
1

Point-Based Computer Graphics Matthias Zwicker 1

Point-Based Rendering

Matthias Zwicker
Computer Graphics Lab

ETH Zürich

Point-Based Computer Graphics Matthias Zwicker 2

Point-Based Rendering

• Introduction and motivation
• Surface elements
• Rendering
• Antialiasing
• Hardware Acceleration
• Conclusions

Point-Based Computer Graphics Matthias Zwicker 3

Motivation 1

Quake 2
1998

Nvidia GeForce4
2002

Point-Based Computer Graphics Matthias Zwicker 4

Motivation 1

• Performance of 3D hardware has exploded
(e.g., GeForce4: 136 million vertices per
second)

• Projected triangles are very small (i.e.,
cover only a few pixels)

• Overhead for triangle setup increases
(initialization of texture filtering,
rasterization)

A simpler, more efficient rendering
primitive than triangles?

Point-Based Computer Graphics Matthias Zwicker 5

Motivation 2

• Modern 3D scanning devices
(e.g., laser range scanners)
acquire huge point clouds

• Generating consistent triangle
meshes is time consuming and
difficult

A rendering primitive for
direct visualization of point
clouds, without the need to
generate triangle meshes? 4 million pts.

[Levoy et al. 2000]

Point-Based Computer Graphics Matthias Zwicker 6

Points as Rendering
Primitives
• Point clouds instead of triangle meshes [Levoy and

Whitted 1985, Grossman and Dally 1998, Pfister et
al. 2000]

triangle mesh (with
textures)

point cloud

2

Point-Based Computer Graphics Matthias Zwicker 7

Point-Based Surface
Representation

• Points are samples of the surface
• The point cloud describes:

• 3D geometry of the surface
• Surface reflectance properties (e.g.,

diffuse color, etc.)

• There is no additional information,
such as
• connectivity (i.e., explicit

neighborhood information between
points)

• texture maps, bump maps, etc.

Point-Based Computer Graphics Matthias Zwicker 8

Surface Elements - Surfels

• Each point corresponds to a surface
element, or surfel, describing the surface in
a small neighborhood

• Basic surfels:

BasicSurfel {
position;
color;

}

position

color

x

y

z

Point-Based Computer Graphics Matthias Zwicker 9

Surfels

• How to represent the surface between the
points?

• Surfels need to interpolate the surface
between the points

• A certain surface area is associated with
each surfel

holes between
the points

Point-Based Computer Graphics Matthias Zwicker 10

ExtendedSurfel {
position;
color;
normal;
radius;
etc...

}

Surfels
• Surfels can be extended by storing additional

attributes
• This allows for higher quality rendering or

advanced shading effects

normal
position

color radius

surfel disc

Point-Based Computer Graphics Matthias Zwicker 11

Surfels

• Surfels store essential information for
rendering

• Surfels are primarily designed as a
point rendering primitive

• They do not provide a mathematically
smooth surface definition (see [Alexa
2001], point set surfaces)

Point-Based Computer Graphics Matthias Zwicker 12

Model Acquisition

• 3D scanning of physical objects
• See Pfister, acquisition
• Direct rendering of acquired point clouds
• No mesh reconstruction necessary

[Matusik et al. 2002]

3

Point-Based Computer Graphics Matthias Zwicker 13

Model Acquisition

• Sampling synthetic objects
• Efficient rendering of complex models
• Dynamic sampling of procedural objects

and animated scenes (see Stamminger,
dynamic sampling)

[Zwicker et al. 2001] [Stamminger et al. 2001]

Point-Based Computer Graphics Matthias Zwicker 14

Model Acquisition

• Processing and editing of point-sampled
geometry

point-based surface editing
[Zwicker et al. 2002]

(see Pauly, Pointshop3D)

spectral processing
[Pauly, Gross 2002]

(see Gross, spectral processing)

Point-Based Computer Graphics Matthias Zwicker 15

Visibility
Image

Reconstruction
Filtering

and Shading
Forward
Warping

• Simple, pure forward mapping pipeline
• Surfels carry all information through the pipeline

(„surfel stream“)
• No texture look-ups
• Framebuffer stores RGB, alpha, and Z

Point
Cloud

Frame-
buffer

Point Rendering Pipeline

Point-Based Computer Graphics Matthias Zwicker 16

Visibility
Image

Reconstruction
Filtering

and Shading
Forward
Warping

• Perspective projection of each point in
the point cloud

• Analogous to projection of triangle
vertices
• homogeneous matrix-vector product
• perspective division

Point Rendering Pipeline

Point-Based Computer Graphics Matthias Zwicker 17

• Per-point shading
• Conventional models for shading (Phong,

Torrance-Sparrow, reflections, etc.)
• High quality antialiasing is an advanced

topic discussed later in the course

Visibility
Image

Reconstruction
Filtering

and Shading
Forward
Warping

Point Rendering Pipeline

Point-Based Computer Graphics Matthias Zwicker 18

• Visibility and image reconstruction is
performed simultaneously
• Discard points that are occluded from the

current viewpoint
• Reconstruct continuous surfaces from

projected points

Visibility
Image

Reconstruction
Filtering

and Shading
Forward
Warping

Point Rendering Pipeline

4

Point-Based Computer Graphics Matthias Zwicker 19

Overview

Visibility
Image

Reconstruction
Filtering

and Shading
Forward
Warping

1.2.

Point-Based Computer Graphics Matthias Zwicker 20

Visibility and Image
Reconstruction

with visibility and
image reconstruction

without visibility and
image reconstruction

foreground point

occluded background point

surface discontinuity
(“hole”)

Point-Based Computer Graphics Matthias Zwicker 21

• Goal: avoid holes
• Use surfel disc radius r to cover

surface completely

radius r

3D object space

surfel disc

normal

Image Reconstruction

Point-Based Computer Graphics Matthias Zwicker 22

• Draw a colored quad centered at the projected
point

• The quad side length is h, where h = 2 * r * s
• The scaling factor s given by perspective

projection and viewport transformation
• Hardware implementation: OpenGL GL_POINTS

x

y

screen space

}h

colored quad

projected point

Quad Rendering
Primitive

Point-Based Computer Graphics Matthias Zwicker 23

• Project surfel discs from object to screen space
• Projecting discs results in ellipses in screen space
• Ellipses adapt to the surface orientation

screen space object space

x

y y

z

x

normal

surfel disc

projected surfel disc

Projected Disc Rendering
Primitive

Point-Based Computer Graphics Matthias Zwicker 24

Comparison

• Quad primitive
• Low image quality (primitives do not adapt to

surface orientation)
• Efficient rendering
• Supported by conventional 3D accelerator

hardware (OpenGL GL_POINTS)

• Projected disc primitive
• Higher image quality (primitives adapt to surface

orientation)
• Not directly supported by graphics hardware
• Higher computational cost

5

Point-Based Computer Graphics Matthias Zwicker 25

Visibility: Z-Buffering

• No blending of rendering primitives

y

framebuffer

x

z2

z1

z

z1 > z2{
pixel

Point-Based Computer Graphics Matthias Zwicker 26

Splatting

• A splat primitive consists of a colored point
primitive and an alpha mask

colored point
primitive c

alpha mask
w(x,y)

(often a 2D
Gauss function)

splat primitive
c * w(x,y)

y

x

y

x

y

x

* =

Point-Based Computer Graphics Matthias Zwicker 27

∑
∑=

i i

i ii

yxw

yxwc
yxc

),(

),(
),(

Splatting

• Normalization is necessary, because the weights do
not sum up to one with irregular point distributions

• The final color c(x,y) is computed by additive
alpha blending, i.e., by computing the weighted
sum

color of splat i alpha of splat i at position (x,y)

1),(≠∑i i yxw

Point-Based Computer Graphics Matthias Zwicker 28

Splatting

varying brightness
because of irregular
point distribution

without normalization with normalization

no artifacts

Point-Based Computer Graphics Matthias Zwicker 29

Splatting

• Extended z-buffering

z
z-buffer pixel surfel disc

surface 2surface 1

z-threshold
accumulate

splats

discard splats

Point-Based Computer Graphics Matthias Zwicker 30

Extended Z-Buffering

DepthTest(x,y) {

if (abs(splat z – z(x,y)) < threshold) {

c(x,y) = c(x,y) + splat color

w(x,y) = w(x,y) + splat w(x,y)

} else if (splat z < z(x,y)) {

z(x,y) = splat z

c(x,y) = splat color

w(x,y) = splat w(x,y)

}

}

6

Point-Based Computer Graphics Matthias Zwicker 31

Splatting Comparison

minif.

magnif. 128 x 192

elliptical
splats

128 x 192

circular splats
with min. radius

128 x 192

surface
splatting

Point-Based Computer Graphics Matthias Zwicker 32

High Quality Splatting

• High quality splatting requires careful
analysis of aliasing issues
• Review of signal processing theory
• Application to point rendering
• Surface splatting [Zwicker et al. 2001]

Point-Based Computer Graphics Matthias Zwicker 33

Aliasing in Computer
Graphics
• Aliasing = Sampling of continuous functions

below the Nyquist frequency
• To avoid aliasing, sampling rate must be twice as

high as the maximum frequency in the signal

• Aliasing effects:
• Loss of detail
• Moire patterns, jagged edges
• Disintegration of objects or patterns

• Aliasing in Computer Graphics
• Texture Mapping
• Scan conversion of geometry

Point-Based Computer Graphics Matthias Zwicker 34

Aliasing in Computer
Graphics
• Aliasing: high frequencies in the input signal

appear as low frequencies in the
reconstructed signal

Point-Based Computer Graphics Matthias Zwicker 35

Occurrence of Aliasing

Spatial Domain Frequency Domain Spatial Domain Frequency Domain

Point-Based Computer Graphics Matthias Zwicker 36

Aliasing-Free Reconstruction

Spatial Domain Frequency Domain Spatial Domain Frequency Domain

7

Point-Based Computer Graphics Matthias Zwicker 37

Antialiasing

• Prefiltering
• Band-limit the continuous signal before

sampling
• Eliminates all aliasing (with an ideal low-pass

filter)
• Closed form solution not available in general

• Supersampling
• Raise sampling rate
• Reduces, but does not eliminate all aliasing

artifacts (in practice, many signals have infinite
frequencies)

• Simple implementation (hardware)

Point-Based Computer Graphics Matthias Zwicker 38

Resampling

1.

warp

2. 3.

4.

discrete input signal discrete output signal

resampling

Point-Based Computer Graphics Matthias Zwicker 39

Resampling Filters

Object Space

reconstruction kernels

reconstructed input

position

color

irregular spacing

Point-Based Computer Graphics Matthias Zwicker 40

Resampling Filters
Object Space

3. Filter

Screen Space2.
 W

ar
p

Screen Space

4.
 S

am
pl

e

Screen Space

Point-Based Computer Graphics Matthias Zwicker 41

Resampling Filters
Object Space

3. Filter

Screen Space2.
 W

ar
p

Screen Space

4.
 S

am
pl

e

Screen Space

low-pass filter convolution

resampling filters

sum of resampling filters

warped reconstruction
kernel

Point-Based Computer Graphics Matthias Zwicker 42

Resampling

• Resampling in the context of surface
rendering
• Discrete input function = surface texture

(discrete 2D function)
• Warping = projecting surfaces to the

image plane (2D to 2D projective
mapping)

8

Point-Based Computer Graphics Matthias Zwicker 43

2D Reconstruction Kernels

• Warping a 2D reconstruction kernel is equivalent to
projecting a surfel disc with alpha mask

screen space object space

x

y y

z

x

normal

surfel disc with
alpha mask =
reconstruction
kernel

warped reconstruction kernel

Point-Based Computer Graphics Matthias Zwicker 44

Resampling Filters
• A resampling filter is a convolution of a

warped reconstruction filter and a low-pass
filter

warped
reconstruction

kernel

low-pass filter
(determined by

pixel grid)

resampling filter
(“blurred reconstruction

kernel”)

screen space
pixel grid

“no information falls
inbetween the pixel
grid”convolution

Point-Based Computer Graphics Matthias Zwicker 45

Mathematical Formulation

∑ ⊗= −
k kk yxhyxmrcyxc),()),((),(1

pixel color

reconstruction kernel

warping function low pass filter

reconstruction kernel color

Point-Based Computer Graphics Matthias Zwicker 46

Gaussian Resampling Filters

• Gaussians are closed under linear
warping and convolution

• With Gaussian reconstruction kernels
and low-pass filters, the resampling
filter is a Gaussian, too

• Efficient rendering algorithms
(surface splatting [Zwicker et al.
2001])

Point-Based Computer Graphics Matthias Zwicker 47

Mathematical Formulation

Gaussian
reconstruction kernel

Gaussian
low-pass filter

∑ ⊗= −
k kk yxhyxmrcyxc),()),((),(1

screen space screen space

Point-Based Computer Graphics Matthias Zwicker 48

Mathematical Formulation

∑ ⊗= −
k kk yxhyxmrcyxc),()),((),(1

∑=
k kk yxGc),(

Gaussian resampling filter

9

Point-Based Computer Graphics Matthias Zwicker 49

Algorithm

for each point P {

project P to screen space;

shade P;

determine resampling kernel G;

splat G;

}

for each pixel {

normalize;

}

Point-Based Computer Graphics Matthias Zwicker 50

Properties of 2D Resampling
Filters

warped recon-
struction kernel

low-pass
filter

resampling
filter

minification

magnification

Point-Based Computer Graphics Matthias Zwicker 51

Hardware Implementation

• Based on the object space formulation of
EWA filtering

• Implemented using textured triangles
• All calculations are performed in the

programmable hardware (extensive use of
vertex shaders)

• Presented at EG 2002 ([Ren et al. 2002])

Point-Based Computer Graphics Matthias Zwicker 52

Surface Splatting
Performance
• Software implementation

• 500 000 splats/sec on 866 MHz PIII
• 1 000 000 splats/sec on 2 GHz P4

• Hardware implementation [Ren et al. 2002]
• Uses texture mapping and vertex shaders
• 3 000 000 splats/sec on GeForce4 Ti 4400

Point-Based Computer Graphics Matthias Zwicker 53

Conclusions
• Points are an efficient rendering primitive for highly complex

surfaces
• Points allow the direct visualization of real world data

acquired with 3D scanning devices
• High performance, low quality point rendering is supported

by 3D hardware (tens of millions points per second)
• High quality point rendering with anisotropic texture filtering

is available
• 3 million points per second with hardware support
• 1 million points per second in software

• Antialiasing technique has been extended to volume
rendering

Point-Based Computer Graphics Matthias Zwicker 54

Applications

• Direct visualization of point clouds
• Real-time 3D reconstruction and rendering

for virtual reality applications
• Hybrid point and polygon rendering systems
• Rendering animated scenes
• Interactive display of huge meshes
• On the fly sampling and rendering of

procedural objects

10

Point-Based Computer Graphics Matthias Zwicker 55

Future Work

• Dedicated rendering hardware
• Efficient approximations of exact EWA

splatting
• Rendering architecture for on the fly

sampling and rendering

Point-Based Computer Graphics Matthias Zwicker 56

References
• [Levoy and Whitted 1985] The use of points as a display primitive,

technical report, University of North Carolina at Chapel Hill, 1985
• [Heckbert 1986] Fundamentals of texture mapping and image warping,

Master‘s Thesis, 1986
• [Grossman and Dally 1998] Point sample rendering, Eurographics

workshop on rendering, 1998
• [Levoy et al. 2000] The digital Michelangelo project, SIGGRAPH 2000
• [Rusinkiewicz et al. 2000] Qsplat, SIGGRAPH 2000
• [Pfister et al. 2000] Surfels: Surface elements as rendering primitives,

SIGGRAPH 2000
• [Zwicker et al. 2001] Surface splatting, SIGGRAPH 2001
• [Zwicker et al. 2002] EWA Splatting, to appear, IEEE TVCG 2002
• [Ren et al. 2002] Object space EWA splatting: A hardware accelerated

approach to high quality point rendering, Eurographics 2002

