
Fast Calculation of Soft Shadow
Textures Using Convolution

To Implement Real Time Shadows for
Interactive Applications

Using

Adam
Moravanszky

Presentation

GDV-Seminar

Summer 2000

Cyril Soler and Francois X. Sillion

Overview

• The Problem and Terminology
• Shadows in Computer Graphics Theory
• Shadows in Practice
• Shadows in this Paper
• Demo of Implementation

Definitions

What are Shadows?

•Light source

•Blocker

•Receiver

•Umbra - completely occluded
(all illumination from other
sources)

•Penumbra - partially occluded

Shadows in Computer Graphics Theory
•No Shadows

•Raytraced

•Shadow Buffers

•Shadow Volumes

•Radiosity

•Shadow Textures

These are all raster/image/texture based algos like that of current paper,
but still represent a broad overview. The total number of shadow algos
available is much greater!

Shadowing is a form of hidden surface determination problem, so shadow
algos have much in common with HSD algos for cameras.

Shadows in Computer Graphics Theory:
No Shadows

•Vertex Lighting (OpenGL)

Shadows in Computer Graphics Theory:
Raytraced

•Trace ray from eye through pixel,
stabbing object.

•See if light is visible from ray-
object intersection point. (Other
objects may be in the way)

•Improvement: Light Buffers

•For each light‘s each discretized
solid angle, record all the
polygons visible in this direction,
and sort according to depth.
Above visibility computation
becomes table lookup.

•NB: Incompatible with grx. hw.

Shadows in Computer Graphics Theory:
Shadow Buffers

•Two z buffers: one from viewer POV, other from lightsource.

1) Create z buffer from light POV.

2) when a fragment is determined to be visible via viewer z-buffer, it‘s
coordinates are transformed into the light‘s coord sys.

3) These coordinates are looked up in the light‘s z buffer. If the value stored
there is closer than the actual distance, the fragment is in shadow, else it is
illuminated.

•NB: Suitable for eventual hardware implementation, but this level of the
graphics pipeline is no longer in the application programmer‘s hands.

Shadows in Computer Graphics Theory:
Shadow Volumes

•Create a shadow volume for
each blocker+light source.

•Shadow volume is space
occluded by silouette of blocker,
delimited by ‚shadow polygons‘.

•A point is in shadow if the line
segment from the viewer
(assumed to be out of shadow) to
the point intersects an odd
number of shadow polygons.
(like 2D in polygon test)

•Potentially practical for real time
apps. More later.

Shadows in Computer Graphics Theory:
Radiosity

•View independent global illumination
algorithm. (Can be done off-line!)

•Lighting model evaluated recursively at
regular intervals on surfaces in scene.

•Color determined by light absorbed
from all other surfaces.

•Implicit soft shadows, crispness
depends on sampling density.

•Only diffuse lighting taken into account
(specular is view dependent) so only
some surface types can be simulated
accurately unless combined with other
techniques.

•Interesting for real time simulation,
more later.

•Adaptive subdivision via quadtree
produces stair-step effect.

Shadows in Computer Graphics Theory:
Radiosity with Discontinuity Meshing

•Choose radiosity evaluation mesh
according to lighting conditions rather
than recursive arbitrary orthogonal
subdivision scheme as before.

Shadows in Computer Graphics Theory:
Shadow Textures

•First used for real time display of results
of Radiosity algorithm / shadows.

•Texture mapping is often implemented
in hardware.

•Shadow texture maps are,like
Radiosity, view independent, and don‘t
have to be recomputed if only the POV
changes.

•Soft shadows can be supported by
sampling the area light a few times and
superimposing the texture images. (Paul
Heckbert, 1995)

•Foundation of the current paper.

Shadows in Practice

•No Shadows

•Circular Splotches

•Projected Geometry

•Stencil Shadows

•Lightmaps

Shadows in Practice
No Shadows

Pros:

•Guaranteed Faster than
any other algorithm.

•May look better than
hard shadows

Cons:

•Difficult to judge depth of
objects. Hovering effect.

Rogue Spear

Shadows in Practice
Circular Splotches

Pros:

•Fast

•Gives a minimal sense of
depth.

Cons:

•Not very realistic at all.

Quake III ArenaDuke Nukem Forever

Shadows in Practice
Projected Geometry

Most popular technique
today.

Pros:

•Shadow of approximately
correct shape

•Fast

Kingpin

Shadows in Practice
Projected Geometry [BLIN88]

Usually paralell projection
so shadow doesn‘t grow
to minimize ugly effects.

Cons:

•Hard shadow

•Receiver is assumed to
be a single plane

•Usually not clipped at
ledges

•Performance is function
of blocker mesh
complexity - usually low
LOD mesh used.

Quake III Arena

Shadows in Practice
Stencil Buffers

Pros:

•Perfect shape even on
arbitrary geometry.

Cons:

•Hard shadow

•Lacking stencil buffer
support

•Needs second pass ->
Image buffer res.
dependant

Much talk about it, but no
succesful commercial
implementation found.

Shadows in Practice
Lightmap textures

Pros:

•Computed off-line - w.
radiosity (Free!)

•Soft shadow

Cons:

•Storage intensive

•Usu. low resolution

•Only for static geometry

Quake III Arena
(uniform sampling mesh)

Shadows in Practice
PowerPoint

Soft Shadow Textures Using Convolution

Features:

• Compatible with any graphics
pipeline which supports textures.

• Takes volume lights into
account.

• Soft shadows.

• Object based.
• Produces approximately correct

results.

• Based on projected textures
tech.

Simple Paralell Configuration
• Basic problem: How to generate blurry shadow image

which takes shape and distance of light source into
account?

• First, a simple assumption of the configuration of the
scene:

Simple paralell configuration

• Our math. foundation for correct shading is our definition of
Irradiance H(x)- the total radiation arriving at a point y on a
surface.

H(y) = ∫ Li(y, θ,φ) dθdφ
- integral of radiance coming in from all directions.

Math Foundations for Paralell Scheme

For one light source with directionally invariant exitance E this
becomes:

H(y) = (E/π)∫ cos θ cos θ‘ d -2 v(x,y) dx
Approximation / Fudging as usual:

H(y) ≈ E∫ cos θ cos θ‘ π -1 d -2 dx E ∫ v(x,y) dx
F(y) E V(y)

Form factor Visible area of the source

H(y) ≈ F(y) E V(y)
x - point on source, d - distance(x,y) θ θ‘ - ray angles on s&r.

Separating Formula Into Two Pieces

• E*F is unoccluded illumination term, can be computed with
Radiosity, or direct illumination formulas (OpenGL).

• V can be computed as integral of projection of blocker on
source as y moves on the receiver. It can be shown that
this is a convolution operation on the source and blocker
image. (next slide!)

• E can be taken inside the integral. Practically this means
that we may modulate the source image by it‘s exitance
function (textured light!) before doing the convolution.

• The product of F and (EV) can be executed as a (hardware)
texture blending operation.

Computing E, F and V

• Intuitively:

– A spherical light source will act as a regular lowpass filter and
blur the blocker image uniformly - and produce even
penumbras.

– An cylindric flour. light‘s image will blur primarily along its
length‘s direction, which is the type of shadow it produces.

• Math: see paper for derivation. Resulting formula:
– a := d1/d2 ---> scale factor for textures.
– binary f-s (textures): S(x) = 1 if x on source. P(x) = 0 if x on blocker
– V(y) = a-2 (S(-a-1x) * P((1+a)-1 x)) (y)

• Btw: (discrete) 2D convolution * is:

V[u][v] = Σj Σi S [u + i][v + j] P[i][j]

Proof that Convolution is Appropriate

General Configuration

• Before we assumed that all geometry was paralell planar.

• Now we transform the actual arbitrary geometry to such an
ideal configuration:
– choose a projection direction D.
– choose the three planes for source, blocker and receiver

orthogonal to D.

Transforming into Paralell Configuration
• The Projection direction D is chosen to be a good representative

of all rays from the source to the receiver --> come up with an
approximate frustum using the bounding volume of the receiver,
then take the direction of the frustum for D.

• The altitudes of the orthogonal planes on D are effectively the
assumed distances between the ‚objects‘.
– Choose them so the centers of the altitude ranges of the objects.
– Can choose blocker plane altitude so that we end up with in avg.

correctly sized penumbras based on penumbra error metric (later).

Rendering Images

• When two images have been rendered, convolve them either
directly, or better, with FFTs by using the property:
f * g (y) = FT-1(FT(f) FT(g))

• When using FFTs, we have to enlarge the frustra a little to protect from
wrap around which comes from FT assuming that the images are
periodic.

Problems and Sources of Error

Assuming that geometry can easily be separated into
blocker and receiver may be a serious restriction.

• As entire blocker is projected into a single plane, no
chance for gradual loss of shadow focus for long
objects. All penumbra regions of an object will have
same sharpness.

• Texture resolution is a variable.

Measuring the Error

We have math to back up virtual paralell scheme so that is OK.
• What is error of projecting geometry into the planes?
• Paper presents a way to estimate human perceived rather

than actual error (compare lum. functions), looking at only
rendered vs. correct penumbra sizes as this is most obvious
error.

• Computation compares penumbra size computed using
virtual plane altitudes vs. hypothetical vertex altitudes = error
variable.

Soft Shadow Textures Using Convolution

Reducing the error:

• Source Subdivision
• Blocker Subdivision

– combining shadow textures from different blocker clusters is not
trivial.

• Receiver Subdivision
– separate shadow textures computed for each piece.
– boundary artifacts where textures meet.

• Shadow texture resolution
• Hierarchical refinement.

Soft Shadow Textures Using Convolution
My opinion:

• Can be done very well in real time. FFT is surprisingly fast.
• Best for indoor character shadows where object based

system is not a problem, and we expect nice penumbras.
• Small inaccuracies in penumbra size not noticed by casual

observer. Best looking real time shadows yet.

• Good use of HW multitexture capability.
• Readback from rendertarget is not optimized. Rendering the

textures eventually a bottle neck. This may change soon.

• Not too difficult to implement.
Bottom line: Best algo for this purpose at this time!

Soft Shadow Textures Using Convolution

Their implementation:

• Part of off-line Radiosity
Renderer.

Soft Shadow Textures Using Convolution

My implementation:
• Attempt at using variations of this

technique for real time shadows in a
game-like environment.

• Visualization for technique.
• OpenGL vertex lighting on original

geometry (no subdivision for lighting).
• Source images pre-rendered.
• Not done yet. Not at all optimzied.
• Works at interactive framerates on

newer hardware accelerated PCs.

