
Object Space Volume Rendering

Ronald Peikert SciVis 2007 - Object Space Volume Rendering 4-1

Object space volume rendering

In object space rendering methods, the main loop is not over the
pixels but over the objects in 3-space.

In the case of direct volume rendering "objects" can mean:In the case of direct volume rendering, "objects" can mean:

• layers of voxels: image compositing methods

2D t t b d– 2D texture based

– 3D texture based

l l tti th d• voxels: splatting methods

• cells: cell projection methods

Ronald Peikert SciVis 2007 - Object Space Volume Rendering 4-2

Texture-based volume rendering

Volume rendering by 2D texture mapping:
• use planes parallel to base plane (front face of volume which is

"most orthogonal" to view ray)most orthogonal to view ray)
• draw textured rectangles, using bilinear interpolation filter
• render back-to-front, using α-blending for the α-compositing

Ronald Peikert SciVis 2007 - Object Space Volume Rendering 4-3

Image credit: H.W.Shen, Ohio State U.

Texture-based volume rendering

Volume rendering by 3D texture mapping (Cabral 1994):
• use the voxel data as the 3D texture
• render an arbitrary number of slices (eg 100 or 1000) parallel to• render an arbitrary number of slices (eg. 100 or 1000) parallel to

image plane (3- to 6-sided polygons)
• back-to-front compositing as in 2D texture method
Limited by size of texture memory.

Ronald Peikert SciVis 2007 - Object Space Volume Rendering 4-4

Image credit: H.W.Shen, Ohio State U.

The shear-warp factorization

In general the image plane is not parallel to a volume face.

Th h th d b L t ll t dThe shear-warp method by Lacroute allows to render an
intermediate image in the base plane:

• transform to sheared object space by translating (and j p y g (
possibly scaling) the voxel layers

• render the intermediate image in the base plane
• warp the intermediate image

Ronald Peikert SciVis 2007 - Object Space Volume Rendering 4-5

The shear-warp factorization

object space sheared object space

view rays

shear translated
voxel layersorthographic

view
base plane

view

view rays

shear translated
d l dperspective shear and scaled

voxel layers
base plane

perspective
view

Ronald Peikert SciVis 2007 - Object Space Volume Rendering 4-6

Orthographic shear-warp

The view transformation ("modelview" in OpenGL) is an affine
transformation, consisting of a rotation and a translation.

Ignoring the translation the 3x3 submatrix can be factorized:Ignoring the translation, the 3x3 submatrix can be factorized:

where:
view = ⋅ ⋅M W S P

where:
• P is a permutation matrix mapping the base plane (front face of

the volume most orthogonal to the center view ray) to the xy-plane
• S is the shear matrix
• W is the warp matrix

Ronald Peikert SciVis 2007 - Object Space Volume Rendering 4-7

Orthographic shear-warp

The shear is of the form

xx x s⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

0
yy y z s

z z

⎜ ⎟ ⎜ ⎟ ⎜ ⎟= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

S

Hence, the shear matrix

1 0 xs⎡ ⎤
⎢ ⎥0 1
0 0 1

ys⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

S

where sx and sy have to be solved for from Mview .

Ronald Peikert SciVis 2007 - Object Space Volume Rendering 4-8

Orthographic shear-warp

The warp is a 3x3 matrix, but effectively an affine transformation of
the xy-plane.

The third row of W is irrelevant while two zeros in the third columnThe third row of W is irrelevant while two zeros in the third column
are required to make the warp independent of z:

00 01

10 11

0
0

w w
w w

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥

W

20 21 22w w w⎢ ⎥⎣ ⎦

Ronald Peikert SciVis 2007 - Object Space Volume Rendering 4-9

Orthographic shear-warp

Assuming for simplicity that P is the identity, we get:

00 01 00 01 00 0102 x yv v v w w s w s w⎡ ⎤+⎡ ⎤00 01 00 01 00 0102

10 10 11 10 1111 12

20 21 20 21 2220 21 22

x y

view x y

x y

v v v w w s w s w
v v v w w s w s w
v v v w w s w s w w

⎡ ⎤+⎡ ⎤
⎢ ⎥⎢ ⎥= = ⋅ = +⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ + +⎣ ⎦ ⎣ ⎦

M W S

It follows for the warp coefficients

20 21 20 21 2220 21 22 x y⎣ ⎦ ⎣ ⎦

ij ijw v= ()2j ≠

for the shear coefficients

ij ij ()j

00 01 02

1
xs v v v

s v v v

−⎛ ⎞ ⎡ ⎤ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎢ ⎥

⎝ ⎠⎣ ⎦⎝ ⎠
and for w22 (not needed)
If P i t th id tit t d i f S d W b d

10 11 12ys v v v⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦⎝ ⎠

22 20 21 22x yw s v s v v= − − +

Ronald Peikert SciVis 2007 - Object Space Volume Rendering 4-10

If P is not the identity, permuted versions of S and W can be used.

Orthographic shear-warp

Example renderings: "VolPack" demos (P. Lacroute, Stanford U.)

Ronald Peikert SciVis 2007 - Object Space Volume Rendering 4-11

Perspective shear-warp

The same factorization can be used, but now in homogenous
coordinates:

view = ⋅ ⋅M W S P

The shear and scaling matrix S gets the form

1 0 0⎡ ⎤1 0 0
0 1 0
0 0 1 0

x

y

s
s

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥

S

It does

t l ti f b d f b f ll d b

0 0 1 0
0 0 1ws

⎢ ⎥
⎢ ⎥
⎣ ⎦

• a translation of x by and of y by , followed by

• a scaling with ()1 1 ws z+
xs z ys z

Ronald Peikert SciVis 2007 - Object Space Volume Rendering 4-12

Perspective shear-warp

The warp matrix W is:

00 01 030w w w⎡ ⎤00 01 03

10 11 13

20 21 22 23

0w w w
w w w w

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥

W

The zero in the bottom row is needed to make the warp
30 31 330w w w⎢ ⎥

⎣ ⎦

independent of z.

Ronald Peikert SciVis 2007 - Object Space Volume Rendering 4-13

Perspective shear-warp

Assuming again that P is the identity, we get:

v v v v⎡ ⎤00 01 02 03

10 11 12 13

view

v v v v
v v v v
v v v v

⎡ ⎤
⎢ ⎥
⎢ ⎥= = ⋅ =
⎢ ⎥

M W S
20 21 22 23

30 31 32 33

v v v v
v v v v

w w s w s w s w w

⎢ ⎥
⎢ ⎥
⎣ ⎦

+ +⎡ ⎤00 01 00 01 03 03

10 11 10 11 13 13

20 21 20 21 22 23 23

x y w

x y w

x y w

w w s w s w s w w
w w s w s w s w w
w w s w s w w s w w

+ +⎡ ⎤
⎢ ⎥+ +⎢ ⎥=
⎢ ⎥+ + +
⎢ ⎥

20 21 20 21 22 23 23

30 31 30 31 33 33

x y w

x y ww w s w s w s w w⎢ ⎥+ +⎢ ⎥⎣ ⎦

Ronald Peikert SciVis 2007 - Object Space Volume Rendering 4-14

Perspective shear-warp

It follows for the warp coefficients ij ijw v= ()2j ≠

for the shear coefficients
00 01 03 02

1
xs v v v v

s v v v v

−⎛ ⎞ ⎡ ⎤ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥
⎜ ⎟ ⎜ ⎟⎢ ⎥10 11 13 12

30 31 33 32

y

w

s v v v v
s v v v v

⎢ ⎥=⎜ ⎟ ⎜ ⎟⎢ ⎥
⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎝ ⎠

and for w22 (not needed)
22 20 21 23 22x y ww s v s v s v v= − − − +

Ronald Peikert SciVis 2007 - Object Space Volume Rendering 4-15

Perspective shear-warp

The shear-warp volume rendering algorithm is now as follows:
• For each voxel layer (parallel to base plane):

h d l th l i b lti l i ith S– shear and scale the layer image by multiplying with S
– apply transfer functions

• Generate intermediate image with α-compositingGenerate intermediate image with α compositing
• warp the image by multiplying with W

An advantage of this algorithm is that for scaling images a
filter can be used to prevent undersampling (aliasing).

Ronald Peikert SciVis 2007 - Object Space Volume Rendering 4-16

Object space vs. image space

Comparison of typical object space method (2D texture based) and
image space method (raycasting).

Formally both are equivalent, only different nesting order of loops.Formally both are equivalent, only different nesting order of loops.
Practical differences:
• Image space methods with FTB compositing allow early

t i titermination.
• Object space methods using framebuffer for intermediate results

suffer from quantization artifacts.
• Object space methods can exploit texture mapping hardware and

MIPmap textures for antialising.
• Image space methods would need supersampling in x and y for• Image space methods would need supersampling in x and y for

this.

Ronald Peikert SciVis 2007 - Object Space Volume Rendering 4-17

Object space vs. image space

Post-classification can be done in graphics hardware:
Using (OpenGL) dependent texture (two texture mapping stages):

texture unit 0

x,y,z

(interpolate scalar field)

texture unit 1 (apply transfer functions)

s

texture unit 1 (apply transfer functions)

R,G,B; A

Ronald Peikert SciVis 2007 - Object Space Volume Rendering 4-18

Object space vs. image space

Preintegration is possible also in object space:
• Use slabs (space between two slices) instead of slices

D d t t t• Dependent textures:
– 1st stage: interpolate scalar field in front and back slice
– 2nd stage: look up integrated transfer function– 2 stage: look up integrated transfer function

slab

cameracamera

Ronald Peikert SciVis 2007 - Object Space Volume Rendering 4-19

Splatting

Raycasting: "What does each voxel contribute to a given pixel?"

Splatting: "What does a given voxel contribute to each pixel?"

Splatting as a brute-force method:

• pre-processing:

– for each voxel xi render (raycast) a field

– store resulting footprint images

()j ijs x δ=

• main loop:

– for each voxel xi adjust footprint image to effective TF value

– blend all footprint images of a voxel layer ("sheet buffer")

– do α-compositing of layers

Ronald Peikert SciVis 2007 - Object Space Volume Rendering 4-20

Splatting

Advantages of splatting:

• applicable to structured and unstructured grids

• other reconstruction filters than trilinear interpolation are possible,
e.g. sinc filter

Original algorithm (Westover 1990):

• orthographic view, uniform grids → all footprints are translates of
a template

Elliptical weighted average (EWA) splatting (Zwicker et al. 2001)

• ellipsoidal Gaussians as footprints

• perspective view, low-pass filter for antialiasing

Ronald Peikert SciVis 2007 - Object Space Volume Rendering 4-21

Cell projection

Projected tetrahedra (PT) is an object space method for tetrahedral
grids [Shirley, Tuchman 1990].

Each (tetrahedral) cell is decomposed into 3 or 4 tetrahedra alongEach (tetrahedral) cell is decomposed into 3 or 4 tetrahedra along
those edges which are not part of the silhouette.

Ronald Peikert SciVis 2007 - Object Space Volume Rendering 4-22

Cell projection

Cells are projected to triangle fans consisting of
• 1 thick vertex (projection of the common edge of the tetrahedra)
• 3 or 4 thin vertices (on the silhouette)• 3 or 4 thin vertices (on the silhouette)

Original algorithm: triangle fan in the image plane

Improved algorithm: triangle fan in space:
• thin vertices keep original position• thin vertices keep original position
• thick vertex is set to midpoint of projected edge
Advantages:g
• depth test can be used (allows volume rendering into a scene)
• viewing direction and field-of-view can be changed (for fixed

camera position) keeping projection

Ronald Peikert SciVis 2007 - Object Space Volume Rendering 4-23

camera position), keeping projection

Cell projection

Computation of thick vertex:
• compute determinants

where x x x are the vertices of the ith face relative to
det(, ,) (0,1,2,3)i j k ld i= =x x x

where xj,xk,xl are the vertices of the ith face, relative to
camera position, ordered ccw on outside of face

• if number of positive determinants isp
– odd: class 1
– even: class 2

i l i i h (f di d d) f hi k• interpolation weights (for coordinates and data) of thick vertex
– for class 1:

(example () () ()
0 31 1, , ,

2 2 2 2
d dd

d d d d d d d d d+ + + + + ++ + - +)
– for class 2:

(example

() () ()0 1 3 0 1 3 0 1 32 2 2 2d d d d d d d d d+ + + + + +

() () () ()
0 31 2, , ,

2 2 2 2
d dd d

d d d d d d d d

Ronald Peikert SciVis 2007 - Object Space Volume Rendering 4-24

(p
- + + -) () () () ()0 3 1 2 1 2 0 3

, , ,
2 2 2 2d d d d d d d d+ + + +

Cell projection

Assigning opacities:
• 0 for thin vertices
• preintegrated TF for thick vertexp g

Assigning colors:
• look up color TF for thin and thick verticeslook up color TF for thin and thick vertices

Visibility sorting:
• generate partial ordering of cells based on adjacent pairs• generate partial ordering of cells based on adjacent pairs
• break cycles (rare, small rendering error, alternative: split a cell)
• sort list of front cells by distance to centroid

Ronald Peikert SciVis 2007 - Object Space Volume Rendering 4-25

Cell projection

Rendering of triangles with fragment program:
• interpolate s(x) for points on front and back triangle
• interpolate cell thickness• interpolate cell thickness
• lookup color and opacity in preintegrated TF

Back-to-front compositing
• cells must be depth-sorted
• possible without re sorting: camera turn zoom• possible without re-sorting: camera turn, zoom
• depth test (z-buffer) must be enabled
• additional (opaque) objects must be rendered before the (p q) j

volume

Ronald Peikert SciVis 2007 - Object Space Volume Rendering 4-26

Cell projection

Example: Visualization of smoke propagation.
Simple smoke model (used in fire protection engineering):
• absorption τ proportional to s(x) (particle concentration)• absorption τ proportional to s(x) (particle concentration)

• leading to simple preintegrated(!) opacity TF: 21
f b

b fc x x
e

τ τ

α
+

− −
= −

Ronald Peikert SciVis 2007 - Object Space Volume Rendering 4-27

Cell projection

When compositing cells with low opacity, opacities are essentially
added.

Adding many very small opacities (e.g. between 0/255 and 1/255)Adding many very small opacities (e.g. between 0/255 and 1/255)
leads to quantization artifacts.

Options to reduce artifacts:
iti ith 16 bit• compositing with 16 bits

• α–dithering: instead of standard rounding

1⎛ ⎞
⎢ ⎥ ⎢ ⎥

use randomized rounding

1
2

x x x x⎛ ⎞→ + − ≥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎜ ⎟
⎝ ⎠

use randomized rounding

(Predicates ≥ understood as functions with values 0 and 1

()randx x x x→ + − ≥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Ronald Peikert SciVis 2007 - Object Space Volume Rendering 4-28

(Predicates ≥ understood as functions with values 0 and 1,
'rand' being a random function with range [0,1])

Cell projection

Example: Quantization artifacts without and with α-dithering.

Ronald Peikert SciVis 2007 - Object Space Volume Rendering 4-29

Cell projection

Hardware-assisted visibility sorting (HAVS, Silva et al. 2005) is a
faster cell projection algorithm:

• requires 4 RGBA float buffers for storing per pixel 7 pairs ofrequires 4 RGBA float buffers for storing per pixel 7 pairs of
– scalar field value s
– distance d to camera

• initial cell sorting done by CPU based on centroids results ininitial cell sorting done by CPU, based on centroids, results in
k-nearly sorted sequence, with k≤7

• main loop: draw all cell faces from back to front
• fragment shader

– does exact sorting of buffered (s, d) pairs
– computes "thickness" of cell behind the pixel 1 2d d d= −computes thickness of cell behind the pixel,
– does (preintegrated) TF lookup with and

α-compositing

1 2d d d
1 2, ,s s d

Ronald Peikert SciVis 2007 - Object Space Volume Rendering 4-30

