
Contouring and Isosurfaces
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What are contours?

Set of points where the scalar field s has a given value c:

( ){ }:n s c∈ =x x

Examples in 2D:

( ){ }

• height contours on maps

• isobars on weather maps

Contouring algorithm:

• find intersection with grid edges

• connect points in each cell
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Example

2 types of degeneracies:yp g
• isolated points (c=6)
• flat regions (c=8)

Ronald Peikert SciVis 2007 - Contouring 2-3



Topological consistency

To avoid degeneracies, use symbolic perturbations:

If level c is found as a node value, set the level to c-ε where ε
is a symbolic infinitesimal.

Then:

• contours intersect edges at some (possibly infinitesimal) distance 
from end points

• flat regions can be visualized by pair of contours at c-ε and c+ε

• contours are topologically consistent, meaning:

Contours are closed, orientable, nonintersecting lines.
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Ambiguities of contours

What is the correct contour of c=4?

Two possibilities, both are orientable:

• values s(x)>c are on the left side

• values s(x)<c are on the right side

Answer: correctness depends on interior values of s(x).

But different interpolation schemes are possible.

Better question: What is the correct contour with respect to bilinear 
interpolation?
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( ) ( ) ( ) ( )

Contours in a quadrangle cell

• local coordinates:
• function values:
• bilinear interpolant:

( ) ( ) ( ) ( )0,0 , 1,0 , 0,1 , 1,1
00 10 01 11, , ,s s s s

bilinear interpolant:

( )( ) ( ) ( )00 10 01 111 1 1 1s x y s x y s x y s x y s= − − + − + − +

Axy Bx Cy D+ + +

If A=0, contour equation is

Axy Bx Cy D= + + +

c Bx Cy D= + +
contours are straight lines, all parallel

If A≠0 contour equation is
C B BCc A x y D⎛ ⎞⎛ ⎞= + + + −⎜ ⎟⎜ ⎟If A≠0, contour equation is

contours are hyperbola, except for level

c A x y D
A A A

+ + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

BCc D
A

= −
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Contours in a quadrangle cell

C B⎛ ⎞⎛ ⎞Contour equation for special level:

Contour is a pair of axis-aligned straight lines /x C A= −

0 C BA x y
A A

⎛ ⎞⎛ ⎞= + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

Contour is a pair of axis aligned straight lines 
and                 .

/x C A=
/y B A= −

Applied to example:
• contour equation:

( )( )10 0 3 0 5 4 5

• special level c=4.5

( )( )10 0.3 0.5 4.5c x y= − − − +

• saddle point at (0.3, 0.5)
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Contours in a quadrangle cell

Decision can be made without computing special level or saddle 
point, by comparing fractions of edges:

Using local coordinates, this works also for curvilinear and 
unstructured grids.  
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Contours in a quadrangle cell

Note: For drawing, straight lines are sufficient.
Drawing hyperbola does not lead to better contours:

n

Reason: piecewise bilinear function is not C1.
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Contours in a quadrangle cell

Basic contouring algorithms:
• cell-by-cell algorithms: simple structure, but generate 

disconnected segments, require post-processingg , q p p g
• contour propagation methods: more complicated, but  

generate connected contours

"Marching squares" algorithm (systematic cell-by-cell):
• process nodes in ccw order denoted here as 0 1 2 3, , ,x x x xprocess nodes in ccw order, denoted here as
• compute at each node      the reduced field

(which is forced to be nonzero)
th

0 1 2 3, , ,x x x x

( ) ( ) ( )i is s c ε= − −x x
ix

• take its sign as the ith bit of a 4-bit integer
• use this as an index for lookup table containing the connectivity 

information: 

Ronald Peikert SciVis 2007 - Contouring 2-10



Contours in a quadrangle cell

( ) 0

0 1 2 3
( ) 0is >x

( ) 0is <x

Alternating signs exist 
i 6 d 9

0 1 2 3

in cases 6 and 9.
Choose the solid or 

dashed line?

4 5 6 7

Both are possible for 
topological 
consistency

8 9 10 11
consistency.

This allows to have a 
fixed table of 16 
cases12 13 14 15

Ronald Peikert SciVis 2007 - Contouring 2-11

cases.



Contours in triangle/tetrahedral cells

Linear interpolation of cells implies
piece-wise linear contours.

Contours are unambiguous, making
"marching triangles" even simpler than
"marching squares"marching squares .

Question: Why not split quadrangles into two triangles (and 
hexahedra into five or six tetrahedra) and use marching triangles 
(tetrahedra)?

Answer: This can introduce periodic artifacts!
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Contours in triangle/tetrahedral cells

Illustrative example: Find contour at level c=40.0 !

60.0 50.0 45.0 42.5

20.0 30.0 35.0 37.5

original quad grid, yielding vertices     and contour
triangulated grid,   yielding vertices     and contour
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Contours in triangle/tetrahedral cells

3D example based on real (downsampled) dataset.
Contour (=isosurface) in 

original hexahedral grid   vs.     in tetrahedrized grid: 
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The marching cubes algorithm

Contours of 3D scalar fields are known as isosurfaces.
Before 1987, isosurfaces were computed as 
• contours on planar slices followed bycontours on planar slices, followed by
• "contour stitching".

The marching cubes algorithm computes contours directly in 3D.
• Pieces of the isosurfaces are generated on a cell-by-cell basis.  
• Similar to marching squares a 8 bit number is computed from• Similar to marching squares, a 8-bit number is computed from 

the 8 signs of            on the corners of a hexahedral cell.
• The isosurface piece is looked up in a table with 256 entries. 

( )is x
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The marching cubes algorithm

How to build up the table of 256 cases?

Lorensen and Cline (1987) exploited 3 types of symmetries:Lorensen and Cline (1987) exploited 3 types of symmetries:
• rotational symmetries of the cube
• reflective symmetries of the cube
• sign changes of

They published a reduced set of 14*) cases shown on the next

( )s x

They published a reduced set of 14 ) cases shown on the next 
slides where

• white circles indicate positive signs of     ( )s x
• the positive side of the isosurface is drawn in red, the negative 

side in blue.
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The marching cubes algorithm

case 0 case 1 case 2 case 3

case 4 case 5 case 6 case 7
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The marching cubes algorithm

case 8 case 9 case 10 case 11

case 12 case 13
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The marching cubes algorithm

Do the pieces fit together?
• The correct isosurfaces of the trilinear 

interpolant would fit (trilinear reduces to p (
bilinear on the cell interfaces)

• but the marching cubes polygons don't 
necessarily fitnecessarily fit.

Example
case 10

• case 10, on top of
• case 3 (rotated, signs changed)
have matching signs at nodes but polygonshave matching signs at nodes but polygons 

don't fit. 

case 3
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The marching cubes algorithm

Reason for failure: 
Topology decision on faces with alternating signs. 

Decision by original MC algorithm is not correct w r t the interpolantDecision by original MC algorithm is not correct w.r.t. the interpolant, 
and not consistent.

A consistent decision would be: always cut off the positive corners!

Original MC table obeys this rule, but: 
It is lost when sign change is applied!

Consequence:
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Consequence: 
Extend table by 14 complementary cases for changed signs!



The marching cubes algorithm

case 7case 3 case 6

case 3c case 6c case 7c
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The marching cubes algorithm

The remaining complementary cases are obtained simply by 
changing the orientation.

Example:p

case 1 case 1c

Based on the 28 cases, the full 256 cases are obtained by

case 1 case 1c

• rotations of the cube
• reflections of the cube (and re-orienting of triangles)
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The marching cubes algorithm

Summary of marching cubes algorithm:

Pre-processing steps:Pre processing steps:
• build a table of the 28 cases
• derive a table of the 256 cases, containing info on

– intersected cell edges, e.g. for case 3/256 (see case 2/28):
(0,2), (0,4), (1,3), (1,5)

– triangles based on these points e g for case 3/256:triangles based on these points, e.g. for case 3/256:
(0,2,1), (1,3,2).
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The marching cubes algorithm

Loop over cells:
• find sign of          for the 8 corner nodes, giving 8-bit integer
• use as index into (256 case) table

( )s x
use as index into (256 case) table

• find intersection points on edges listed in table, using linear 
interpolation

• generate triangles according to table

Post-processing steps:Post processing steps:
• connect triangles (share vertices)
• compute normal vectors

– by averaging triangle normals (problem: thin triangles!)
– by estimating the gradient of the field s(x) (better)
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The asymptotic decider algorithm

Motivation for a different isosurface algorithm:

Marching cubes can produce "bad" topologyMarching cubes can produce bad  topology.
2D example (marching squares):

Asymptotic decider algorithm (Nielson and Hamann 1991) :Asymptotic decider algorithm (Nielson and Hamann 1991) :
• generate topologically correct contours (as oriented straight line 

segments) on the cell interfaces
• connect these around the cell, resulting in one or more polygons
• triangulate the polygons

~/avs/networks/SciVis/MCandAD*.net
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The asymptotic decider algorithm

In general, the AD algorithm generates better isosurfaces.

HoweverHowever,
• it cannot be easily implemented with a table like MC (too many 

cases)
• it generates polygons with up to 12 sides (MC: up to 7)
• the topology is correct w.r.t the trilinear interpolant, but the 

geometry can deviate g y
• some polygons cannot be "cleanly" triangulated

A few examples are given on the next slide, showing isosurfaces of 
the trilinear interpolant. 
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The asymptotic decider algorithm

2

2
-3

-3 2
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-1 -5
36
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3
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-1

-3

-2 2
2

-2

3 2

-3 -3
-2

6

8-sided polygon 9-sided polygon 12-sided polygon

Th 8 id d l h lid i l i !The 8-sided polygon has no valid triangulation!
• either some triangles lie on faces of the cell
• or an extra vertex has to be used
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or an extra vertex has to be used 
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Post-processing of isosurfaces

Example (VTK demo):
pine root dataset 

(1) unprocessed
MC isosurfaceMC isosurface
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Data: J. McFall, Center for In Vivo Microscopy, Duke University



Post-processing of isosurfaces

Example (VTK demo):
pine root dataset

(2) largest connected
component onlycomponent only

Algorithm: connected 
component labelingcomponent labeling
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Post-processing of isosurfaces

Example (VTK demo):
pine root dataset

(3) decimated from
351,118 to351,118 to 
81,111 triangles

P f d i tiPurpose of decimation:
• data reduction
• improve mesh quality

(thin/small triangles)
Algorithm (Schroeder):
• vertex removal
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• feature edges kept



The dividing cubes algorithm

An early point-based algorithm (Crawford et al. '87): For each cell 
• check whether it is intersected by the isosurface:

min maxi is c s< <

• subdivide intersected cell into                    subcells using trilinear 
interpolation

m m m× ×
i ii cell i cell∈ ∈

• draw the centers of all intersected subcells
Points can be lit:
• estimate the gradient and use it as the normal vectorestimate the gradient and use it as the normal vector

50’078 and
2’506’989 points
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Optimized isosurface algorithms

Approaches to speeding up isosurface computation:

View dependent algorithmsView dependent algorithms
• occluded triangles not computed
• GPU-based isosurface computation and rendering

Data preprocessing for fast computation of multiple isosurfaces 
(multiple levels) e g for interactive exploration of the data(multiple levels), e.g. for interactive exploration of the data.

• many methods: octree, extrema graph, span space
• common goal: avoid computation in non-intersected cells.
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The octree-based algorithm

Method by Wilhelms and van Gelder (1992) for (block-)structured 
grids.

Pre-processing:
• recursively split the grid in two subgrids, building up a binary tree 

f b id t litti h i l ll h dof subgrids, stop splitting when single cells are reached.
• compute minimum and maximum of s(x) per subgrid, store as an 

interval [min, max] in the tree.

Computing the isosurface for a level c:
starting at the root• starting at the root,

• descend recursively to subtrees if min<c<max
• if a leaf is reached, generate the isosurface for the respective 
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The span-space algorithm

Method by Livnat (1996).

Pre-processing:Pre processing: 
• for each cell compute min and max, 
• treat (min,max) as a point in the span space (Euclidean plane)
• store points in boxes, non-empty boxes organized as linked list

max
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The span-space algorithm

Computing the isosurface for a level c:
• Find the intersected cells in the quadrant min<c, max>c

Performance gain for datasets with small local variation,
i.e. points in span space distributed mostly near diagonal

max

c
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Limitations of isosurfaces

Isosurfaces represent only a single level within the data range.
In practial data, there is often not a single "interesting" level.

Example: Von Kármán vortex street, colored by entropy.

"interesting" level: red on the left, green on the right.
H h ld 3D i f th d t b i li d?
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How should a 3D version of these data be visualized?



Limitations of isosurfaces

Transparent rendering of multiple isosurfaces is possible, but:
• limited to a small number by visibility
• alpha-blending requires depth sortingalpha blending requires depth sorting

Alternatives:
• feature extraction methods, e.g. detecting "blobs" (maximal 

ellipse-like contours).
• volume rendering can show ranges of "interesting" levels of thevolume rendering can show ranges of interesting  levels of the 

field and/or its gradient.
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