
Virtual 16Bit PreciseOperationson RGBA8 Textures

R. Strzodka

NumericalAnalysisandScientificComputing

Universityof Duisburg, Germany

Email: strzodka@math.uni-duisburg.de

Abstract

Thereis a growing demandfor high precisiontex-
ture formatsfed by the increasingnumber of tex-
tures per pixel and multi-passalgorithms in dy-
namic texturing andvisualization. Thereforesup-
port for wider data formats in graphicshardware
is evolving. The existing functionality of current
graphicscards,however, canalreadybeusedto pro-
vide higher precisiontextures. This papershows
how to emulatea16bit precisesignedformatby use
of RGBA8 texturesandexistingshaderandregister
operations.Therebya16bit numberis storedin two
unsigned8 bit color channels. The focuslies on a
16 bit signednumberformatwhich generalizesex-
isting 8 bit formatsallowing losslessformatexpan-
sions,andwhich hasan exact representationof 1,
0 and � �

allowing stablelong-lastingdynamic tex-
ture updates.Implementationsof basicarithmetic
operationsand dependent texture loop-ups in this
formatarepresentedandexamplealgorithmsdeal-
ing with 16bit precisedynamicupdatesof displace-
mentmaps,normaltexturesandfilters demonstrate
someof theresultingapplicationareas.

1 Intr oduction

Theprogrammability of graphicshardwareandthe
setof availableoperationshasbeengrowing rapidly
in recentyears.Researchesmake useof this situa-
tion either by extendinghardware algorithmsand
designing new applicationswhich still are sup-
ported by new graphicsfeaturesor by analysing
softwarebasedgraphicspackagesandextractingor
simplifying parts, such that thesecan be mapped
on the new graphics hardware functionality. Both
caseshave in commonthat a growing numberof

complex multi-passalgorithmstry to make thebest
possibleuseof the availableresourcesandthe ap-
plicationsarebecomingcomputationally moreand
moredemanding.

Even when the set of available operationswas
morerestrictedvariousalgorithmsweredesignedto
exploit graphics featuresfor computations[1, 4, 6].
With thewideravailability of extensionslikemulti-
texturing and pixel textures the area of applica-
tions widenedstrongly reachingfrom lighting and
shadingcomputations[7, 8, 12, 13] to variousim-
ageprocessing applications[5, 9, 10, 11, 20] and
advanced hardware acceleratedshadinglanguages
[14, 15]. The author himself has implemented
complicatednumericalschemessolving parabolic
differential equationsfully in graphics hardware
[16, 17].

In all these applications dealing with multi-
passesandmultipletexturesthereis aconcernabout
the inevitably occurringerror due to the low reso-
lution of the color channels which usually consist
of only 8 bits. Especiallywhendealingwith high
dynamic rangeimages[2, 18] several color chan-
nelsareusedtogetherto handlethis problem.New
HILO texture formats introducedby NVIDIA [3]
alsomeanto provide higherprecisiontexturing in
particular for lighting computations. Thesesolu-
tions,however, arerestrictedto certainapplications,
sothatthey cannot beusedfor arbitraryhigh preci-
sion computationsor visualizations.We intend to
overcomethis difficulty by demonstratingthat the
existing extensionsalreadyallow the introduction
of a composite16 bit format on RGBA8 textures,
on which the sameoperations ason the low preci-
sion formatscanbe applied. The ideabehindthis
emulation,however, is not as much to provide a
completesupportfor 64 bit rendering,as this will

VMV 2002 Erlangen,Germany, November20–22, 2002

be coveredby future graphicshardwaremoreeffi-
ciently, but ratherto allow an easyandbandwidth
efficient concurrent usageof 8 and16 bit rendering
suchthat the higher precisionformat can be used
to quickly resolve partialaccuracy problemson to-
days8 bit architectures.Similarly, in the presence
of a native 16 bit formatthis approachwould allow
to emulatea32 bit format.

The techniquesof implementinghigh-precision
arithmetic from low-precision building-blocks as
suchareelaborateandhave beenusedin countless
architectures.Theproblemof doingthis in graphics
hardware,however, lies in thevery restrictedavail-
ability of conditionalstatementson a per fragment
basis.The extensionsof pixel shadersandregister
combinersavailableon a GeForce3seemedto of-
fer thehighestflexibility for this purposeandhave
beenusedfor the implementations.Theoretically
the alpha-testandsomekind of dependent texture
access,would alsosuffice to obtainthesamefunc-
tionality, however, the performance would suffer
heavily dueto numerous passes.But asthe imple-
mentationsof theemulatedoperations areindepen-
dentanddo not all rely on the samegraphicsfea-
tures,someof themmayalsobeefficiently realized
in a morerestrictedsetting.

Wewill first review thedifferentnumber formats
underOpenGLandexplain thechoiceof acompos-
ite 16 bit format. The following main sectionwill
then presentthe implementationof the arithmetic
anddependent texture operationsanddescribeex-
ampleusage.

2 Number Formats

In this sectionwe discussthe differentfixed-point
numberrepresentationsin OpenGLandwhich con-
ditions would be desirablefor a new signed16 bit
numberformat.

Currently standardOpenGLknows only an un-
signed8 bit fixed-point format, but the growing
arithmeticwithin thetextureenvironmentstendsto-
wardsa signed9 bit formatasusedby the register
combiners.RecentlyNVIDIA introduceda signed
8 bit format anda signedandunsigned 16 bit for-
mat. Unfortunatelyswitching from a lower to a
higherprecisionformatdoesnot alwaysimply that
all numbersin the lower precisionformat can be
exactly representedin the higher one. This prob-
lem is not specific to the OpenGL setting, but a

generaldifficulty in defining fixed-pointrepresen-
tations.Thesituationis evenmoreconfusingasthe
unsigned formatsmay be re-interpretedas signed
numbersby the mapping �������� � �

, which is
available at somestagesin the graphicspipeline.
Table1 givesanoverview of thedifferentformats.

We seethat theunsigned8 bit format represents
a subsetof the unsigned16 bit format andthat the
signed8 bit representsa subsetof thesigned16 bit
format, so that thesepairsof formatscanbe used
togethereffectively. But the representednumbers
from the signedandunsigned formatshave almost
nothing in common, so that conversions between
thesewould inevitably lead to loss of precision,
which would prohibit suchconversionsin accumu-
latingtextureupdates.Thereforewewill requirethe
new compositeformat to bea superset of all of the
lower precisionformats. Naturally theother16 bit
formatscannotbegeneralizedby a formatwith the
sameresolution.

The bestgeneralizationso far of signedandun-
signedformatsis given by the signed9 bit format
which is a supersetof both the unsigned 8 bit and
thenormalexpansionof theunsigned8 bit format.
Moreover, the signed9 bit format has the advan-
tagethe it exactly representsthe neutralelements
of addition 	 andmultiplication

�
and its divisors� �

, which is very important for long-lastingdy-
namictextureupdates.If, for example,we dynam-
ically change a textureevery otherframeusingad-
ditionsandmultiplications,but wantsomeareasof
the texture to remainunchanged for sometime or
even throughout the process,we must rely on the
exact representationof 0 and 1 or elsewe would
have to storethe informationaboutevery region to
beprotectedsomewhereandusesomesortof frag-
menttestto leavethemunchanged.By generalizing
the singed9 bit format asrequiredabove, we will
automaticallytransferthis propertyof exact repre-
sentationof
�	�� � � � ��

to thecompositeformat.

Additionally we would want the first 8 bit color
channel of thecomposite 16 bit numberrepresenta-
tion to be - on its own - the bestpossibleapprox-
imation of the signed16 bit number. This would
allow us to useonly the first part in caseswhere
the full precisionis not requiredor difficult to use.
Finally we shouldchoosea format which requires
only few operations to performthecarry-overarith-
meticnecessaryfor 16 bit operationsperformedon
signed8 bit multipliers andadders. Thus,we may

666

Table1: Comparisonof number formatsin OpenGL.

unsigned
8 bit

unsigned
16 bit

unsigned 8bit������������ signed
9 bit

signed
8 bit

signed
16 bit

formula ��� ����� ����� ����� � ����!�" � � � ���#" � ����� ��� ����� ��� �#��$ ���%� �#��$&� ����'("
rangeof) * +&, �����.- * +&, '(����/(�.- * +&, �����.- * �0����' , �����.- * ���#��$, �#��!.- * �1/(��!�'�$, /(��!�'(!.-

summarizetheconditionsfor thedesiredsigned16
bit formatasfollows:2 Thecompositenumberformatshouldbea su-

persetof all lower precisionformatsfrom Ta-
ble 1.2 Its first 8 bit channel shouldbethebestpossi-
ble approximation to the whole signed16 bit
number.2 The format should allow an efficient imple-
mentationof thecarry-over arithmetic.

A format which fulfills theseconditions can be
definedon a RGBA8 texture in the following way.
We let 3546��798 representthe first signed 16 bit
numberand 3;:6�(<68 thesecond.Therepresentation
of afixed-pointnumberis givenby:= 3?>@��)A8CB D ������FE 3;��> � ��G�G@8�H ��#��$ 3?) � � �@I�8�J

D ������ � �#��$ 3;�@G@K�3?> � � �@IL8MHN)A8O 3546��7P8QB D E ��4 � � J H ��#��$RE 7 � �� J
D E ��4 � ����'����� JSHUT�#��$WV

Thefirst rowsdefinethecorrespondencefor integer> and) , andthesecondfor fixedpoint 4XDY>�Z��@G�G
and 7[D\)]Z@��G@G (1 corresponds to 255 and

��
to 128). From the first formula we seethat our
compositeformat generalizesthe lower precision
formatsfrom Table1, asit producesall numerators
from � ��G@G_^ � �@I to HM��G�GQ^ � �@I for the common
denominator��G�G`^ � �@I . Moreover, by definitionthe
mappingof thefirst color channelR correspondsto
the normalexpansionof an unsigned 8 bit format
giving thebestpossibleapproximation to thewhole
16 bit number. Thus the format fulfills the first
two conditionsgiven above. The satisfaction of
the third conditionwill becomeclear in Section3
wherewewill presenttheexactimplementationsof
arithmeticoperations.

At theendof this sectionwe shouldlook at pos-
sible drawbacksof this format. The problemwith
fixed-pointnumbers having anexact representation
of
�	a� � � � ��

is an unavoidable representationof

numbers outsideof the range b � � � � c . In caseof
the signed9 bit format this is � ����'����� and in our
caseall numberswith >NDd��G@Ga�()fe � ��I and>QDg	a�()ih � ��I . It would bevery unpleasant hav-
ing to definean external format with a resolution
depend numberrange.This problemis well known
andhasinfluencedthe decisionagainstsuchexter-
nalformatsasdiscussedin NVIDIA’stextureshader
specification[3]. But as in the caseof the signed
9 bit format additional clampingoperationswould
solve themain disadvantageof over-representation
and would gain smoothertransitionsbetweenthe
existing formats.

3 Operations

In this sectionwe will presenthow the basicarith-
metic operationsaddition, subtraction,multiplica-
tion, division and dependent texture look-upscan
be realizedat 16 bit precisionwith our composite
number formatin RGBA8 textures.Shortexamples
will demonstratepossibleusesof theoperations.

While the predefined16 bit formats can only
be usedin few specialoperationsand their values
must be uploaded from main memory, the opera-
tionsfrom this sectionwill exhibit themainadvan-
tageof the new composite format by allowing dy-
namicchangesto thetheoperands.

All occurringtextureswill be two dimensional.
They will usually contain the first 16 bit channel
in the colors 3546�(7P8 and the secondin 3;:6��<j8 ,
where 46�(:6�(<Q��7[klb 	�� � c representfixed-point
values in 8 bit. This choice will becomeclear
in Section 3.3. Textures will be seen as two-
dimensional four-valuedmappings: mnB]3?����oA8p� � �mqb 4M:P<F7 c 3?����oA8 . The necessaryoperationsin the
pixel shadersandregistercombiners will be given
in pseudo-code notation, where ’ � � � ’ means is
mapped to , ’ � ’ meansis stored in , ’ 2 ’ denotes
the dot-product and’ ^ ’ the component-wisemulti-
plication.

666

3.1 DependentTextureLook-Ups

Let r be any texture which should be accessed
via a dynamically generateddisplacement map m
with the16bit x-displacement in 354F�(7P8 andthe16
bit y-displacementin 3;:6�s<68 . Then a quick 8 bit
precisetextureoffset rF3?�tHiuv^�mqb 4 c ��oSHiuv^�mqb : c 8
canberealizedin pixel shadersthrough:

w 3?xyH{z`^�|ib } c ��~_H�z�^�|�b � c 8
0: tex2d 3?����o1�(��8p� � ��mq3?����oA8
1: dot2d
blueto

��� � D�3;��u��(a�(� � u�8 2 35mqb 4 c ��mqb : c � � 8D��FH�u�^L3;��mqb 4 c � � 8
2: lut2d
blueto

���1� D�35	��(��u��(o � u�8 2 35mqb 4 c �smqb : c � � 8D�oPH�u`^�3;�@mqb : c � � 8
� � �frF3 � � � � � 8

where u is a userset scaling factor, which deter-
minesthemaximalpossibleoffset.

Example: Brownian motion. Let � be a vector
field with random x-componentsin 3546��798 , random
y-componentsin 3;:6�(<j8 andthe wrap modesetto
repeat,and m adisplacement mapasabove initially
setto zero.Thenthefollowing shortalgorithmwill
producea randomlocal motionin thetexture r :

> � D random3;� �;' 8 �> � D random3;� �;' 8 ��XD��Q3?�FH�> � ^��yb 4 c ��oMH�> � ^��yb : c 8 �mXH`D��j^��j�4�D�rF3?�FH{mqb 4 c ��oMH{mqb : c 8 �
where� steersthespeedof themotionand 4 holds
the resulting texture in eachstep. Although the
look-up itself takesplacein only 8 bit, the motion
canvaryacrossthetexturewith 16bit sincethedis-
placementm is storedandcalculatedin 16 bit. The
implementationof 16 bit preciseadditionandmul-
tiplication is shown in the following subsections.
In particular, the usermay vary � within a bigger
range,without having to fear that themotion stops
altogether, becausethemultiplicationwith � evalu-
atesto zero.

As the predefined texture offset operations
require a DSDT or HILO input format we
would currently need two separatetextures for
x-displacement m � b :P< c

and y-displacementm � b :P< c
with m � b 4 c

and m � b 4 c
set to one for a

dynamic16 bit preciselook-upin pixel shaders:

w 3?xyH{z�^�|_�0b ��� c � ~yH�z�^�|_��b ��� c 8
0: tex2d 3?����o1���L8�� � ��m � 3?���.oA8
1: tex2d 3?����o1���L8�� � ��m � 3?����oA8
2: dot2d � � D�3?�FH�u ����'����� �s�@u�� u�Z � ��IL82 3 � �sm � b : c �sm � b < c 8D��6H�u`^ O 35m � b : c �sm � b < c 8
3: lut2d �W� Dg3?oPH�u ����'����� �s�@uL�(u�Z � ��IL82 3 � �sm � b : c �sm � b < c 8D�oPH�u�^ O 35m � b : c �sm � b < c 8

� � ��rF3 � � � � � 8
where u again scalesthe offset. Here we could
also obtain an absoluteand not an offset-texture
look-up by eliminatingthe coordinates� and o in
the pixel shaders2 and 3. Then m � �(m � would
address r absolutely, i.e. the result would berF35m � b :P< c �(m � b :P< c 8 . Sucha constructioncanbe
usedto evaluatean arbitrary function � of two 16
bit variables��3?�q���j8�DYrF3?��b :P< c ���_b :P< c 8 . The
precisionof this evaluation corresponds directly to
the sizeof the texture r which holdsthe resulting
values.In particularwe couldimplementa division
between two 16 bit numbers in this way, but
naturallytheresultingrangewould still beconfined
to thesameinterval for all pixel valuesin animage,
i.e. division by small numbers really requires
floating-pointformats.

We shouldalsoemphasizethat the above useof
the dot-product 2d operation,where the first part
(shader2) accessesa different previous texture,
namely m � , thanthesecondm � , is uncommonbut
legitimate.

Example: Advection. Let � � b :P< c
be the x-

component and � � b :P< c
the y-component of a

continuous vectorfield � . Alik e let m � b :P< c
andm � b :P< c

be thex andy-componentsof a displace-
mentmapinitially setto zero. Thenthe following
short algorithm will producean advection of the
texture r alongthevectorfield � :

m � H`D���^�� � 3?� � �Wm � b :P< c ��o � �]m � b :P< c 8 �m � H`D��j^�� � 3?� � �Wm � b :P< c ��o � �Wm � b :P< c 8 �4�D�rF3?� � m � b :P< c �(o � m � b :P< c 8 �
where � againsteersthe speedof the motion and4 holdstheresultingadvectedtexturein eachstep.
If we replaced� � by m � and � � by m � we would
obtaina self-advectionof m � �(m � , which is a step
towardsfluid dynamics. In this mannerwe could
simulate the motion of gas or water if we also

666

forced 35m � ��m � 8 to be divergencefree asrequired
by the incompressible Navier-Stokes-Equations,
for moredetailswe referto [19].

3.2 Addition and Subtraction

Let the texture �����1	 hold a pair of 16 bit pre-
cise x and y coordinatesin 3 �����1	�b 4 c �������1	�b 7 c 8
and 3 �����1	Ab : c �������W	Ab < c 8 respectively, and the
texture ����� � anotherpair in 3 ����� � b 4 c ������� � b 7 c 8 ,3 ����� � b : c ������� � b < c 8 . For thex andy coordinatelet3;u � �su � 8�k�
 � � � ���¡
 � � � �� encodeindepen-
dently whetheran addition (

�
set)or a subtraction

(� �
set)shouldbeperformed.Thenthetwo simul-

taneous16 bit preciseadditionsor subtractionsof
the x and y coordinatescan be mappedonto the
registercombiner functionality:
¢%£ x�¤�b }_¥¦�&��� c H§35z � ��z � 8R^ ¢&£ xp¨1b }Q¥©�&�_� c
0: RGB 3 �����1	�b 4P:P< c � �� 8ªH«3;u � �su � �(u � 8�^^t3 ����� � b 4M:P< c � �� 8��¬�����1	�b 4M:P< c
0: A �����1	Ab < c Hu � 3 ����� � b < c � �� 8�®u�¯1	Ab 7 c
1: RGB 3;u�¯1	Ab 7 c h �� 8�° � 35	��%3;u � � � 8�Z��@±L� �� 8B � 35	���3;u � H � 8�Z@�@±�� � �� 8�`²³��� u�¯1	Ab 4M:P< c
1: A �����1	Ab 7 c Hu � 3 ����� � b 7 c � �� 8�®u�¯1	Ab 7 c
2: RGB �����1	�b 4P:P< c H«35	�� � � � � � 8¦^^tu�¯W	Ab 4M:P< c �¬�����1	�b 4M:P< c
2: A 3 �����1	Ab 7 c � �� 8ªHu � 3 ����� � b 7 c � �� 8�������1	�b 7 c
3: RGB 3;u�¯1	Ab 7 c h �� 8�° � 3�3;u � � � 8�Z�� ± �(�� �� 8B � 3�3;u � H � 8�Z���±L�(�� � �� 8� ²³��� u�¯1	Ab 4M:P< c
4: RGB �����1	�b 4P:P< c H«3 � � �(a�s	L8¦^^tu�¯W	Ab 4M:P< c �¬�����1	�b 4M:P< c
4: A �����1	Ab 7 c H´3 � � 8v^�u�¯W	Ab < c

�������1	�b 7 c
The result of the two parallel 16 bit precisead-
ditions or subtractionslies in �����W	 and can be
further processed by more register combinersor
lighting operationsin the final combiner. For
clarity of presentationinputmappingsfor constants
are not explicitly given, but the ranges of the

color channels have beenchosensuch that there
always exists an appropriate mapping. Moreover,
due to the number of occurringconstantswe use
the NV register combiners2extension providing
combiner dependentconstants.

Each16 bit addition above is emulatedby per-
forming a componentwiseaddition on the color
channels,thencheckingthesumof the lower com-
ponent for an overflow andfinally correctingboth
components appropriately. The great advantage
of the introducedcomposite number format is that
only one such check is necessaryto handleboth
positiveandnegativeoverflow for bothadditionand
subtraction.In this way our formatfulfills thethird
conditionrequiredin Section2. Thisefficientcarry-
over arithmeticis dueto the fact that the initial in-
put mapping �µ���� � �� for the addends is not
the correctmapping(�¶��·��� � �

) for the first
color channel in our representation. The resulting
differenceintroducesa ¸����� error, which cannot be
representedin the first color channel. But the ap-
propriate

������ correctionappliedto thesecondcolor
channel correctsapossibleoverflow thereinandthe
sumof thesecorrectionscanbe representedin the
first channel. Thereforeonly onecondition hasto
be checked to decidein which direction a correc-
tion on thesecondchannelshouldtake place.

Thereasonfor theawkwardrepeatednegationin
combiners1[RGB],2[RGB] andsimilarin 3[RGB],
4[RGB] and 4[A] with intermediate3 � �� 8 -output
mappingis an effort to implicitly realizean addi-
tion of

�� althoughthereis no suchinput or output
mapping. It is necessaryfor the re-encodingof the
resultsfrom thesignedrangeb � �� � �� 8 backto b 	�� � c .
Example: Rotation of normals. Let the texture¹ � define the x-component and the texture

¹ �
the y-componentof a normalmap,whereasthe z-
component is implicitly definedif we think of the
normalsto be of unit length. Thenwe canusethe
following algorithm to rotate the normalsaround
thez-axis.¹ � D�3 � �iº 8 ¹ � H º ¹ � �¹ � Dg3 � �iº 8 ¹ � �iº ¹ � �4�D§»�3 ¹ � b : c � ¹ � b : c 8
where º is a constant steering the speedof the
rotation and » is a texture which, addressed
by the main components of

¹ � and
¹ � , deliv-

ers the normal with the computed z-component¼ � � ¹ � b : c � � ¹ � b : c �
.

666

3.3 Functions and Multiplication

We have suggested½ to arrangethe two 16 bit num-
bersinto thecolorchannel pairs 3546��798 and 3;:6�(<68
becausethesepairs can be usedfor a dependent
texture look-up. Such look-ups implement the
applicationof arbitraryfunctionson our composite
16bit formatandwithin the4 pixel shadersboth16
bit channelscanbemappedby a differentfunction.
Let m be again a displacement map with an x
andy component asbefore,and let » � and » � be��G�K ¡ ��G@K texturesencoding nonlinearfunctionson
thecomposite16 bit format.Thenwecanapply » �
and » � simultaneously to m usingpixel shaders:¾ � 35|ib }Q¥ c 8 � ¾ � 35|ib ��� c 8
0: tex2d 3?����o1�(��8p� � ��mq3?����oA8
1: ar2d 35mqb 7 c �(mqb 4 c 8�� � ��» � 35mqb 4P7 c 8
2: gb2d 35mqb : c �smqb < c 8�� � ��» � 35mqb :P< c 8

The textures » � and » � shouldcontainthe values
such that addressed by AR, where R is the first
color channel in the number representation,they
deliver the function value in AR and addressed
by GB they deliver it in GB. If it is clear that a
function need not to be used in both dependent
modi, thena singletexture » storingthe valuesof
both » � and » � wouldsuffice. Onecouldevadethis
difficulty by storingthefirst channel of thenumber
representationin A insteadof R, but this would
imply many moredifficultiesin otheroperations.

Example: Linear filters. In the former examples
we have used multiplications of the form ��^��
where � is a userdefinedconstant and � an in-
termediatetexture result. To implementsuch an
multiplicationin 16 bit precisiononedefinesa tex-
ture r�¿ containingthe productvaluesof arbitrary
16 bit valueswith � and applies it to � obtain-
ing 3 r0¿Ab 4P7 c 35mqb 497 c 8 ��r�¿]b :P< c 35mqb :P< c 8 . Since
the applicationof the function usesonly the pixel
shadersandthe additiononly the registercombin-
ers,onecanperformanoperationlike m�Hi�6^&� in
onepass.In particularonecanquickly implementa
16 bit precisefilter usinga 3 by 3 stencil:

4�D
�À

Á&Â , Á&Ã�Ä ��� º Á%Â , Á Ã ^ r63?�FH�Å � ��oPH�Å � 8 �
where º Á Â , Á Ã arethe filter coefficientsand 4 con-
tains the filtered texture r . If eachof the coeffi-
cients is different, which is seldomthe case,one

would need9 textures r Á Â , Á Ã encodingthe values
of a multiplicationwith º Á Â , Á Ã andalso9 passesto
computethe result 4 . But asall computationsare
performedin 16 bit, theresultis significantlybetter
thanin 8 bit, especiallyfor smallcoefficients.

In termsof hardware resources,the multiplica-
tion is a muchmorecomplex operationthanthead-
dition and thereforemore difficult to emulateus-
ing lower precisioncomputingblocks.Thestarting
point is thedecompositionof the16bit product into
a sumof 8 bit products.Let Æ and m be two tex-
turesencodingthe16 bit numbersto be multiplied
in thecolors 3;:6�(<j8 . Firstmultiplying therepresen-
tationsof Æjb :P< c

and mqb :P< c
we obtain:

O 3;Æjb : c � Æjb < c 8�^ O 35mqb : c �smqb < c 8ÇD
E ��Æjb : c � � J ^ E ��mqb : c � � J
H ��#��$6EÈE ��Æjb : c � � J ^ E mqb < c � �� J

H E �@mqb : c � � J ^ E Æjb < c � �� J`J
H ��#��$ ³ E`E Æjb < c � �� J ^ E mqb < c � �� JtJ

Thefirst addendof theresultcanbeevaluatedat16
bit to ÉÊ3;Æjb : c �smqb : c 8 by a texture look-up with
the first components Æjb : c

and mqb : c
addressinga

multiplicationtable É . Thesecondaddend maybe
computedand roundedby the register combiners,
while the third gives at most

�����' ³ , which is less
thanonehalf of the smallestrepresentable number������ � �#��$, and thus will be ignored. In this way
we can implement a one-pass texture-texture
multiplication in 16 bit precision, but unlike the
addition only one of the 16 bit channelscan be
multiplied at once.
Ë b � c ^�|�b � c
0: tex2d 3?����o1���L8�� � �Æj3?���.oA8
1: tex2d 3?����o1���L8�� � ��mq3?����o]8
2: dot2d � � D�35	�� � �s	L8 2 35	��sÆjb : c � Æjb < c 8DÌÆjb : c
3: lut2d � � Dg35	a� � �(�8 2 35	a�(mqb : c � mqb < c 8D�mqb : c

� � �Ég3 � � � � � 8
The resulting textures �����1	a�.����� � and �����1Í are
now further processedin the register combiners
to computethe mixed products and sum up the
addends of themultiplicationformula.

666

¢%£ x�Î�b ��� c H¢%£ x�¤�b � c ^ ¢%£ xp¨1b � c H ¢%£ xp¨1b � c ^ ¢&£ x�¤�b � c
0: RGB 3;�t^%�����1	�b 4M:P< c � � 8 2 35	a� � �s	�8�®u�¯1	Ab 4M:P< c �3;�t^%����� � b 4P:P< c � � 8 2 35	a� � �s	�8�®u�¯ � b 4M:P< c
1: A u�¯W	Ab < c ^ 3 ����� � b 4M:P< c � �� 8SHYu�¯ � b < c ^^�3 �����1	Ab 4M:P< c � �� 8i�®u�¯1	Ab 7 c
2: RGB 35	��(a� � 8R^�u�¯1	Ab 7 c �¬�����1	�b 4M:P< c
2: A u�¯W	Ab 7 c H �� �Ïu�¯1	�b 7 c
3: RGB 3;u�¯1	Ab 7 c h �� 8�° � 35	�� � � Z�� $ � �� 8B � 35	��(a� � �� 8� ²³��� u�¯1	Ab 4M:P< c
4: RGB �����1	�b 4P:P< c H«35	�� � � � � � 8¦^^tu�¯W	Ab 4M:P< c �¬�����1	�b 4M:P< c
5: RGB 3 �����1	�b 4P:P< c � �� 8ªH3 �����1ÍAb 4M:P< c � �� 8��¬�����1	Ab 4M:P< c
5: A �����1	Ab < c Hg3 �����1Í�b < c � �� 8��®u�¯1	Ab 7 c
6: RGB 3;u�¯1	Ab 7 c h �� 8�° � 35	���	�� �� 8B � 35	�� � Z�� $ � � �� 8� ²³��� u�¯1	Ab 4M:P< c
7: RGB �����1	�b 4P:P< c H«35	�� � � � � � 8¦^^tu�¯W	Ab 4M:P< c �¬�����1	�b 4M:P< c

Themaincalculationstake placein combiner 1[A]
wherethe sumof themixed products is computed,
and in combiner 5[RGB] where the former sum
is addedto the result of the multiplication table.
Combiners3[RGB], 4[RGB] and6[RGB], 7[RGB]
perform again the carry-over arithmeticas in the
caseof additionandsubtraction.They have differ-
ent correctiondirections,becauseof the implicit 0
in tex0[G] dueto combiner2[RGB].

Example: Nonlinear filters. In the last example
we have seenhow a texture canbe filtered with a
stencil of constantcoefficients. If we useseveral
textures insteadof the constants,the coefficients
may vary depending on the coordinatesand we
obtaina nonlinearfilter:

4�D
�À

Á&Â , Á&Ã�Ä ���#Ð
Á&Â , Á&Ã 3?����oA8v^ rF3?�FH{Å � �(oPH�Å � 8 �

where Ð
Á Â , Á Ã are now textures containing the

varying weights of the filter for each direction3?Å � ��Å � 8 . Nonlinearfilters canbeeffectively used

for edgesensitive denoisingof images. Figure 1
shows the advantages of the increasedprecisionin
this application.

3.4 Performance

Apart from themultiplicationthenew operationson
thecomposite16 bit formatwill performat almost
50% of the normal speed. Using the dot-product
operationinsteadof theoffset-texturefor dependent
texture look-upscostsa factorof 2. The5 combin-
ersof the additionwould normalycosta factorof
3, but sincesomesort of the muchslower depen-
dent texture accesswill usually preceedthe addi-
tion (a multiplication with a constantfor example)
multiple registercombinersseldomreduceoverall
performance. Finally, the multiplication is compa-
rably slow becausethedot-product operationtakes
8 times longer thana normal texture access.This
factor, however, is not surprisingas the complex-
ity of a multiplicationgrows quadratically with the
bitlengthof theoperands,soit is ratheramazingthat
it canbe realizedin a singlepassat all. Moreover,
other time consuming proceduressuch as texture
object switchingor implicit pipelineflushingmay
absorbthesetheoreticalextra costs,ashasbeenex-
periencedin thefilter example(Figure1).

4 Conclusions

A composite 16 bit numberformat hasbeenpre-
sentedon which precisearithmeticand dependent
texture operationscan be efficiently performed.
In particular this format allows dynamic accurate
changesto displacementmaps,normalsandfilters.
Thesehigh precisionoperations naturally require
moretexture memoryandcomputingtime, but are
still fast enough to be usedin precisionsensitive
partsof real-timemulti-passalgorithms. Also the
detailsof this 16 bit emulationmayseemdeterrent
at first, however, onceimplementedthe operations
canbeusedin a simplemodular way. We hopethat
by useof this virtual 16 bit format moreprecision
sensitive visualizationandcomputingcanbeaccel-
eratedin graphicshardware.

References

[1] BrianCabral,Nancy Cam,andJimForan.Ac-
celeratedvolume renderingand tomographic

666

reconstruction using texture mapping hard-
ware. In Arie Kaufman and Wolfgang
Krueger, editors, 1994 Symposium on Vol-
ume Visualization, pages91–98. ACM SIG-
GRAPH,1994. ISBN 0-89791-741-3.

[2] Jonathan Cohen,ChrisTchou,Tim Hawkins,
and Paul Debevec. Real-timehigh dynamic
range texture mapping. In Proceedings of
the Eurographics Rendering Workshop 2001,
2001.

[3] NVIDIA Corporation. NVIDIA OpenGL
extension specifications. Technical report,
NVIDIA Corporation,2001.

[4] Paul J. Diefenbachand Norman I. Badler.
Multi-pass pipeline rendering: Realism for
dynamic environments.In MichaelCohenand
David Zeltzer, editors, 1997 Symposium on
Interactive 3D Graphics, pages59–70. ACM
SIGGRAPH,1997. ISBN 0-89791-884-3.

[5] U. Diewald, T. Preusser, M. Rumpf, and
R. Strzodka. Diffusion modelsand their ac-
celeratedsolutionin computervision applica-
tions. Acta Mathematica Universitatis Come-
nianae (AMUC), 70(1):15–31,2001.

[6] Paul HaeberliandMark Segal. Texturemap-
ping as A fundamental drawing primitive.
In Michael F. Cohen, Claude Puech, and
FrancoisSillion, editors,Fourth Eurographics
Workshop on Rendering, pages259–266.Eu-
rographics, June1993. held in Paris,France,
14–16 June1993.

[7] W. Heidrich,R.Westermann,H.-P.Seidel,and
T. Ertl. Applicationsof pixel texturesin vi-
sualizationand realistic imagesynthesis. In
ACM Symposium on Interactive 3D Graphics.
ACM/Siggraph,1999.

[8] Wolfgang Heidrich and Hans-PeterSeidel.
Realistic, hardware-acceleratedshadingand
lighting. In Alyn Rockwood,editor, Siggraph
1999, Annual Conference Proceedings, An-
nualConferenceSeries,pages171–178.ACM
Siggraph,AddisonWesley Longman, 1999.

[9] Kenneth E. Hoff III, JohnKeyser, Ming Lin,
DineshManocha,andTim Culver. Fastcom-
putationof generalizedVoronoi diagramsus-
ing graphics hardware. Computer Graph-
ics, 33(Annual Conference Series):277–286,
1999.

[10] M. Hopf andT. Ertl. Accelerating3d convo-
lution usinggraphicshardware.In Proc. Visu-

alization ’99, pages471–474. IEEE,1999.
[11] M. Hopf and T. Ertl. Hardware Accelerated

Wavelet Transformations.In Proceedings of
EG/IEEE TCVG Symposium on Visualization
VisSym ’00, pages93–103, 2000.

[12] Jan Kautz and Michael D. McCool. Inter-
active renderingwith arbitraryBRDFs using
separableapproximations. In ACM, editor,
SIGGRAPH 99. Proceedings of the 1999 SIG-
GRAPH annual conference: Conference ab-
stracts and applications, ComputerGraphics,
pages253–253.ACM Press,1999.

[13] Michael D. McCool andWolfgangHeidrich.
Texture shaders. In ACM, editor, SIG-
GRAPH ’99. Proceedings 1999 Eurograph-
ics/SIGGRAPH workshop on Graphics hard-
ware, Computer Graphics, pages117–126.
ACM Press,1999.

[14] Mark S.Peercy, Marc Olano,JohnAirey, and
P. Jeffrey Ungar. Interactive multi-passpro-
grammableshading. In Kurt Akeley, editor,
Siggraph 2000, Computer Graphics Proceed-
ings,, Annual ConferenceSeries,pages425–
432.ACM Press/ ACM SIGGRAPH/ Addi-
sonWesley Longman,2000.

[15] KekoaProudfoot,William R.Mark, Svetoslav
Tzvetkov, and Pat Hanrahan. A real-time
procedural shadingsystemfor programmable
graphics. In EugeneFiume, editor, SIG-
GRAPH 2001, Computer Graphics Proceed-
ings, Annual ConferenceSeries,pages159–
170.ACM Press/ ACM SIGGRAPH,2001.

[16] M. RumpfandR.Strzodka.Level setsegmen-
tation in graphicshardware. In Proceedings
ICIP’01, volume3, pages1103–1106,2001.

[17] M. Rumpf and R. Strzodka. Using graphics
cardsfor quantized FEM computations. In
Proceedings VIIP’01, pages193–202, 2001.

[18] A. Scheel, M. Stamminger, and H.-P. Sei-
del. Tone reproductionfor interactive walk-
throughs. Computer Graphics Forum, 19(3),
August2000.

[19] JosStam. A simplefluid solver basedon the
FFT. Journal of Graphics Tools, 6(2):43–52,
2002.

[20] ChrisTrendallandA. JamesStewart. General
calculationsusinggraphicshardware,with ap-
plications to interactive caustics. In Euro-
graphics Workshop on Rendering, June2000.

666

8 bit results 8 bit encolored virtual 16 bit results virtual 16 bit encolored

Figure1: Fromtop to bottomevery tenthresultof anonlineardiffusionfilter appliedto anoisy ��G�K � image
is shown. Althoughthelast8 bit resultmayseempleasantatfirst, thedarkbluebackgroundandtheyellow
and greencolor of the moon clearly convey a massdefect. The new 16 bit format, on the other hand,
preservestheoverall massandeliminatesartefactsmuchsmootherdueto thefinerquantization.
For adirectcomparisonbothsequenceswerecomputedonRGB8textures(theread-backfor LA8 wasvery
slow). The8 bit computation took 5msfor a time-stepandthevirtual 16 bit computation8ms. Although
threeindependent8 bit filters could have beenusedin parallelon RGB8, the performanceof more than
50%of thenormalspeedtogetherwith thehigherquality resultscountin favourof thevirtual 16bit format.

666

