

	What can w	e do with this stuff?
FUND	DAMETAL CO	NCEPT:
1644 1850 1908	Descartes Dirichlet Voronoi	Astronomy Math Math
 1970	divers	Computational geometry and related areas (first algorithms for computing Voronoi diagrams)
 1999	E. Hoff et al.	Fast Computation of Generalized Voronoi Diagrams Using Graphics Hardware

Motivation

- *Previous Work*: Exact Algorithms no error but ...
 - Boundaries composed of high-degree curves and surfaces and their intersections
 - Complex and difficult to implement
 - Robustness and accuracy problems
- *Previous Work*: Approximate Algorithms provide a practical solution but...
 - Difficult to error-bound
 - Restricted to static geometry
 - Relativly slow

Formal Definition

Set of input sites (primitives) $A_1, A_2, ..., A_k$ dist(p, Ai): distance from the point p to the site Ai

The dominance region of A_i over Aj is defined by

$$Dom(A_i, A_j) = \{ p \mid dist(p, A_i) \le dist(p, A_j) \}$$

For a site A_i, the Voronoi region for A_i is defined by

$$V(A_i) = \bigcap_{i \neq j} Dom(A_i, A_j)$$

Partition of space into $V(A_1)$, $V(A_2)$,..., $V(A_k)$:

Generalized Voronoi Diagrams

	Error Bounds
Assume:	no Z-Buffer precision error we can bound the maximum distance error by ϵ
for a pixel F computed d	colored with ID of site (primitive) A and with epth buffer of value D, we know:
	$D - \varepsilon \le dist(P, A) \le D + \varepsilon$
further we k	now, for any other site B
	$D - \mathcal{E} \leq dist(P, B)$
With this in	formation we easily determine that

Implementation complete interactive system in 2D written in C++ using OpenGL and GLUT a standard Z-buffered interpolation-based raster graphics system some first prototypes in 3D runs (without source modification) on: MS-Windows-based PC high-end SGI Onxy2 several problem-based modifications to increase performace...

~	
G	eneral:
_	Idea is originally not from E. Hoff or one of the other writters => Open GL Programming Guide, 2nd Edition M. Woo et al.
_	Concept very easy to understand but the main idea is not immediatly obvious!
_	, , , , , , , , , , , , , , , , , , ,

