


```
Class POINT
{
    public:
        float mass;
        float position[3];
        . . . .
}
```



```
class SPRING
{
    public:
        POINT *point1;
        POINT *point2;
        float stiffness; // k
        float initialLength; // L
        float currentLength; // l

. . . .
}

MTeschner-Deformable Modeling
```

```
class POINT
{
   public:
      float mass;
      float position[3];
      float force[3];
      int *adjacentSpring; // List of adjacent springs

. . . .
}

MTeschner-Deformable Modeling
```

Model - Summary

Outline

- Discretization of an object into mass points
- Definition of the **connectivity** (topology, adjacencies of mass points)
- Model parameters:
 - · Points: mass, initial position, velocity
 - Springs: stiffness, initial length
 - Definition of external forces (gravity)

M Teschner - Deformable Modeling

ETH Zurich

No general solution to avoid instability for complex mass-spring systems. A smaller time step increases the chance for stability. A larger time step speeds up the simulation. Parameters and topology of the mass-spring system, and external forces influence the stability of a system. M Teschner - Deformable Modeling

M Teschner - Deformable Modeling

 $\mathbf{v}(t+h/2) = \mathbf{v}(t-h/2) + h \cdot \mathbf{a}(t)$ Error $O(h^2)$ time step h is significantly larger compared to expl. Euler

Euler	Leap-Frog
	initV() // v(o) = v(o) - h/2a(o)
addForces(); //F(t) positionEuler(h); //x=x(t+h)=x(t)+hv(t) velocityEuler(h); //v=v(t+h)=v(t)+ha(t)	addForces(h); //F(t) velocityEuler(h); //v=v(t+h)=v(t)+ha(t) positionEuler(h); //x=x(t+h)=x(t)+ hv(t+h)

Fourth-Order Runge-Kutta Method

$$\mathbf{k}_1 = \mathbf{v}(t)$$

$$\mathbf{l}_1 = \mathbf{a}(\mathbf{x}(t), \mathbf{v}(t))$$

$$\mathbf{k}_2 = \mathbf{v}(t) + \mathbf{k}_1 \frac{h}{2}$$

$$\mathbf{l}_2 = \mathbf{a} \left(\mathbf{x}(t) + \mathbf{k}_1 \frac{h}{2}, \mathbf{k}_2 \right)$$

$$\mathbf{k}_3 = \mathbf{v}(t) + \mathbf{l}_2 \frac{h}{2}$$

$$\mathbf{l}_3 = \mathbf{a} \left(\mathbf{x}(t) + \mathbf{k}_2 \frac{h}{2}, \mathbf{k}_3 \right)$$

$$\mathbf{k}_4 = \mathbf{v}(t) + \mathbf{l}_3 h$$

$$\mathbf{l}_4 = \mathbf{a}(\mathbf{x}(t) + \mathbf{k}_3 h, \mathbf{k}_4)$$

M Teschner - Deformable Modeling

ETH Zurich

$\mathbf{x}(t+h) = \mathbf{x}(t) + \frac{h}{6}(\mathbf{k}_1 + 2\mathbf{k}_2 + 2\mathbf{k}_3 + \mathbf{k}_4)$ $\mathbf{k}_2 = \mathbf{v}(t) + \mathbf{l}_1 \frac{h}{2}$ $\mathbf{v}(t+h) = \mathbf{v}(t) + \frac{h}{6}(\mathbf{l}_1 + 2\mathbf{l}_2 + 2\mathbf{l}_3 + \mathbf{l}_4)$

$$\mathbf{v}(t+h) = \mathbf{v}(t) + \frac{h}{6}(\mathbf{l}_1 + 2\mathbf{l}_2 + 2\mathbf{l}_3 + \mathbf{l}_4)$$

- Four computations of the derivative per time step
- Error *O(h5)*
- Allows even larger time steps

Implementation

Euler Method

- Straightforward
- Compute spring forces
- Add external forces
- Update positions
- Update velocities

Runge-Kutta Method • Compute spring forces

- · Add external forces
- · Compute auxiliary positions and velocities
 - requires additional copies of data
 - · once for second-order
 - three times for fourth-order
- Update positions
- Update velocities

M Teschner - Deformable Modeling

Implicit Integration – Theta Scheme

$$\mathbf{x}(t+1) = \mathbf{x}(t) + h((1-\theta) \cdot \mathbf{v}(t) + \theta \cdot \mathbf{v}(t+1))$$

$$m \cdot \mathbf{v}(t+1) = m \cdot \mathbf{v}(t) + h((1-\theta) \cdot \mathbf{F}(t) + \theta \cdot \mathbf{F}(t+1))$$

 $\theta = 0$: exlicit Euler implicit Euler $\theta = 0.5$: Crank Nicolson

M Teschner - Deformable Modeling

Theta Scheme - Implementation

rewriting the problem

$$m \cdot \mathbf{v}(t+h) = m \cdot \mathbf{v}(t) + h \cdot \frac{\mathbf{F}(\mathbf{x}(t)) + \mathbf{F}(\mathbf{x}(t)) + h \cdot \frac{\mathbf{v}(t) + \mathbf{v}(t+h)}{2}}{2}$$

linearization of force

$$\mathbf{F}(\mathbf{x}(t) + h \cdot \frac{\mathbf{v}(t) + \mathbf{v}(t + h)}{2}) \approx \mathbf{F}(\mathbf{x}(t)) + \frac{\partial \mathbf{F}(\mathbf{x})}{\partial \mathbf{x}} \Big|_{\mathbf{v} = \mathbf{v}(t)} \cdot h \cdot \frac{\mathbf{v}(t) + \mathbf{v}(t + h)}{2}$$

explicit form for $\mathbf{v}(t+h)$

$$\left[m - \frac{h^2}{2} \cdot \frac{\partial \mathbf{F}(\mathbf{x})}{\partial \mathbf{x}}\bigg|_{\mathbf{x} = \mathbf{x}(t)}\right] \cdot \mathbf{v}(t+h) \approx \left[m \cdot \mathbf{v}(t) + h \cdot \mathbf{F}(\mathbf{x}(t)) + \frac{h^2 \cdot \mathbf{v}(t)}{2} \cdot \frac{\partial \mathbf{F}(\mathbf{x})}{\partial \mathbf{x}}\bigg|_{\mathbf{x} = \mathbf{x}(t)}\right]$$

Theta Scheme – Conjugate Gradient

linear system:

$$\mathbf{A} \cdot \mathbf{v} = \mathbf{b}$$

• gradient of a function

$$\nabla f(\mathbf{v}) = \mathbf{A} \cdot \mathbf{v} - \mathbf{b}$$

with

$$\nabla f(\mathbf{v}) = 0$$

• iterative solution for v with initial value v_o

Iteration:
$$\mathbf{v}_{k+1} = \mathbf{v}_k + \alpha \cdot w(\nabla f(\mathbf{v}_k))$$

M Teschner - Deformable Modeling

Higher-Order Numerical Integration

Integration methods for first-order ODE's	Integration methods for Newton's motion equation	
Euler	Verlet	
Heun	Velocity Verlet	
Runge Kutta	Beeman	
commonly used in	commonly used in	
Computer Graphics applications	molecular dynamics	

M Teschner - Deformable Modeling

Verlet Integration

$$\mathbf{x}(t+h) = \mathbf{x}(t) + h\mathbf{x}'(t) + \frac{h^2}{2}\mathbf{a}(t) + \frac{h^3}{6}\mathbf{x}'''(t) + O(h^4)$$

$$\mathbf{x}(t-h) = \mathbf{x}(t) - h\mathbf{x}'(t) + \frac{h^2}{2}\mathbf{a}(t) - \frac{h^3}{6}\mathbf{x}'''(t) + O(h^4)$$

$$= \mathbf{x}(t+h) = 2\mathbf{x}(t) + \mathbf{x}(t-h) + h^2\mathbf{a}(t) + O(h^4)$$

$$v(t) = \frac{\mathbf{x}(t+h) - \mathbf{x}(t-h)}{2h} + O(h^2)$$

M Teschner - Deformable Modeling

Other Integration Techniques

Predictor-Corrector Methods

Predicts a value from previous derivatives

$$f(t_0+h) = f(t_0) + \frac{h}{a_1 + a_2 + a_3} (a_1 f'(t_0) + a_2 f'(t_0 - h) + a_3 f'(t_0 - 2h))$$

• Corrects the value using the derivative from the predicted value (implicit)

$$f(t_0+h) = f(t_0) + \frac{h}{b_1 + b_2 + b_3} (b_1 f'(t_0+h) + b_2 f'(t_0) + b_3 f'(t_0-h))$$

Burlisch-Stoer Methods

- Polynomial function extrapolation based on midpoint method steps
- High accuracy with minimal computational effort
- Bad for non-smooth functions
- Not very promising, but has been used for mass-spring models

Numerical Integration - Summary

Motion equation for mass point

- second-order differential equation
- coupled system of first-order differential equation
- derivatives of velocity v and position x are described

Numerical integration

- known initial values at a certain time t for v and x
- approximative integration of **v** and **x** through time
- time step h

Integration techniques

- Euler, Leap-Frog
- Runge-Kutta
- Crank-Nicolson
- Verlet, velocity Verlet, Beeman
- predictor-corrector
- methods differ in accuracy and computational complexity
- size of time step h is trade-off between performance and robustness

M Teschner - Deformable Modeling

Outline

Motivation

Model Components

Mass Points **Springs** Forces

Computation of the Dynamic Behavior

Explicit Numerical Integration Implicit Numerical Integration Higher-Order Numerical Integration

Stability and Performance Aspects

Performance

Time and Space Adaptive Sampling

Damping

Force-Deformation Relationship

Model Topology

M Teschner - Deformable Modeling

How to Measure Performance?

It is difficult!

- Frames per second (System updates per real-life second)
 - Commonly used
 - How many mass points?
 - · How many springs?
 - Computational expenses for external forces?
 - Other expenses like collision handling and rendering?
 - Which numerical integration technique?
 - What time step?
- Example: 0.1–1s for 10,000 polygons per iteration using various integration techniques [Volino/Thalmann 2001] cloth simulation

M Teschner - Deformable Modeling

Comparison of Integration Methods

- Synthetic object under gravity
- 22320 springs (16875 tetras)

Method	time step [ms]	comp. time [ms]	ratio
expl. Euler	0.5	9.3	0.05
Heun	2.9	27.5	0.1
RK2	3.8	18.9	0.2
impl. Euler	49.0	172.0	0.28
RK4	17.0	50.0	0.34
Verlet	11.5	8.5	1.35

Intel Pentium 4, 2GHz

Performance Aspects - Summary

- Performance is difficult to assess!
- Varying time steps
- · Model hierarchies, coarse to fine point sampling
- Point and spring damping.
- Force-deformation relationship. Soft and oscillating models are robust.
- Topology. How to connect mass points in an appropriate way? Influence on the stability of the numerical integration
- Topology. How to avoid too many springs? Influence on the performance of the numerical integration

M Teschner - Deformable Modeling

60

Examples for External Forces

- Gravity
- Wind

Mass points can be part of a mass-spring system, but their velocities and positions are not necessarily updated.

Movie

Teschner

Movie

M Teschner - Deformable Modeling

Other Forces

• Induction of internal forces by falsifying the initial spring length

$$L(t) = const$$
 \longrightarrow $L(t) = f(t)$

- Simulation of muscle contraction (or fishes)
- L(t) has to be smooth for stability

M Teschner - Deformable Modeling

70

Penalty Forces

- Penalty forces are additional momentum conserving external forces at mass points.
- Penetration of a mass point into another object can cause a penalty force to resolve the collision.
- Volume variation of basic volumetric elements can cause forces to preserve volume.
- Surface changes can cause penalty forces at mass points to preserve certain characteristics of the surface.
- Proper relation of penalty, internal, and other external forces has to be considered.
- Penalty force functions should be appropriate for numerical integration.

Dynamic Deformation - Summary Discretization of an object into mass points Definition of the connectivity (topology, adjacencies of mass points, layers) Model parameters: Points: masses, initial positions, initial velocities Springs: force-deformation relationship and its parameters (stiffness) Damping: points and/or springs (Stokes and/or Newton) External and penalty forces: definition of theses forces over time Restrictions: fixed points, restricted movement

A few References

- D. Terzopoulos, J. Platt, A. Barr, K. Fleischer, "Elastically Deformable Models," SIGGRAPH'87, ACM Computer Graphics, vol. 21, no. 4, pp. 205-214, 1987.
- D. Terzopoulos, K. Fleischer, "Modeling Inelastic Deformation: Viscoelasticity, Plasticity, Fracture," *SIGGRAPH'88, ACM Computer Graphics*, vol. 22, no. 4, pp. 269-278, 1988.
- Y. Lee, D. Terzopoulos, K. Waters, "Realistic Modeling for Facial Animation," SIGGRAPH'95, ACM Computer Graphics, vol. 29, no. 4, pp. 52-62, 1995.
- D. Baraff, A. Witkin, "Large Steps in Cloth Simulation," *SIGGRAPH'98, ACM Computer Graphics*, pp. 43-54, 1998.
- M. Desbrun, P. Schroeder, A. Barr, "Interactive Animation of Structured Deformable Objects," *Graphics Interface '99*, Kingston, Canada, 1999.
- G. Debunne, M. Desbrun, M. Cani, A. Barr, "Dynamic Real-Time Deformations using Space and Time Adaptive Sampling," *SIGGRAPHC'01, ACM Computer Graphics*, pp. 31-36, 2001.
- H. R. Schwarz, "Numerische Mathematik," B. G. Teubner Stuttgart, ISBN 3-519-32960-3, 1997.

M Teschner - Deformable Modeling

86