
Basics

1.Data Sources
The capability of traditional presentation techniques is not sufficient for the increasing
amount of data to be interpreted. Data might come from any source with almost arbitrary
size. Therefore, techniques to efficiently visualize large-scale data sets and new data
types need to be developed.
Data may come from different sources:
• Real world (measurement and observation)
• Theoretical world (data is calculated with mathematical and technical models)
• Artificial world (data is designed)
The size of the amount of data depends on the number of parameters of interest, the
number of values per parameter, and the number of points which are considered.
The following table shows the possible data sources and the amount of data created.

Data Sources
This table shows the different data sources and typical size of the amount of data.

2.The Visualization process
2.1.The visualization pipeline
The aim of the visualization process is to represent non-geometric data by images. This
process consists of several steps which can be arranged in the so called visualization
pipeline.



The visualization pipeline
This illustration shows the visualization pipeline with its three steps filtering, mapping, and rendering. Raw data which comes from simulation, data bases, or sensors is filtered to
obtain visualization data. After mapping we have a renderable representation which can be rendered to images or videos. The user can interact with all the three steps of the
visualization pipeline.

The filtering step maps data to data. The raw data is prepared for the following steps of
the visualization pipeline. One example for filtering is a data format conversion into a
specific format. If only parts of the data are to be visualized a clipping or slicing can be
applied. Sometimes denoising or resampling can be necessary. In case of too few
measured values interpolation makes it possible to generate values between the sample
points. Furthermore, data can be classified or segmented in this step.
In the mapping step, which is the main part of the visualization process, data is mapped to
graphical primitives and their attributes (e.g. color). Examples for mapping techniques are:
scalar field   isosurface
2D field   height field
vector field   vectors
tensor field   glyphs
3D field   volume
These mapping techniques will be discussed in detail within this course.
In the rendering step geometry data is mapped to image data. Shadows, lighting, and
shading are used to produce images with more realism.
The following example shows the simulation of the flow within a fluid around a wing. The
simulation is tightly coupled with the visualization cycle.

Simulation of the flow within a fluid around a wing
The image illustrates how the representation of the air flow changes during simulation and visualization. Starting with the physical phenomenon a cycle represented by a number 8
lying on the side is entered. The steps of the first part are physical model, mathematical formulation, and numerical algorithm. This part represents the simulation cycle. The second
part (visualization cycle) is entered and the air flow representation is then changed into visualization data, graphical primitives, and finally images/videos. If the visualization is not
appropriate yet, the first part can be reentered by changing the physical model and the process is run again.



2.2.Visualization scenarios
The above illustration shows the cycle of visual analysis. Starting with observations and
measurements, hypotheses and mathematical models can be established. Based on this
models simulations can be performed which generate a large amount of data.
Both the calculated and the measured data can now be processed and provided for visual
analysis. Since the aim of the visual analysis is to understand the data including its
underlying structures, feedback (coupling) to all of the three processes (visualization,
simulation, modeling) is necessary.

The cycle of visualization analysis
The illustration shows the different steps of the cycle of visual analysis with boxes and arrows. The data which is to be visualized comes directly from observation/measurements or
via a modeling step from a simulation. The data is now sent via an interface to the visualization and can then be passed to the visual analysis. The visual analysis step gives the
user the opportunity to interact with visualization, modeling, and simulation.

Especially interaction in simulation and modeling causes a strong demand for fast
processing. Therefore four different visualization scenarios were established:
• motion mode
• tracking
• interactive post processing
• interactive steering
The motion mode is based on three separated steps. The first step consists of the whole
process of data generation including modeling and simulation. The visualization process is
performed in the second step. The result of the visualization is not a single image but a
animation which is viewed by the user in the visual analysis.

Motion mode
The picture shows the three steps of the motion mode data generation, animation generation, and analysis of motion data, which are connected by arrows in this order.

In the visualization scenario tracking the analysis process is directly connected to
modeling and simulation. As soon as data is measured or calculated it is processed and
offered to the analysis.



Tracking
The illustration shows the data coming from measurements or via modeling from simulation. It is directly passed to the visualization step and then offered to the viewer in visual
analysis.

In interactive post processing the visualization process is separated from data
generation, modeling, and simulation.

Interactive post processing
The image shows the two steps of the interactive post processing. These are data generation and visualization and interaction. The viewer has the opportunity to interact with the
visualization.

Only with interactive steering the user can interact with the three processes modeling,
simulation, and visualization.

Interactive steering
The picture shows the steps of visual analysis with interactive steering.



3.Sources of Error
To minimize the possibilities for errors in the different steps of the visualization process
the following questions and hints are useful.
Data acquisition:
• Sampling: are we (spatially) sampling data with enough precision to get what we need

out of it ?
• Quantization: are we converting “real” data to a representation with enough precision to

discriminate the relevant features ?
Filtering:
• Are we retaining/removing the “important/non-relevant” structures of the data ?
• Selecting the “right” variable: Does this variable allow an analysis of the relevant

features ?
• Functional model for resampling: What kind of information do we introduce by

interpolation and approximation ?
Mapping:
• Are we choosing the graphical primitives appropriately in order to depict the kind of

information we want to get out of the data ?
• Think of some real world analogue.
Rendering:
• The need for interactive rendering often determines the chosen abstraction level.
• Consider limitations of the underlying display technology: ergo, color quantization.
• Carefully add “realism”: (the most realistic image is not necessarily the most informative

one).

4.Data Representation
Data can be considered as a subset of the space ℝnm , assuming that there are n
independent and m dependent variables.

Data representation
The illustration shows that data is given by a subset of ℝnm



The objects we want to visualize are often ‘continuous’. But in most cases, the
visualization data is given only at discrete locations in space and/or time. Discrete
structures consist of samples from which grids/meshes consisting of cells are generated.
The following table shows graphical primitives which form meshes in spaces of different
dimension.

dimension cell mesh
0D points
1D lines polyline(–gon)
2D triangles, quadrilaterals (rectangles) 2D mesh
3D tetrahedra, prisms, hexahedra 3D mesh

The visualization techniques are classified according to both the dimension of the domain
of the problem (independent parameters) and the type and dimension of the data to be
visualized (dependent parameters).
Examples for visualization problems:

Visualization problems
The picture shows some examples for visualization problems according the dimension of data type and domain. Those with 2- or 3-dimensional domain and 1-, 2- or 3-dimensional
data values are of special interest in this course.
Exercise 1: Calculate the size in bytes of the following data sets. The calculation should be based on an architecture that allocates 4 bytes for storing integer and float values,
respectively. A value of type double requires 8 bytes.
a) A CT (Computed Tomography) examination is stored as a 3D scalar data set. This data set contains 112 slice images, each consisting of 512*512 sample points. One sample is
represented by two bytes in binary format.
b) Another data set contains the result of a 3D-CFD (Computational Fluid Dynamics) simulation. The data is stored in the following binary format: 3 integer values containing the
dimension of the data (here: 108, 55, 63). For each sample point the values of the x-, y- and z- coordinates of type float are stored, followed by the components of the velocity vector
of type double and the distribution of pressure of type double.

a) Per slice: 512*512 = 262144 [sample points]
Total volume: 112*512*512 = 29360128 [sample points]

Total memory: 112*512*512 * 2 bytes = 58720256 bytes = 57344 kB ≈ 56 MB
b) Header: 3*4 bytes = 12 bytes
Each sample point: 3*4 bytes (for 3 floats, position)

+ 3*8 bytes (for 3 floats, velocity)
+ 1*8 bytes (for 1 float, pressure)
= 44 bytes

Specific example: 108*55*63 sample points:

Total memory:  12 bytes + 44 bytes*108*55*63 = 16465692 bytes ≈ 16080 kB ≈ 15.7 MB



5.The Domain
The space in which the data is considered is called domain. The points for which data is
available are called sample points. For the visualization the following characteristics are of
interest:
• Dimension of the domain
• Influence
• Structure (connection between sample points)
The (geometric) shape of the domain is determined by the positions of sample points.
Dimension of the domain:
The independent variables can be discrete or continuous. If there are more than two
dimensions a projection is necessary. This may cause occlusion and ambiguity.
Influence:
The values at the sample points influence the data distribution in a certain region around
these samples. To reconstruct the data at arbitrary points within the domain, the
distribution of all samples has to be calculated.
There are different types of influence:
• Point influence (the data value influences only the point itself)
• Local influence (the data value influences a certain region)
• Global influence (each sample might influence any other point within the domain)
To obtain a data value at each point of the domain for a set of arbitrarily distributed
sample points a cell-wise interpolation or the Voronoi-diagram can be used.
The Voronoi-diagram is a decomposition of the domain. It is constructed by creating a
region around each sample point, which can be considered as the area of influence of that
sample point. Each region contains only a single sample point.
A certain region contains all points that are closer to that sample than to every other
sample. This is a separation of the n-dimensional space ℜn into regions Ri where:
Ri={X ∈ℜ

n :∥X−P j∥∥X−Pk∥∀ k≠ j∧km}
and P j  j=1,2 , ... ,m is the sample point of the region Ri

Each point in a certain region is assigned the value of the corresponding sample point.
An example for a Voronoi-diagram:

A Voronoi-diagram
The illustration shows a Voronoi-diagram consisting of some sample points with their corresponding regions of influence.

The scattered data interpolation is a solution for local or global influence problems.
Here, a function is constructed which gives a value at each point and especially for the
sample points returns exactly the data value. At each point the weighted average of all
sample points in the domain is computed. The support of each sample point to the value
is determined by weighting functions. For this purpose radial basis functions, which will be
discussed later in the course,  may be used to simulate decreasing influence with
increasing distance from samples. In the case of local influence the value of the weighting
function is zero for a certain sample point, if the distance between the interpolation point
and that sample point is greater than the radius of the circle of influence.



Radial basis functions with increasing support.

6.Data Structures
There are some important requirements for data structures. Of course a convenient
access should be possible but the structure should also be space efficient. When
choosing a data structure portability should also be taken into account. For example. a
binary file is less portable but more time efficient than a text file. The advantage of the text
file is that it is human readable.
If points are arbitrarily distributed and no connectivity exists between them, the data is
called scattered. Otherwise, the data is composed of cells bounded by grid lines. The
topology specifies the structure (connectivity) of the data.
The terms topology and geometry have to be distinguished. In topology qualitative
questions about geometrical structures are the main concern. An example is a
underground map which does not tell you how far one station is from the other, but rather
how the lines are connected. Topology means all properties of a geometric shape that
remain unchanged even when the image is smoothly distorted.
The following examples show the difference between geometrical and topological
equivalence.

Geometrical equivalence
The image shows two shapes consisting of lines and points where the positions of the points are the same but in one shape there is one line which does not exist in the other shape
and vice versa.

These two shapes have the same geometry (vertex positions) but different topology.
Topological equivalent shapes can be transformed into each other by stretching and
squeezing, without tearing or sticking together bits which were previously separated.

Topological equivalence
This picture shows two shapes consisting of lines and points where the positions of the points differ. The number of points and their interconnection is the same in both shapes.

These two shapes are topologically equivalent.



6.1.Grid types
Grids differ substantially in the simplicial elements (or cells) they are constructed from and
in the way the inherent topological information is given.
A simplex in ℜn is the convex hull of n+1 affinely independent points. Partitions via
simplices are called triangulations.
A simplicial complex is a collection C of simplices with:
• Every face of an element of C is also in C.
• The intersection of two elements of C is empty or it is a face of both elements
A simplical complex is a space with a triangulation.
Example:

Simplical complexes
The illustration shows one single triangle and two triangles which have on edge in common. These two shapes are simplical complexes. Furthermore there are two triangles where
one edge of each touches the other one at about half of their length. This shape is not a simplical complex, because the common line is not identical to the complete faces (= lines)
of the two neighboring triangles.

Grids can be classified as being structured or unstructured. These two types are
distinguished by the way the elements or cells meet. Structured grids have a regular
topology and regular or irregular geometry. Unstructured grids have both irregular topology
and geometry.
A structured grid is often composed of sets of connected parallelograms (hexahedra), with
cells being equal or distorted with respect to (non-linear) transformations. They may
require more elements or badly shaped elements in order to precisely cover the underlying
domain. Its topology is represented implicitly by an n-vector of dimensions. Its geometry is
represented explicitly by an array of points. Every interior point has the same number of
neighbors.
If no implicit topological (connectivity) information is given the grids are termed
unstructured grids. Unstructured grids are often computed using quadtrees (recursive
domain partitioning for data clustering), or by triangulation of points sets. The task is often
to create a grid from scattered points. For unstructured grids grid points and connectivity
must be stored. Dedicated data structures are needed to allow for efficient traversal and
thus data retrieval. An unstructured grid is often composed of triangles or tetrahedra.
Fewer elements are needed to cover the domain.
In the following sections we consider a 3-dimensional domain.

6.1.1.Structured grids

Example for structured grids.
Cartesian or equidistant grids:
The cells and points of this type of grid are numbered sequentially with respect to
increasing X, then Y, then Z, or vice versa. The number of sample points N p and the



number of cells N c are given by:
N p=N x⋅N y⋅N z

N c=N x−1⋅N y−1⋅N z−1
where N x , N y , N z are the number of points in each dimension.

Cartesian grid
This image shows a grid with a x- and a y-axis. The steps in each dimension are equidistant (dx=dy=dz). The z-axis is not displayed.

The vertex positions are given implicitly from [i,j,k]:
P [i , j , k ]. x=origin.xi⋅dx
P [i , j , k ]. y=origin.y j⋅dy
P [i , j , k ]. z=origin.zk⋅dz

The global vertex index can be computed as follows:
I [i , j , k ]=k⋅N y⋅N x j⋅N xi , where
k=I div N y⋅N x 
j= I mod N y⋅N xdiv N x

i= I mod N y⋅N x mod N x

Uniform grids:
Uniform grids are similar to Cartesian grids. They consist of equal cells but with different
resolution in at least one dimension dx≠dy ≠dz  . The spacing between the grid points
is constant in each dimension. Therefore, the same indexing scheme as for Cartesian
grids can be used. This grid type most likely occurs in applications where the data is
generated by a 3D imaging device providing different sampling rates in each dimension.
Rectilinear Grids
The topology of rectilinear grids is still regular but there is an irregular spacing between
grid points. The scaling of positions along each axis is non-linear. Spacing, x_coord[L],
y_coord[M] and z_coord[N] must be stored explicitly. The axes are still perpendicular to
each other. The topology is still implicit.
An example for a rectilinear grid:

Rectilinear grid
The illustration shows a grid whose steps in both dimensions are not equidistant.

Curvilinear grids



Also in curvilinear grids the topology is regular but the location of grid points is arbitrary.
The topology is also implicit:
• x_coord[L,M,N]
• y_coord[L,M,N]
• z_coord[L,M,N]
The geometric structure might result in concave grids.

Curvilinear grid.

Multigrids:
Multigrids are used to avoid wasted detail if the focus is only in some areas. In these
regions of interest the grid is just finer than in the rest of it.
A Multigrid:

Multigrid
The picture shows a rectilinear grid where a part of it is magnified and represented with a much finer grid.

Structured grids can be stored in a 3D array.
Therefore arbitrary samples can be directly accessed by indexing a particular entry in the
array. The topological information is implicitly coded. Adjacent elements can be directly
accessed.
Cartesian, uniform, and rectilinear grids are necessarily convex.
The visibility ordering of elements with respect to any viewing direction is given implicitly.
The rigid lay out, in general, prohibits the geometric structure to adapt to local features.
Curvilinear grids reveal a much more flexible alternative to model arbitrarily shaped
objects.
However, this flexibility in the design of the geometric shape makes the sorting of grid
elements a more complex procedure.

Typical implementation of structured grids (for the example of a triangle mesh):
DataType *data = new DataType[Nx*Ny*Nz];
val = data[i*(Ny*Nz) + j*Nz + k];



6.1.2.Unstructured grids

Example for unstructured grids.
Unstructured grids are composed of arbitrarily positioned and connected elements. They
can be composed of one unique element type or they can be hybrid. Triangle meshes in
2D and tetrahedral grids in 3D are most common.
Typical implementations of unstructured grids:
1. Direct form:
struct face
  float verts[3][3]
  DataType val;
Example:
• Face 1
x1, y1, z1
x2, y2, z2
x3, y3, z3
• Face 2
x2, y2, z2
x3, y3, z3
x4, y4, z4
The data values have to be stored additionally.
This representation contains much redundancy which may cause a lack of storage.
2. Indirect form:
In the indexed face set all vertices are stored only once. The faces are stored in a face list.
The elements of the face list do not contain the vertices but just indices these vertices.
Example:
• vertex list
x1, y1, z1
x2, y2, z2
x3, y3, z3
x4, y4, z4
• face list
1, 2, 3
1, 2, 4
3, 2, 4
This structure is more efficient than the direct approach in terms of memory requirements,
but global search is still necessary to find local information (i.e. which faces share an
edge).
This problem is solved with the winged edge data structure [Baumgart 75]. This edge-
based structure stores for each edge references to adjacent edges and faces.



Winged edge data structure
The image shows one edge which has references to its next left and right edge, its previous left and right edge and its face and partner which is the adjacent face.

With this data structure it is easy to determine the faces sharing an edge/vertex. It is also
possible to "walk around" the edges of a face.
For every vertex a pointer to an arbitrary edge that is incident to it has to be stored. For
every face a pointer to an edge on its boundary is needed. This structure assumes that
every edge has at most two faces which meet at an edge. That means only a manifold
triangle mesh is possible. A 2-manifold is a 2D-surface where at every point on the
surface a surrounding area can be found that looks like a disk (up to deformations). That
means everything could be flattened out to a plane.

Not a 2-manifold
The picture shows a shape which consists of three triangles and two quads, which are sharing edges. One edge is shared by two quads and one triangle.

6.1.3.Hybrid grids
Combinations of different grid types are called hybrid grids.

6.2. Scattered data
Scattered data consists of irregularly distributed positions without connectivity information.
To get a connectivity it is necessary to find a "good" triangulation, i.e. a
triangular/tetrahedral mesh with scattered points as vertices.

Scattered data and triangulation
The illustration shows scattered data represented by arbitrarily distributed points and a triangulation of it.

For a set of points there are many possible triangulations. A measure for the quality of a



triangulation is the aspect ratio of the so-defined triangles. Long and thin triangles should
be avoided. This leads to the so called Delaunay triangulation which is discussed later in
this course.

Summary:

Overview of all grid types.

7.Data values
Data values are characterized by the following aspects:
• Data type (scalar, vector, tensor data; kind of discretization)
• Dimension (number of components)
• Range of values
• Structure of the data
• Error (variance)

Data Type:
• Scalar data

is given by a function f x1 , ... , xn:ℝ
nℝ with n independent variables x i

• Vector data
represents direction and magnitude and is given by an n-tupel  f 1 , ... , f n with
f k= f k x1 , ... , xn ,n2∧1kn

• Tensor data
Tensors represent a set of directions and magnitudes. A tensor of level k is given by
t i1 , i2 , ... , ik x1 , ... , xn

Range of values:
Values can be classified by being qualitative or quantitative.
Qualitative values use non-metric scales. If there is a order along the scale the values are
ordinal otherwise nominal. That means for nominal values it is only possible to determine
whether two values are equal or not.
Quantitative values use metric scales. Therefore also the distance between two values
can be determined. The range of  quantitative values can be either discrete or continuous.

Structure of the data:
The following structures can be distinguished:



• sequential
The values are stored in a list.

• relational
The values are stored in a table.

• hierarchical
The values are stored in a tree structure.

• network structure
The values are stored in a network structure.

8.Data Classification
The aim of data classification is to provide additional information about the data to the
visualization process.
One approach can be found in [Bergeron 89]. Bergeron and Grinstein consider data as m-
dimensional data elements on a n-dimensional grid with the following notation:
Lm
n

Examples for m-dimensional data on
• separate points: Lm

0

• a line: Lm
1

• a surface: Lm
2

• a surface: Lm
2

• a (uniform) n-dimensional grid: Lm
n

This notation is easy to handle but important aspects of data and grid types are missing.
Brodlie defines the so called "Underlying Field" on which data is defined and from which
the "Visualizing Entity" E is extracted. E is a function defined by the domain and the range
of the data. The independent variables are described by their dimension and their
influence, the dependent variables by their dimension and their data type.
Examples:
E3

V3 means a vectorial quantity with three components which is given in a 3-dimensional
domain.
E[2]
5S represents five scalar quantities  which are associated with a separated region of a

2-dimensional domain.
The brackets in the expression represents the influence of the data values:
• Point influence: no brackets
• Local influence: [ ]
• Global influence: { }
Another notation is the one by Butler. He defines the so called "fiber bundles". A fiber
bundle is build of two spaces, the "base space", which contains the independent variables,
and the "fiber space", which contains the dependent variables. Each point of the base
space is associated a copy of the fiber space. Data can be specified by:
• the description of the base space

as a multi-dimensional space with given topology
• the description of the fiber space

e.g. as a multi-dimensional vector space
• the choice of points in the fiber space

from each fiber space a point is chosen and by this a so called section, which
corresponds to a concrete data set, is built



Fiber bundles
The illustration shows a fiber space and a base space each represented by a line. The corresponding fiber bundle is the fiber space line with several copies of the base space line.
A section is represented by points on the base space line. These points are connected with another line.

The notation in [Wong97] only differs between the dimension of data (number of
dependent variables v) and the dimension of the domain (number of independent
variables d). Data with n independent variables and m dependent variables is represented
by the expression nd m v
The following examples compare these different notations.

Example 1:
Data: unordered set of points with scalar values

Bergeron and Grinstein L1
0

Brodlie E{0}
S

Butler base=set , fiber= float :[−∞ ,∞]
Wong 0 d 1 v

Example 2:
Data: ordered set of points with scalar values

Bergeron and Grinstein L1
0

Brodlie E [0]
S

Butler base=ordered set , fiber= float :[−∞ ,∞]
Wong 0 d 1 v

Example 3:
Data: scalar volume data set on a uniform grid

Bergeron and Grinstein L1
3

Brodlie E3
S

Butler base=3D−reg−grid , fiber=char :[0,255]
Wong 3 d 1 v

Example 4:
Data: flow data on a curvilinear grid

Bergeron and Grinstein L3
3

Brodlie E3
V3



Butler base=3D−curvilin−grid , fiber= float 3 : [−∞ ,∞]3

Wong 3 d 3 v

Example 5:
Data: 3D volume with 3 scalar and 2 vector data values

Bergeron and Grinstein L9
3

Brodlie E3
3 S2V3

Butler base=3D−reg−grid , fiber= float× float× float× float 3× float 3

Wong 3 d 9 v


