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Overview

1. The problem with thin-shell finite-element
analysis

2. Physics of thin-shells

3. Finite element discretization
4. Subdivision surfaces
5. Examples, convergence of method

6. Conclusions
7. My evaluation
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1. Thin Shell Deformations
The Problem

• Undeformed shell, deformed shell,
finite element analysis
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Thin-Shell Surface Problem

• Difficult to create C1 continuity between
Elements of the limit surface of a shell

• Shell must have a finite Kirchhoff-Love
energy

• Usual methods include derivatives, lead to
high order polynomials, difficult to calculate
and physical limitations

• Purpose of paper: present a method that
leads to the desired C1 continuity.
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2. Physics of deformation in Thin-Shell
• Energies involved in a deformation:

- Strain of the shell (elasticity)

- Variation of the bending of the shell
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Physics of deformation in Thin-Shell
The physical formulas used to express this:
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… the two deformation tensors can be
expressed as a function of the not deformed
coordinates and the displacement functions,
which will be ideal for the finite-element
analysis.

Physics of deformation in Thin-Shell

Since the deformed shell is the undeformed shell
plus a deformation function (linearization), i.e.
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Equilibrium in the Deformation

• The energy density of the shell is a function of
the previously defined α and β;

• The potential energy of the shell thus is

• The potential energy of the applied load is

where q are applied loads, N axial forces on
boundary
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• In a stable configuration the sum of the potential
energies must be minimal (physics)

• Potential energy:
We minimize it according to Euler-Lagrange
equations

• “Statement of the principle of virtual work”:
Actio=Reactio principle, force caused by shell
deformation must be compensated by the force
caused by the loads.

Equilibrium in the Deformation
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• Build a mesh on the shell, choose base function
• The discretization leads to the expression:

• Done as sum over the elements
• K and f involve the evaluation of an integral
• Integrals can be computed with a quadrature rule
• Authors use a one-point quadrature rule, which is

said to achive a sufficient precision for this
analysis.

3. Finite-Element Discretization

hhh fuK =⋅

K is the energy of the shell

u is displacement field (array)

f is external force applied to the
shell
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4. Subdivision Surfaces

• Construction of a smooth surface
• Done by repeated subdivision of a given

mesh
• New nodes created at every subdivision
• Coordinates of nodes at step k+1 are

computed as linear combination of nodes at
step k

• Good choice of weights produce a smooth
limit surface
(H2 integrability, C1 continuity)
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Subdivision Schemes: Why?

• 1D case easy to build Cn continuity through
polynomial interpolation

• 2D surfaces: C2 smoothness requires up to
6th order polynomials

• Difficulties arise when handling cross-patch
smoothness

• Approximation scheme: C2 continuity
=> subdivision surfaces are advantageous!
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Subdivision Scheme: Loop

• Subdivision for triangulated meshes done
with Loop’s scheme, although every strategy
could be used

• Leads to quadrisection of every triangle
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Loop’s Scheme
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Loop’s Scheme: Examples

Loop on a Distributor Cap mesh
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Loop’s Scheme: Examples
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• The convergence of this method can be
proven using a two vertex neighbourhood.

• Calculation of limit position of vertices using a
one vertex neighbourhood:

Convergence of limit surface

vertex.ofvalenceisNwhereLet ),,...,,( 10
k
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S is a matrix expressing the Loop relationship.
Computation of limit configuration of vertices (k→∞)
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Convergence of limit surface
0)( xSx ⋅= ∞∞ Since λ0=1, λ i≤1 for all i≠0,

S∞ converges to a limit.

Using eigenvalue/eigenvector decomposition, it can be
shown that :
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• Similar consideration for all the limit values
needed in the FE computation
(tangents on shell, surface normal)

• Advantage: computation of limit configuration of
vertices and other primitives is possible at every
step k of the refinement, i.e. when one has
achieved the desired mesh subdivision.

• Convergence (regular patches, i.e. valence 6 at
each vertex) to a quartic box Spline on every
patch.

Convergence of limit surface
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Evaluations in an Element

• We need to compute values of points and
derivates inside an element (FE Analysis).

• For regular patches (vertices with valence 6):
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x,u vertex coordinates and displacements of neighbourhood

x(θ1,θ2).
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• Irregular patches: subdivide the element with
Loop’s scheme until the searched point is
known to be in a regular sub-patch, then
compute as before (with adapted parameters)

Evaluations in an Element

x(θ1,θ2)
.
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Implementation and computation

1. One subdivision step (Max one irregular vertex per patch)

2. Introduction of artificial nodes at boundary
3. Find 1-neighbourhood of vertices

4. Create local coordinates on irregular patches
5. Create stiffness matrix and force array

6. Introduce displacement boundaries
7. Solve system of equations (finite elements)

8. Compute limit position of nodes (sub. surfaces)
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5. Examples and convergence

• The method is compared with two other
approaches.

• A bound for a finite-element solution is
known to exist.

• For the examples shown in the following, an
analytical solution is known, thus we can
analyse the “goodness” of this approach
with the exact solution as well.
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Rectangular Plate

A typical mesh on such a plate

Irregular vertices are present

Uniform load on the shell

Clamped
Boundary

Simply
Supported
Boundary
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Pinched Cylinder

• Cylinder with unit loads
applied on a mash point

• Loads diametrically
opposed

• Due to subdivision scheme
the loads spread over
several points.

• The total weight is
maintained
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• Method converges to the optimal solution

• Convergence is faster than two other methods

Pinched Cylinder
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• Surface cannot be
triangulated without
irregular nodes

• Generalizations
needed

• Hard Test :
Generic Box-Spline
Approach not possible

Hemispherical Shell
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Hemispherical Shell

• Surface converges optimally for this irregular mesh
as well, even if standard approach is not possible

• Important that no parasitic strains appear.
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• Use of subdivision surfaces for description of
undeformed and deformed shell

• Method takes care of physical considerations
(finite Kirchhoff-Love energy)

• Loop scheme: provable local convergence
• Smoothness between elements without using

derivatives

• Finite element analysis on same mesh as
subdivision (no additional triangulation error)

6. Conclusions
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• Displacement field depends not only from
element vertices, but from the
1-Neighbourhood as well

• Simple quadrature for finite-elements is
sufficient

• Convergence is optimal in the finite element
sense

• Method is applicable as well for other
subdivision rules, not only for Loop scheme

Conclusions
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7. My Opinion

• Easy to implement (easier than considering
derivatives, mask existence, no particular
data structures)

• No double meshes needed

• Respects physical laws

• How other schemes really behave

• Behaviour with not linearized Kinematics

It would be interesting to see…
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Kirchhoff-Love Energy
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