
Exercise module 6

Bump mapping

Denis Steinemann

Computer Graphics Laboratory

ETH Zürich

Bump mapping

2

Overview

• Bump–mapping principle

• How to Bump–map?

• What the exercise is about: How to
approximately Bump–map using Textures …

Bump mapping

3

Bump–mapping principle

• Add more realism to synthetic images without
adding a lot of geometry

Bump mapping

4

Bump–mapping principle

• Image texture / Bump–map /
Displacement–map / Environment–map

Bump mapping

5

How to Bump–map
Definitions

• Flat object surface:

• Bump–map (2D height field):

• Bumpy surface:

• Normal of bumped surface?

()vuP ,
()vuF ,

() () ()
N

NvuF
vuPvuP

,
,,' +=

?''' =×= vu PPN

Bump mapping

6

How to Bump–map
Perturbed normal

• Normal of bumped surface, so-called perturbed normal:

• Derivation can be found in “Simulation of Wrinkled Surfaces”
James F. Blinn
SIGGRAPH ’78 Proceedings, pp. 286-292, 1978

(Pioneering paper...)

• Partial derivatives thru forward differencing / finite differences
in bump–map & surface parameterization

N

NP
F

N

PN
FNN u

v
v

u

×
+

×
+='

Bump mapping

7

How to Bump–map
Implementation

• Needs Phong–shading, i.e. evaluation of the lighting
equation @ every pixel position

• Doable using:
– Software renderer

– Today’s graphix hardware (pixel-/vertex-shaders)

– Approximative solution, using textures & accumulation
buffering …

Bump mapping

8

Bump–maps with textures
History

• This is what the exercise is about

• Original idea:
“Efficient bump mapping hardware”
Mark Peercy et al. (sgi)
SIGGRAPH ’97 Proceedings, pp. 303-306, 1997

• (Mis-)use texture to store either:
– perturbed normal map

– bump–map itself

Bump mapping

9

Bump–maps with textures
Assumption

• We need:

• Assume a tangent surface coincident with the xy–plane @ some
point on the surface P

• Then:

yx,

vu PPN ''' ×=

),(),(' vuFvuP ≡
T

F
v

F
u

N ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

= 1,,'

z
N ′

N ′

),(vuP′

),(vuP

Bump mapping

10

Bump–maps with textures
Evaluation (1)

• Diffuse lighting component:

• This requires the surface to lie in the xy–plane!

• Instead of transforming surface, transform light
source direction vector to local tangent space (local
coordinate system)

LN ⋅'

zyx LLF
v

LF
u

LN +⋅
∂
∂

+⋅
∂
∂

=⋅'

Bump mapping

11

Bump–maps with textures
Tangent Space

• Tangent space defined @ polygon vertices

• Basis vectors: ()NTBNT ×=,,

Bump mapping

12

Bump–maps with textures
Tangent Space Transformation

• Coordinate system transform:

• Transformation matrix (homogeneous, orthonormal):

• Transform light vector, using transformation matrix

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡
=

1000

0

0

0

1000

0

zzz

yyy

xxx

NBT

NBT

NBT

NBT
M

newxMx ⋅= xMxnew ⋅= −1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==−

1000

0

0

0

1

zyx

zyx

zyx

T

NNN

BBB

TTT

MM

Bump mapping

13

Bump–maps with textures
Evaluation (2)

• How do we evaluate

Separation: use parallel and perpendicular
components of transformed light vector

zyx LLF
v

LF
u

LN +⋅
∂
∂

+⋅
∂
∂

=⋅'

Bump mapping

14

Bump–maps with textures
Evaluation (3)

• Multipass method with accumulation buffer:

• „Render – Shift – Subtract“ (1st part, 2 passes)

• Add diffuse lighting term (2nd part, 1 pass)

() () ()ssFsFssF ∆+−≅∆⋅'

zyx LLF
v

LF
u

LN +⋅
∂
∂

+⋅
∂
∂

=⋅'

Directional derivatives in 1-D
thru forward differencing:

Diffuse lighting term

() () ()ttFtFttF ∆+−≅∆⋅'

zL

sLx ∆=

tLy ∆=

B

T

N

L Light

),(ttssF ∆+∆+

Bump mapping

15

Bump–maps with textures
Render – Shift – Subtract

• Render the bump–map texture (1st pass)

• Shift the texture coordinates (s,t) (towards light!)

• Re-render, subtracting from 1st image (2nd pass)

• this corresponds to evaluating the directional derivatives using
forward differencing!

A

B

A - B

Bump mapping

16

Bump–maps with textures
Recipe

1. Render polygon with bump–map on it (1st pass)

2. Find vectors T,N,B @ each vertex

3. Transform light vector L into tangent space

4. Shift texture coordinates s,t @ each vertex in direction
of the light (using x,y coords of transformed light
vector)

5. Re-render polygon with shifted map (2nd pass)

6. Subtract 2nd image from 1st

7. Render polygon, smooth shaded, with lighting enabled,
texturing disabled, add it! (3rd pass)

Render-
Shift-
Subtract

Diffuse
Lighting

Bump mapping

17

Bump–maps with textures
What do you have to do ?

• Implement the following 2 functions:
– shiftcoords(…)

• Determine light vector L

• Transform into tangent space

• Shift texture coordinates s,t

– redrawbump(void)
• Render cylinder using accumulation buffering

• Read paper by Peercy ...

• http://www.opengl.org/resources/tutorials/advanced/advanced98
/notes/node107.html ...

• Submit to deniss@inf.ethz.ch until January 28th

