
Animating Explosions

Gary D. Yngve James F. O’Brien Jessica K. Hodgins

GVU Center and College of Computing

Georgia Institute of Technology

Abstract

In this paper, we introduce techniques for animating explo-
sions and their effects. The primary effect of an explosion is
a disturbance that causes a shock wave to propagate through
the surrounding medium. This disturbance determines the
behavior of nearly all other secondary effects seen in explo-
sions. We simulate the propagation of an explosion through
the surrounding air using a computational fluid dynamics
model based on the equations for compressible, viscous flow.
To model the numerically stable formation of shocks along
blast wave fronts, we employ an integration method that can
handle steep pressure gradients without introducing inap-
propriate damping. The system includes two-way coupling
between solid objects and surrounding fluid. Using this tech-
nique, we can generate a variety of effects including shaped
explosive charges, a projectile propelled from a chamber by
an explosion, and objects damaged by a blast. With ap-
propriate rendering techniques, our explosion model can be
used to create such visual effects as fireballs, dust clouds,
and the refraction of light caused by a blast wave.

CR Categories: I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling—Physically based
modeling; I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.6.8 [Simulation and
Modeling]: Types of Simulation—Animation

Keywords: Animation, Atmospheric Effects, Compu-
tational Fluid Dynamics, Natural Phenomena, Physically
Based Animation

1 Introduction

Explosions are among the most dramatic phenomena in na-
ture. A sudden burst of energy from a mechanical, chemical,
or nuclear source causes a pressure wave to propagate out-
ward through the air. The blast wave “shocks up,” creating a
nearly discontinuous jump in pressure, density, and temper-
ature along the wave front. The wave is substantially denser
than the surrounding fluid, allowing it to travel supersoni-
cally and to cause a noticeable refraction of light. The air at
the shock front compresses, turning mechanical energy into

College of Computing, Georgia Institute of Technology, Atlanta,
GA 30332. gyngve@acm.org, job@acm.org, jkh@cc.gatech.edu.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or
a fee.
SIGGRAPH 2000, New Orleans, LA USA

Copyright ACM 2000 1-58113-208–5/00/07 . . . $5.00

Figure 1: An image of a projectile propelled from a cham-
ber by an explosion. On the right is a cross-section of the
three-dimensional fluid volume using a colormap where hot-
ter colors indicate higher densities.

heat. The waves reflect, diffract, and merge, allowing them
to exhibit a wide range of behavior.

An explosion causes a variety of visual effects in addition
to the light refraction by the blast wave. An initial chemi-
cal or nuclear reaction often causes a blinding flash of light.
Dust clouds are created as the blast wave races across the
ground, and massive objects are moved, deformed, or frac-
tured. Hot gases and smoke form a rising fireball that can
trigger further combustion or other explosions and scorch
surrounding objects.

We present a physically based model of an explosion and
show how it can be used to simulate many of these effects.
We model the explosion post-detonation as compressible,
viscous flow and solve the flow equations with an integra-
tion method that handles the extreme shocks and supersonic
velocities inherent in explosions. We cannot capture many
of the visual effects of an explosion in a complex setting if
we rely only on an analytical model of the blast wave; a
fluid dynamics model of the air is necessary to capture these
effects. The system includes a two-way coupling between dy-
namic objects and fluid that allows the explosions to move
objects. Figure 1 illustrates this phenomenon with a pro-
jectile propelled from a chamber. We also use the pressure
wave generated by the explosion to fracture and deform ob-
jects. The user can simulate arbitrarily complex scenarios
by positioning polygonal meshes to represent explosions and
objects. The user controls the scale and visual qualities of
the explosion with a few physically motivated parameters.

Our fluid model of an explosion simulates many phenom-
ena of blast waves that existing graphics techniques do not
capture. Figure 2 shows a cross-section of pressures for a
three-dimensional explosion near a wall. The initial dis-
turbance in the first image interacts with the surrounding
fluid and causes a pressure wave to propagate through the
medium. In the second image, the blast wave has “shocked
up,” as is evident by the large differences in pressure across
the shock front. The blast wave reflects off the wall and
the ground in the third image. In the fourth, the wave that
reflected off the ground merges with the initial blast wave

29



Figure 2: Shown here is a cross-section of pressures for a three-dimensional explosion near an immovable wall. The timestep
between frames is 10 ms. Many of the behaviors of the blast wave can be seen, specifically the Mach stem formed from the
blast wave merging with the wave reflected off the ground plane, and the diffracted wave formed when the blast wave crests
over the wall.

to form a Mach stem, which has pressure values twice that
of the initial wave. In the final two images, the blast wave
crests over the wall and forms a weaker diffracted wave.

In the entertainment industry, explosions are currently
created at full scale in the real world, in miniature, or us-
ing heuristic graphics techniques[20, 9, 22]. Each of these
methods has significant disadvantages, and we believe that
in many scenarios, simulation may provide an easier solu-
tion. When explosions are generated and filmed at full scale
in the real world, they often must be faked to appear danger-
ous and destructive by using multiple charges and chemicals
with a low flashpoint. Because of the cost and danger of ex-
ploding full-size objects, many explosions are created using
miniatures. With miniatures, the greatest challenge is often
scaling the objects and the physics to create a realistic ef-
fect. Current graphics techniques for creating explosions are
based on heuristics, analytical functions, or recorded data,
and although they produce nice effects for spherical blast
waves, they are not adequate for the complex effects required
for many of the scenarios used in the entertainment industry.

Physically based simulations of explosions offer several po-
tential advantages over these three techniques. In contrast
to real physical explosions, simulations can be used in an it-
erative fashion, allowing the director many chances to mod-
ify or shape the effect. The rendering of the explosion is
to a large extent decoupled from the simulation, allowing
the visual characteristics of the dust clouds or fireball to be
determined as a post-process. Unlike heuristic or analyt-
ical graphical methods, physically based simulations allow
the computation of arbitrarily complex scenes with multiple
interacting explosions and objects.

The next section discusses relevant previous work in ex-
plosions, fluids, flame, and fracture. The following section
introduces the explosion model in the context of computa-
tional fluid dynamics. The next two sections discuss cou-
pling between the fluid and solids and other secondary effects
such as refraction and fireballs. We close with a discussion
of our results.

2 Previous Work

Explosions used in the entertainment industry tend to be vi-
sually rich. Because of the inherent computational complex-
ity of these explosions, researchers largely neglected this field
after the publication of particle simulation techniques[16,
17]. Procedural methods can generate fiery, billowy clouds
that could be used as explosions[3].

Recently two papers specifically addressed explosions.
Mazarak and colleagues simulate the damage done by an ex-
plosion to voxelized objects[10]. They model the explosion
as an ideal spherical blast wave with a pressure profile curve
approximated by an analytic function based on the modi-
fied Friedlander equation and scaled according to empirical
laws[2]. The spherical blast wave expands independent of
existing obstacles, and forces are applied to objects in the

direction of the blast radius. Objects are modeled as con-
nected voxels and based on various heuristics, these radial
forces may cause the voxels to disconnect.

Neff and Fiume use data from empirical blast curves to
model an explosion[12]. The blast curves relate the pres-
sure and velocity of the blast wave to time and are scalable.
Unlike Mazarak and colleagues, they use a curve represent-
ing the reflection coefficient to apply forces to objects based
on the angle of incidence of the blast wave. They assume
quasi-static loading conditions where the blast wave encloses
the entire object and effects due to reflected waves are ig-
nored. They also model explosion-induced fracture in planar
surfaces using a procedural pattern generator.

An alternative to these analytic and empirical models is
a computational fluid dynamic simulation of the blast wave
and the surrounding air. Foster and Metaxas presented a so-
lution for incompressible, viscous flow and used it to animate
liquids[5] and hot, turbulent gas[4]. They modeled fluid as a
three-dimensional voxel volume with appropriate boundary
conditions. The fluid obeys the Navier-Stokes equations; gas
also follows an equation that represents thermal buoyancy.
Using an explicit scheme, they update velocities and tem-
peratures every timestep via Euler integration and readjust
the values to guarantee conservation of mass. The fluid is
rendered by tracing massless particles along the interpolated
flow field. Their work with liquids included dynamic objects
that were moved by the fluid, although they assumed that
the objects were small enough not to influence the fluid.
Recently Stam addressed the computational cost of guar-
anteeing stability by introducing extra damping to afford
larger timesteps and using an implicit method to solve a
sparse system of equations[18]. Stam’s method is inappropri-
ate for shocks and explosions because his integration scheme
achieves stability by encouraging the fluid to dissipate.

In the dramatic effects produced by the entertainment
industry, a fireball is often the most salient visible charac-
teristic of an explosion. Stam and Fiume modeled flame and
the corresponding fluid flow and rendered the results using a
sophisticated global illumination method[19]. The gases be-
haved according to advection-diffusion equations; Stam and
Fiume solve these equations efficiently by reformulating the
problem from a grid to “warped blobs.” Illumination from
gas is affected by emission and anisotropic scattering and
absorption. They only consider continuous emissions from
blackbody radiation and ignore line emissions from electron
excitation. They develop a heuristic for smoke emission due
to the lack of a scientific analytic model.

Compressible flow has been studied for years in the com-
putational fluid dynamics community[1, 2, 8]. We have
built on this work by taking the governing equations and
the donor-acceptor method of integration from this litera-
ture. However, the reasons for simulating explosions, com-
bustion, detonation, and supersonic flow in engineering differ
significantly from those in computer graphics. Engineering
problems often require focusing on one element such as the
boundary layer and simulating the other elements only to

30



the extent that they affect the phenomenon under study. For
example, engineering simulations are often two-dimensional
and assume symmetry in the third dimension. Because they
are focused on a specific event, their simulations may run
for only a few microseconds. In computer graphics, on the
other hand, we need to produce a visually appealing view of
the behavior throughout the explosion. As a result, we need
a more complete model with less quantitative accuracy.

3 Explosion Modeling

An explosion is a pressure wave caused by some initial dis-
turbance, such as a detonation. In the results presented
here, we assume that the detonation has occurred and that
its properties are defined in the initial conditions of the sim-
ulation. This assumption is reasonable for most chemical
explosions because the detonation is complete within mi-
croseconds. We animate explosions by modeling the pres-
sure wave and the surrounding air as a fluid discretized over
a three-dimensional rectilinear grid. The following two sub-
sections describe the governing equations for fluid dynamics
and the computational techniques used to solve them. The
remaining two subsections describe the parameters available
to the user for controlling the appearance of the explosion
via the boundary conditions and initial conditions.

3.1 Fluid Dynamics

In nearly all engineering problems, including the analysis of
explosions, fluids are modeled as a continuum. They are rep-
resented as a set of equations in terms of density ρ (kg/m3),
pressure P (N/m2), velocity � (m/s), temperature T (K), the
internal energy per unit mass N (J/kg), and the total energy
per unit mass E = N + 1

2
� 2 (J/kg). The equations that gov-

ern these quantities are defined in an Eulerian fashion, that
is, they apply to a differential volume of space that is filled
with fluid rather than to the fluid itself. In addition to the
Navier-Stokes equations, which model the conservation of
momentum, the equations for compressible, viscous flow in-
clude governing equations for the conservation of mass and
energy and for the fluid’s thermodynamic state[7].

We introduce several simplifying assumptions that make
the equations easier to compute but nevertheless allow us
to capture the effects of compressible, viscous flow. We dis-
count changes in the vibrational energies of molecules and
assume air to be at chemical equilibrium; we ignore the ef-
fects from dissociation or ionization. These assumptions,
which are commonly used in the engineering literature[1],
allow us to reduce to constants many of the coefficients that
vary with temperature. The resulting deviation in the values
of the coefficients is negligible at temperatures below 1000 K;
only minor deviations occur below 2500 K. Our implemen-
tation produces aesthetic results with temperatures above
100000, K, although deviations in constants could be on the
order of a magnitude or two.

The first governing equation of fluid dynamics arises from
the conservation of mass. Because fluid mass is conserved,
the change of fluid density in a differential volume must be
equal to the net flux across the volume’s boundary, giving

∂ρ

∂t
= −∇ · (ρ � ). (1)

The second governing equation, commonly known as the
Navier-Stokes equation, concerns the conservation of mo-
mentum. For a Stokes fluid, where the normal stress is in-
dependent of the rate of dilation, the equation for the x

0 5 10 15
0

2e+05

4e+05

6e+05

8e+05

1e+06

Figure 3: Pressure profile (N/m2) over time (ms) near an
explosion.

component of the fluid velocity is given by

ρ
∂ �

x

∂t
= ρ

�
x−∇P +

µ

3
∇·

(
∂ �

∂x

)
+µ∇2 �

x−ρ( �
·∇) �

x, (2)

where
�

represents the body forces such as gravity and µ is
the coefficient of viscosity. The equations for the y and z
components are similar. The first two terms on the right-
hand side of the equation model accelerations due to body
forces and forces arising from the pressure gradient; the next
two terms model accelerations due to viscous forces. The last
term is not a force-related term; rather it is a convective
term that models the transport of momentum as the fluid
flows. This distinction between time derivative (force) terms
and convective terms will be important for the integration
scheme.

The final governing equation enforces the conservation of
energy in the system. The First Law of Thermodynamics
dictates that the change in energy is equal to the amount of
heat added and the work done to the system. Accounting
for the amount of work done from pressure and viscosity and
the heat transferred from thermal conductivity yields

ρ
∂N

∂t
= k∇2T − P∇ ·

� + Φ − ρ( �
· ∇)N, (3)

where k is the thermal conductivity constant and Φ is the
viscous dissipation given by

Φ = −
2µ

3
(∇ ·

� )2 +
µ

2

∑

i,j∈{x,y,z}

(
∂ �

i

∂j
+

∂ �
j

∂i

)2

. (4)

As with equation (2), the last term of equation (3) is a con-
vective term and models the transport of energy as the fluid
flows.

In addition to the three governing equations, we need
equations of state that determine the relationship between
energy, temperature, density, and pressure. They are

N = cV T, P = ρRT, (5)

where the coefficient cV is the specific heat at constant vol-
ume and R is the gas constant of air.

Figure 4: This figure illustrates the donor-acceptor method
in which the amount of mass transferred is proportional to
the mass of the donor. The voxels on the left show the
transfer of mass and energy according to the flow, indicated
by the blue arrow. The two voxels on the right represent the
scenario with reversed flow of the same magnitude. Density
is represented as height, and unit energy is represented as
color. Corresponding amounts of energy are sent with the
mass.

31



3.2 Discretization and Numerical Integration

The equations in the previous section describe the behavior
of a fluid in a continuous fashion. However, implementing
them in a form suitable for numerical computation requires
that the space filled by the fluid be discretized in some man-
ner and that a stable method for integrating the governing
equations forward in time be devised.

Finite differences are used to discretize the space into a
regular lattice of cubical cells. These finite voxels take the
place of the differential volumes used to define the continu-
ous equations, and the governing equations now hold for each
voxel. Fluid properties such as pressure and velocity are as-
sociated with each voxel and these properties are assumed
to be constant across the voxel. The spatial derivatives used
in the governing equations are approximated on the lattice
using central differences. For example, the x component of
the pressure gradient, ∇P , at voxel [i, j, k] is given by

∂P

∂x
≈

P[i+1,j,k] − P[i−1,j,k]

2h
, (6)

where subscripts in square brackets index voxel locations and
h is the voxel width.

After the governing equations have been expressed in
terms of discrete variables using finite differences, they may
be used as the update rules for an explicit integration
scheme. However, rapid pressure changes created by steep
pressure gradients moving at supersonic speeds would cause
such a scheme to diverge rapidly. (See Figure 3.) To deal
with this problem, we improved the basic integration tech-
nique using two modifications described in the fluid dynam-
ics literature[2, 8]. The first modification involves updating
equations (2) and (3) in two steps, first using only the tem-
poral portion of the derivatives and second using the con-
vective derivatives. The second modification is called the
donor-acceptor method and is described in detail below. It
addresses problems that arise when mass, momentum, and
energy are convected across steep pressure gradients.

The modified update scheme operates by applying the fol-
lowing algorithm to each voxel at every timestep:

1. Approximate the fluid acceleration at the current time,
˜� t = (∂ � /∂t)t, using the non-convective (first four)
terms of equation (2).

2. Compute the tentative velocity at the end of the
timestep, �̃

t+∆t = �
t + ∆t˜� t, and the approximate av-

erage velocity during the timestep ¯
�

t = (˜� t+∆t + �
t)/2.

3. Approximate change in internal energy, N , using the
non-convective terms of equation (3) and substituting
¯

�
t for the fluid velocity.

4. Using ¯
�

t for the fluid velocity, compute the new density,
ρt+∆t with equation (1).

5. Calculate the complete �
t+∆t and Nt+∆t with equa-

tions (2) and (3) using the convective terms and the
new value of ρ.

6. Use state equations (5) to update secondary quantities
such as temperature.

Although this update scheme is more stable than a sim-
ple Euler integration, sharp gradients in fluid density may
still allow small flows from nearly empty voxels to gener-
ate negative fluid densities and cause inappropriately large
changes to both velocity and internal energy. To prevent
these problems, we use a donor-acceptor method when com-
puting −∇ρ � of the convective terms in steps 4 and 5 above.

Figure 5: This figure shows cross-sections of pressure for
three-dimensional explosions of equal-volume charges in the
shape of a sphere, cylinder, torus, and wedge. The timestep
between frames is 5 ms.

The donor-acceptor method transfers mass proportional
to the mass of the voxel in the upstream direction, or donor
voxel. Suppose we have voxel i and one of its six neighbors
j in direction

�
from i. Let vij = 1

2
( �

i + �
j) ·

�
. If vij > 0,

then flow is going from i to j, i is the donor, and ρi is used in
equation (1) to compute the change in voxel i’s density. Like-
wise, if vij < 0, then j is the donor, and the density of j is
used when computing the change in voxel i’s density. These
calculations are repeated for the six neighbors of i to obtain
the new density for i, ρt+∆t. The velocity and energy con-
vection are then scaled by ρt/ρt+∆t to conserve momentum
and energy. Figure 4 illustrates the donor-acceptor method.
The left and right diagrams show flows in opposite direc-
tions of the same magnitude. The sent mass is proportional
to the mass of the donor and carries with it corresponding
amounts of energy.

3.3 Boundary Conditions

The system has several types of boundary conditions that
allow the fluid to exhibit a wide range of behaviors. Free
boundaries allow blast waves to travel beyond the voxel vol-
ume as if the voxel volume were arbitrarily large. This type
of boundary allows us to model slow, long-term aspects of ex-
plosions, such as fireballs and dust clouds. Hard boundaries
force fluid velocity normal to them to be zero while leaving
all other fluid attributes unchanged. We treat these bound-
aries as smooth surfaces, so tangential flow is unaffected. We
implement a third boundary condition to achieve faster exe-
cution. If a voxel and its neighbors have pressure differences
less than a threshold, the voxel is treated as a free boundary
and is never evaluated. This optimization prunes out the
majority of the volume while the blast wave is expanding.

3.4 Initial Conditions

The user specifies the pressure and temperature of the air,
and the initial values of other variables are determined from
the state equations (5). The detonation is initialized by
specifying a region of the volume with higher temperature
or pressure. For example, a chemical explosion might have
a temperature of 2900 K and a pressure of 1000 atm with
the surrounding air at 290 K and 1 atm. The creation of the
explosion may be time-delayed or may be triggered when the
fluid around the charge reaches a threshold temperature.

The detonation may have an arbitrary geometry repre-
sented by a manifold polygonal mesh. The mesh is vox-
elized to initialize the appropriate voxels in the fluid simu-

32



lation. By controlling the geometry, the user can produce a
variety of effects that could not be achieved with a spher-
ical model. In blast theory, planar, cylindrical, and spher-
ical blast waves can be modeled by analytic functions[2];
however nonstandard shapes can create surprising and in-
teresting effects. Figure 5 shows cross-sections of pressure
for three-dimensional explosions from equal-volume charges
in the shape of a sphere, cylinder, torus, and wedge. The
inner blast wave of the torus merges to create a strong ver-
tical blast wave. The wedge concentrates its force directly
to the right, while leaving the surrounding area relatively
untouched.

4 Interaction with Solids

People use explosions to impart forces on objects for both
constructive and destructive purposes. The movements of
these objects and the resulting displacement of air create
many of the compelling visual effects of an explosion. In this
section, we present methods to implement a two-way cou-
pling between the fluid and solids. The coupling from fluid
to solid allows us to model phenomena such as a projectile
being propelled by an explosion. The coupling from solid to
fluid can be used to model a piston compressing or the shock
wave formed as a projectile moves through the air superson-
ically. We also extend previously published techniques for
fracture to allow the pressure wave to shatter objects.

To allow the two-way coupling, objects have two represen-
tations: a polygonal mesh that is used to apply forces to the
object from the fluid, and a volume representation in vox-
els that is used to displace fluid based on the motion of the
object. We incorporate the coupling into the fluid dynamics
code in the following way:

1. Apply forces on the objects from the fluid and compute
the rigid body motion of the objects.

2. If the object has moved more than a fraction of a voxel,
recompute the voxelization of the object.

3. Displace fluid based on object movement.

4. Update the fluid using the techniques described in Sec-
tion 3.2.

We explain the first three of these items in greater detail in
the following subsections.

4.1 Coupling from Fluid to Solid

An object embedded in a fluid experiences two separate sets
of forces on its surface, those arising from hydrostatic pres-
sure and those arising from dynamic forces due to fluid mo-
mentum. The forces due to hydrostatic pressure act normal
to the surface and are generated by the incoherent motions of
the fluid molecules against the surface. The dynamic forces
are generated by the coherent motion of the continuous fluid
and can be divided into a force normal to the surface of the
object and a tangential shearing force. We neglect the tan-
gential shearing force because in the context of explosions,
it is negligible in comparison to the force due to hydrostatic
pressure. We assume that the object is in equilibrium under
ambient air pressure and the hydrostatic forces are computed
using the overpressure P̄ , which is the difference between the
hydrostatic pressure P and ambient pressure.

The magnitude of the normal force per unit area on the
surface is given by the dynamic overpressure:

P̄dyn = P̄ +
1

2
ρ ( �

rel · ˆ
� )2 , (7)

Figure 6: A glass window is shattered by a blast wave. The
blast wave pressure is approximately 3 atm when it reaches
the window. The images show the scene at 0 ms, 13 ms,
40 ms, 67 ms, 107 ms, and 160 ms.

where �
rel is the velocity of the fluid relative to the surface,

and ˆ
� is the outward surface normal.

We assume that the triangles composing each object are
small enough that the force is constant over each triangle.
The force on a triangle with area A is then

�
= −ˆ

� AP̄dyn , (8)

where the fluid properties are measured at the centroid of
the triangle. The forces are computed for all triangles of an
object, and the translational and angular velocities of the
object are updated accordingly.

In addition to acting on rigid objects, the forces can also
be applied to flexible objects that deform and fracture[14].
The explosion simulation results in pressures, velocities, and
densities for each voxel in the discretization of the fluid.
The fracture simulation uses this information to compute
the forces that should be applied to a finite element model
of the objects in the scene. The force computation is similar
to that for rigid objects. This method was used to simulate
the breaking window shown in Figure 6 and the breaking
wall shown in Figure 7. This coupling is one-way in that the
fluid applies forces to the finite-element model, but the fluid
is not moved by the fragments that pass through it.

4.2 Coupling from Solid to Fluid

To allow the solid to displace fluid, the triangular mesh rep-
resenting the object is converted to voxels[13], which are
then used to define the hard boundaries in the fluid volume
dynamically. The objects move smoothly through the fluid,
but because of the discrete nature of the voxelization, large
changes in the amount of fluid displaced may occur on each
timestep. To address this problem, the fluid displaced or the
void created by the movement of the objects is handled over
a period of time rather than instantaneously.

The voxelization returns a value between zero and one
representing the proportion of the voxel that is not interior

Figure 7: A wall is knocked over by a blast wave from an
explosion 3.5 m away. The images are spaced 250 ms apart.

33



to any object. This value is independent of geometric con-
siderations about the exact shape of the occupied volume.
If any dimension of an object is smaller than the size of a
voxel, the appropriate voxels will have partial volumes, but
because there are no fully occupied voxels, the fluid will ap-
pear to move through the object. Nonzero partial volumes
below a certain threshold are set to zero to increase stability.
The implementation of partial volumes requires slight mod-
ifications to the donor-acceptor method to conserve mass,
momentum, and energy because two adjacent voxels could
have different volumes.

When any part of an object moves more than a fraction of
a voxel, the object is revoxelized, and the hard boundaries
of the fluid are updated. When this process occurs, the par-
tial volume in a voxel might change, resulting in fluid flow.
We allow this flow to occur smoothly by sacrificing conserva-
tion of mass and energy in the short-term. The voxelization
determines the partial volumes in an instantaneous fashion,
but the fluid displacement routine maintains internal partial
volumes that change more slowly and are used to compute
the pressure, density, and temperature of the affected vox-
els. The internal partial volumes change proportionally to
the velocities of the moving objects, and mass and energy
are restored over time.

To compute a smooth change in the internal partial vol-
ume from V1 to V2, we model an object moving into a voxel
as a piston compressing or decompressing fluid. We simplify
the computation of the change in partial volume by assum-
ing that the piston is acting along one of the axes of the
voxelization. The appropriate axis is selected based on the
largest axial component of the velocity of the object, �

p.
The displacement of the piston after t seconds and the cor-
responding change in partial volume of a voxel with width
h are �

= �
pt, ∆V = V2 − V1 = h2 �

pt. (9)

The displacement occurs linearly over

t =
∆V

h2 ��� (10)

at a velocity of �
p.

Given this model of the change in internal partial vol-
ume, we know that ρ1V1 = ρ2V2 because mass is conserved.
However, the fluid is compressible, so mechanical energy is
not conserved (otherwise P1V1 = P2V2). To obtain the new
pressures and densities of the fluid, we use a thermodynamic
equation relating the work done to the system from changing
the volume (or density),

P2

P1
=

(
ρ2

ρ1

)γ

=
(

T2

T1

)γ/(γ−1)

, (11)

where γ = 1 + R/cV (γ is about 1.4 for air and is closer
to 1 the more incompressible the fluid)[1]. Internal unit en-
ergy and total unit energy are then updated by the state
equations.

When the partial volume of a voxel changes from one
nonzero value to another, the resulting pressure changes
cause fluid to move to or from a neighbor based on the gov-
erning equations. However, when the partial volume of a
voxel changes from zero to nonzero or vice versa, the sit-
uation must be handled as a special case by treating the
affected voxel and one of its neighbors as a single larger
voxel with a nonzero partial volume. The neighbor is se-
lected based on the largest axial component of the object’s
velocity, �

p. We calculate the internal partial volume for

each of the involved voxels A and B as ṼA1
and ṼB1

.

Figure 8: Refraction of light from a blast wave. Each frame
is 10 ms apart. The index of refraction is exaggerated tenfold
to enhance the effect.

When VA1
, the original partial volume of A, is zero and

VA2
, the new partial volume of A, is nonzero, we use initial

volumes ṼA1
and ṼB1

such that ṼA1
+ ṼB1

= VB1
(the initial

volume is conserved) and ṼA1
VB2

= ṼB1
VA2

(the voxels are
treated as a single larger voxel). The change in volume is

∆VA = VA2
− ṼA1

= VA2
− VA2

VB1

VA2
+ VB2

, (12)

∆VB = VB2
− ṼB1

= VB2
− VB2

VB1

VA2
+ VB2

. (13)

When the original partial volume of A, VA1
, is nonzero

and the new partial volume of A, VA2
, is zero, we force ṼA1

to be zero and treat ṼB1
as a single larger voxel. To treat

the two voxels as one, we first average the properties of A
and its neighbor B, transferring any lost kinetic energy to
internal energy. The change in volume is then

∆VB = VB2
− ṼB1

= VB2
−

ρAVA1
+ ρBVB1

ρB
(14)

by making sure that ρBṼB1
= ρAVA1

+ ρBVB1
(mass is con-

served).

5 Secondary Effects

An explosion creates a number of visual secondary effects
including the refraction of light, fireballs, and dust clouds.
These secondary effects do not significantly affect the simu-
lation, so they can be generated and edited as a post-process.

One of the most stunning, but often ignored, effects of
an explosion is the bending of light from the blast wave.
Because the blast wave is substantially denser than the sur-
rounding air, it has a higher index of refraction, η. Light
travels at the same velocity between molecules, but near
molecules it is slowed down from interactions with electrons.
This concept is expressed numerically as η − 1 = kρ, k =
2.26 × 10−4 m3/kg, by the Dale-Gladestone law[11]. We
capture the refraction of light by ray tracing through the

Figure 9: A fireball after one second of simulation time.
Tracer particles from the fluid simulation determine the po-
sition and coloration of the fireball.

34



Figure 10: A fireball coming around a corner. The images
are spaced 333 ms apart.

fluid volume. (See Figure 8.) As the ray is traced through
the volume, the index of refraction is continually updated
based on the interpolated density of the current position.
For simplicity, we compute the density of each point using
a trilinear interpolation of the densities of the neighboring
voxels. When the index of refraction changes by more than
a threshold, the new direction of the ray is computed via
Snell’s law using the density gradient as the surface normal.
The trilinear interpolation results in minor faceting effects
that cause small errors in the reflected direction.

An advantage of using a full volumetric fluid represen-
tation for explosions is that the simulation can be used to
model a fireball in addition to the blast wave. We assume
that the fireball is composed of detonated material from in-
side the explosive. To track this material, the system initial-
izes the fireball by placing particles inside the shape specified
by the user for the explosion. The particles are massless and
flow with the fluid, allowing the fluid dynamics model to cap-
ture effects critical for a fireball such as thermal conductivity
and buoyancy. Some fluid simulations[4, 18] model thermal
buoyancy explicitly; in our simulation, thermal buoyancy is
a behavior derived from the governing equations. For ren-
dering, each particle takes on a temperature that is inter-
polated based on its position in the volume. The particles
are rendered as Gaussian blobs with values for red, green,
blue, and opacity. The color values are based on blackbody
radiation at appropriate wavelengths given the temperature
of the particle[11]. Figure 9 shows a fireball and correspond-
ing tracer particles after one second of simulation. Figure 10
shows a fireball coming around a corner; the hallway is illu-
minated by the flames.

The tracer particles couple the appearance of the fireball
to the motion of the fluid, and although heat generated by
the initial explosion is added to the fluid model, any addi-
tional heat generated by post-detonation combustion is ig-
nored. Radiative energy released at detonation could also be
modeled for rendering. Much like the difficulties encountered
with rendering the sun[15], the high contrast of this effect
may require contrast-reduction techniques such as LCIS[21].

The blast wave and other secondary waves create dust
clouds by disturbing fine particles resting on surfaces. The
creation of dust clouds is difficult to quantify either exper-
imentally or analytically, so the rate at which the dust be-
comes airborne is left as a control for the animator. Once a
dust particle is airborne, its behavior is dictated by its size.
The smaller it is, the more it is influenced by drag forces and
the less it is influenced by inertial forces. Smaller dust parti-
cles have lower terminal velocities and exhibit more Brown-
ian motion. With the exception of coagulated particles, ex-
periments reveal that most dust particles are approximately
ellipsoidal with low eccentricity, and the particles do not
orient themselves to the fluid flow[6]. The difference in dy-
namics between these particles and spherical particles is not
that significant, so we assume dust particles to be spheri-
cal. We implement dust as metaparticles, each representing
a Gaussian density of homogeneous dust particles. The dust
size for each metaparticle is chosen according to size dis-
tributions from experimental data for blasted shale[6]. The

Example h ∆t ttot V0 P0 T0

(figure) (m) (ms) (ms) (m3) (atm) (K)

projectile (1) 1.0 0.10 450 73.60 1000 2900

barrier (2) 0.2 0.01 25 0.52 1000 2900

shapes (5) 1.0 0.10 30 1000.00 1000 2900

fracture (6,7) 0.2 0.02 20 0.52 1000 2900

fireball (8,9) 1.0 0.10 1000 65.40 1000 2900

corner (10) 1.0 0.10 10000 268.08 1000 2900

city (11) 1.0 0.10 5000 65.40 1000 2900

nuclear (12) 50.0 0.50 30000 9.1×107 345 1×105

Table 1: Parameters for simulations: voxel width, timestep,
total simulation time, and initial volume, pressure, and tem-
perature of detonation.

metaparticles travel through the fluid as if single particles
were located at their centers. Their variances grow accord-
ing to the mean Brownian diffusion per unit time. Figure 11
shows dust clouds in a city scene.

6 Results and Discussion

We ran the system with several scenarios. The physical con-
stants used in the simulation were constants for air that were
taken from an engineering handbook[7]. Table 6 shows the
voxel width, timestep, total simulation time, initial volume
of the explosion (proportional to yield), and initial pressure
and temperature of the explosion. The timesteps ∆t increase
by a factor of five once the blast wave leaves the volume.

The simulations ran on a single 195 MHz R10K proces-
sor and used a 101 × 101 × 101 volume. The running times
per timestep varied considerably from several seconds to two
minutes because of the pruning described in Section 3.3. For
coupling with fracture, I/O became a major factor because
in each iteration the entire volume was written to disk; how-
ever, using better compression would reduce this expense.
Running times of the simulations varied from a few hours
(Figure 5) to overnight (Figures 2, 6, 7, and 8) to a few days
(Figures 1, 9, 10, and 12).

We use an explicit integration technique to compute the
motion of the pressure wave caused by the detonation. De-
spite its magnitude, the wave does not transport fluid large
distances. Previously, fluid dynamics has been used most of-
ten in computer graphics to capture the effects of macroscale
fluid transport where the fluid does move a significant dis-
tance. Implicit integration techniques with large timesteps
are appropriate for these situations because they achieve sta-
bility by damping high frequencies. The propagation of the
pressure wave in our stiff equations, however, is character-
ized by these high frequencies and it is essential that they
not be artificially damped. We chose, therefore, to use an ex-
plicit integration technique; however, an implicit integration
technique could be used to simulate the fireball and dust
clouds after the blast wave and the secondary waves have
left the volume. Using an implicit integration technique in
the slow flow regime could allow larger timesteps and faster
execution times.

Figure 11: An explosion among buildings. The images are
spaced 667 ms apart.

35



Figure 12: A large-scale high-temperature explosion resem-
bling a nuclear explosion: after 3 s, 6 s, 12 s, 24 s.

We assume that the voxels in the fluid volume are of a
size appropriate for the phenomena that we wish to capture.
In particular, if solid objects have a dimension smaller than
a voxel, then they will not create a hard boundary that pre-
vents fluid flow. For example, a wall that is thinner than a
voxel will permit the blast wave to travel through it because
partial volumes do not maintain any geometric information
about the sub-voxel shape of the object. The difficulty of
a two-way coupling with fracturing objects stems from hav-
ing to model subvoxel cracks, which should allow flow to go
through. If small objects are required, the voxel size could
be decreased or dynamic remeshing techniques could be used
to create smaller voxels in the areas around boundaries.

There are effects from explosions that we have not in-
vestigated. Although smoke is often a visible feature of an
explosion that includes a fireball, we do not have a physically
based model for smoke creation. Incomplete combustion at
lower temperatures results in smoke, and that observation
could be used as a heuristic to determine where smoke should
be created in the fireball and how densely. Stam and Fiume
used a similar heuristic model[19]. Textures of objects could
be modified to show soot accumulation and scorching over
time. Dust clouds are created when an object fractures or
pulverizes. Dust could be introduced into our system when
the finite-element model produces small tetrahedra or when
cracks form.

We made several assumptions in constructing our model
of explosions. Most discounted effects that did not con-
tribute noticeably to the final rendered images; however,
some could produce a noticeable change in behavior in cer-
tain situations and may warrant further investigation. We
only model the blast wave traveling through air. However,
waves travel through other media, including solid objects,
and complex interface effects occur when a wave travels be-
tween two different media. For large-scale explosions, me-
teorological conditions such as the change in pressure with
respect to altitude or the interface between atmospheric lay-
ers (the tropopause) may need to be considered.

Our goal in this work has been to create a physically re-
alistic model of explosions. However, this model should also
lend itself to creating less realistic effects. Even though our
model does not incorporate high-temperature effects such as
ionization, we can still obtain interesting results on high-
temperature explosions. The fireball in Figure 12 resulted
from an initial detonation at 105 K. Explosions used in
feature films often include far more dramatic fireballs than
would occur in the actual explosions that they purport to
mimic. By using more tracer particles and adjusting the
rendering parameters of the fireballs, we should be able to
reproduce this effect. Noise could be added either to the
velocity fields or particle positions post-process to make the
explosion look more turbulent. Similarly, explosions in space
are often portrayed as more colorful and violent than explo-
sions that occurred outside of the atmosphere should be. Im-
parting an initial outward velocity to the explosion, turning
off gravity, and increasing the thermal buoyancy by modify-
ing the state equations might create a similar effect.

7 Acknowledgments

This project was supported in part by NSF NYI Grant
No. IRI-9457621, Mitsubishi Electric Research Laboratory,
and a Packard Fellowship. The second author was supported
by a Fellowship from the Intel Foundation.

References

[1] J. D. Anderson Jr. Modern compressible flow: with historical

perspective. McGraw-Hill, Inc., 1990.

[2] W. E. Baker. Explosions in air. University of Texas Press, 1973.

[3] D. Ebert, K. Musgrave, D. Peachy, K. Perlin, and S. Worley. Tex-

turing and Modeling: A Procedural Approach. AP Professional,

1994.

[4] N. Foster and D. Metaxas. Modeling the motion of a hot, turbu-

lent gas. Proceedings of SIGGRAPH 97, pages 181–188, August

1997.

[5] N. Foster and D. Metaxas. Realistic animation of liquids. Graph-

ics Interface ’96, pages 204–212, May 1996.

[6] H. L. Green and W. R. Lane. Particulate Clouds: Dusts,

Smokes and Mists. D. Van Nostrand Company, Inc., 1964.

[7] A. M. Kuethe and C. Chow. Foundations of aerodynamics:

bases of aerodynamic design. John Wiley and Sons, Inc., 1998.

[8] C. L. Madder. Numerical modeling of detonations. University

of California Press, 1979.

[9] K. H. Martin. Godzilla: The sound and the fury. Cinefex, pages

82–107, July 1998.

[10] O. Mazarak, C. Martins, and J. Amanatides. Animating explod-

ing objects. Graphics Interface ’99, pages 211–218, June 1999.

[11] J. R. Meyer-Arendt. Introduction to classical and modern op-

tics. Prentice-Hall, Inc., 1984.

[12] M. Neff and E. Fiume. A visual model for blast waves and frac-

ture. Graphics Interface ’99, pages 193–202, June 1999.

[13] F.S. Nooruddin and G. Turk. Simplification and repair of polyg-

onal models using volumetric techniques. Technical Report GIT-

GVU-99-37, Georgia Institute of Technology, 1999.

[14] J. F. O’Brien and J. K. Hodgins. Graphical modeling and ani-

mation of brittle fracture. Proceedings of SIGGRAPH 99, pages

137–146, August 1999.

[15] A. J. Preetham, P. Shirley, and B. E. Smits. A practical analytic

model for daylight. Proceedings of SIGGRAPH 99, pages 91–

100, August 1999.

[16] W. T. Reeves. Particle systems—a technique for modeling a class

of fuzzy objects. ACM Transactions on Graphics, 2(2):91–108,

April 1983.

[17] K. Sims. Particle animation and rendering using data parallel

computation. Computer Graphics (Proceedings of SIGGRAPH

90), 24(4):405–413, August 1990.

[18] J. Stam. Stable fluids. Proceedings of SIGGRAPH 99, pages

121–128, August 1999.

[19] J. Stam and E. Fiume. Depicting fire and other gaseous phe-

nomena using diffusion processes. Proceedings of SIGGRAPH

95, pages 129–136, August 1995.

[20] R. Street. Volcano: Toasting the coast. Cinefex, pages 56–84,

September 1997.

[21] J. Tumblin and G. Turk. LCIS: A boundary hierarchy for detail-

preserving contrast reduction. Proceedings of SIGGRAPH 99,

pages 83–90, August 1999.

[22] M. C. Vaz. Journey to Armageddon. Cinefex, pages 68–93,

October 1998.

36


