to one-region

• Blending function               
• β : [0,1] → [0,1]
• β ∈ C0, β (0) = 0, β (1) = 1

• tx = 0 if x in zero-region
• tx = 1 if x in one-region

x
d0

d1
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Free-form Deformation

• Definition of deformation field:
• Deformation function

• F (x) = FT (x) + FR (x) 

• Translation
• FT (x) = x + tx · v

• Rotation
• FR (x) = M(tx) · x

x
d0

d1
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Free-form Deformation

• Translation for three different blending functions

blending
function

deformed
surface
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Free-form Deformation

• Rotational deformation along two different 
rotation axes

deformed
surface

original
surface

color-coded
scale parameter
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• Embossing effect

Free-form Deformation

bitmap
image

zero- and
one-regions

deformed
surface
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Collision Detection

• Deformations can lead to self-
intersections

• Apply boolean inside/outside 
classification to detect collisions

• Restricted to collisions between 
deformable region and zero-region to 
ensure efficient computations
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Collision Detection

• Exploiting temporal coherence
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Collision Detection

collision
detected

boolean union
performed

particle-based
blending

• Interactive modeling session
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Dynamic Sampling

• Large model deformations can lead to 
strong surface distortions

• Requires adaptation of the sampling 
density

• Dynamic insertion and deletion of 
point samples
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Dynamic Sampling

• Surface distortion varies locally

color-coded
surface stretch

surface after
dynamic re-sampling

46Point-Based Computer Graphics Mark Pauly

Dynamic Sampling

1. Measure local surface stretch from first 
fundamental form

2. Split samples that exceed stretch 
threshold 

3. Regularize distribution by relaxation
4. Interpolate scalar attributes
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Dynamic Sampling

• 2D illustration
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Free-form Deformation

• Interactive modeling session with dynamic sampling

original surface
with zero- and

one-regions

intermediate steps
of deformation

final
surface
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Results

• 3D shape modeling functionality has been 
integrated into Pointshop3D to create a 
complete system for point-based shape and 
appearance modeling
• Boolean operations
• Free-form deformation
• Painting & texturing
• Sculpting
• Filtering
• Etc.
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Results

• Ab-initio design of an Octopus
• Free-form deformation with dynamic sampling 

from 69,706 to 295,222 points

51Point-Based Computer Graphics Mark Pauly

Results

• Modeling with synthetic and scanned data
• Combination of free-form deformation with 

collision detection, boolean operations, 
particle-based blending, embossing and 
texturing
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Results

• Boolean operations on scanned data
• Irregular sampling pattern, low resolution 

models
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Results

• Interactive modeling with scanned data
• noise removal, free-form deformation, cut-and-

paste editing, interactive texture mapping
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Conclusion

• Points are a versatile shape modeling 
primitive
• Combines advantages of implicit and 

parametric surfaces
• Integrates boolean operations and free-

form deformation
• Dynamic restructuring
• Time and space efficient 

implementations
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Conclusion

• Complete and versatile point-based 
3D shape and appearance modeling 
system
• Directly applicable to scanned data 
• Suitable for low-cost 3D content creation 

and rapid proto-typing
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