
Interpolation and Filtering
Data is often discretized in time and/or space.
We have only a finite number of sample points, i.e., the continuous signal is only known at
few points (data points). But in general data is also needed between this points. By
interpolation we obtain a representation that matches the function at the data points. An
evaluation at any other point is possible. We can reconstruct the signal at points that are
not sampled. For this reconstruction some assumptions are necessary. Often we arrogate
smooth functions.

1 Voronoi Diagrams and Delaunay
Triangulation
Given are irregularly distributed points without connectivity information. The problem is to
obtain connectivity to find a "good" triangulation.
For a set of points there are many possible triangulations. A measure for the quality of a
triangulation is the aspect ratio of the so-defined triangles. Long and thin triangles are to
be avoided.

Scattered data triangulation for 2D:

A triangulation of a set of data points S=s0 , s1 , , sm∈ℝ
2 consists of

• Vertices (0D) = S
• Edges (1D) connecting two vertices
• Faces (2D) connecting three vertices

A triangulation must satisfy the following criteria:
• ∪ faces=conv S  , i.e. the union of all faces including the boundary is the convex hull

of all vertices.
• The intersection of two triangles is either empty, or a common vertex, or a common

edge, or a common face (tetrahedra).
The following triangulations are not valid.

Non valid Triangulations
The image shows three different triangulations which are not valid.

The triangulation a) is not valid because it “contains a hole”. In b) two faces overlap. The
triangulation c) contains two vertices which form a “T” (T-vertices).
To get a triangulation from scattered data the Delaunay Triangulation, which is tightly
connected to the Voronoi diagram, can be used.

1.1 The Voronoi diagram
Given is a set of points X={x1 , , xn} from ℝd and a distance function dist(x,y).



The Voronoi diagram Vor(X) contains for each point x i a cell V x i  with
V x i={x∣dist x , x idist x , x j∀ j≠i }

For each sample every point within a Voronoi region is closer to it than to every other
sample.

A voronoi diagram
The picture shows an example for a Voronoi diagram.

For a point x i the corresponding Voronoi cell is given by the intersection of all half
spaces h x i , x j , j≠i :
V x i=∩ j≠i h x i , x j 
h x i , x j is seperated by the perpendicular bisector between x i and x j . h x i , x j

contains x i .
Voronoi cells are convex.

Construction of voronoi cells
The image illustrates the construction of a half space and the corresponding Voronoi cell.

1.1.1 The Delaunay triangulation
The Delaunay graph Del(X) is the geometric dual of the Voronoi diagram Vor(X). The
points in X are nodes. Two nodes x i and x j are connected if the Voronoi cells V x i
and V X j share the same edge. Delaunay cells are convex.
The Delaunay triangulation is the triangulation of the Delaunay graph.

A Delaunay graph
The picture shows an example for a Delaunay graph.

The Delaunay triangulation in 2D:
Three points x i , x j , x k in X belong to a face from Del(X) if no further point lies inside the
circle around x i , x j , xk .
Two points x i , x j form an edge if there is a circle around x i , x j that does not contain a
third point from X.
For each triangle the circumcircle does not contain any other sample. The smallest angle

and the ratio of radius of incircle
radius of circumcircle  is maximized. The triangulation is unique



(independent of the order of samples) for all but some very specific cases.

The local Delaunay property
The image shows a triangulation which has loacal Delaunay property and a triangulation which violates the local Delaunay property.

1.1.1.1 Algorithms for Delaunay triangulations
• Edge flip algorithm
find an initial (valid) triangulation
find all edges where local Delaunay property is violated
mark these edges and push them onto the stack
while (stack not empty)

pop edge from stack
if (edge does not satisfy Delaunay property)

flip this edge
flip all adjacent edges for which the Delaunay

property is violated due to the flip

The edge flip algorithm
The picture illustrates how an edge which does not satisfy the Delaunay property is flipped.

• Plane-sweep algorithm for finding an initial triangulation
In this algorithm an imaginary vertical sweepline passes from left to right.
As the sweepline moves:

Problem has been solved for the data to the left of the sweepline
Is currently being solved for the data at or near the sweepline and
Is going to be solved sometime later for the data to right of the sweep-line

This reduces a problem in 2D space to a series of problems in 1D space.
sort points from left to right
construct initial triangle using first three vertices
for i=4 to n do

use last inserted pi−1 as starting point
walk counterclockwise along convex polygon (hull) of

triangulation until the tangent 
points,inserting edges between pi and polygon points



walk clockwise along convex polygon of triangulation until
the tangent points, inserting

edges between pi and polygon points
update convex hull

endfor
• Bowyer-Watson algorithm
The Bowyer-Watson algorithm builds the Delaunay triangulation from scattered points in
one pass.
[Watson-1981-CDD]
[Bowyer-1981-CDT]
The idea of this algorithm is the incremental insertion of points into the triangulation:
• Start with initial triangulation which covers the domain (e.g. two triangles of bounding

box)
• Incremental insertion of points into the triangulation
• All triangles whose circumcircles contain the inserted point are removed
• The resulting cavity is triangulated by linking the inserted point to all vertices of the

cavity boundary
• The cavity is star-shaped: Edges from the location of the newly inserted point

The Bowyer Watson algorithm
The picture illustrates one step of the Bowyer Watson algorithm.

The algorithm:
determine the super triangle that encompasses all vertices
add super triangle vertices to the end of the vertex list
add the super triangle to the triangle list
for (each point in the vertex list)

calculate the triangle circumcircle center and radius
insert new point

if (new point lies in a circumcircle)
add the three triangle edges to the edge buffer
remove the triangle from the triangle list

delete multiple specified edges from the edge buffer, which leaves
the edges of the enclosing polygon
add all triangles formed of the point and the enclosing polygon
remove all triangles from the triangulation that use the super
triangle vertices and remove their vertices from the vertex list
The following Applet visualizes the Voronoi diagram and the Delaunay triangulation:
DelaunayApplet/DelaunayApplet.html
Other techniques, e.g. Radial sweep, Intersecting halfspaces, Divide and conquer (merge-
based or split-based), exist but are not discussed here.



1.2 Univariate Interpolation
Univariate interpolation means the interpolation for one variable.

1.2.1 Taylor Interpolation
For the taylor interpolation we use the basis functions mi=x iwith i∈ℕ0 (monom basis)
Pm={1, x , x2 , , xm} is an m+1-dimensional vector space of all polynomials with

maximum degree m.
The task is to find coefficients ciwith f =∑

i
ci⋅x

i
. This is the general approach, for xi

we can use any other basis function, but if we use the monom basis the interpolation
problem can be solved with the Vandermond matrix.
The samples are represented by: f x j= f j∀ j=1n
The interpolation problem is given by: V⋅c= f with the Vandermond matrix V ij=x i

j−1

1 x1 x1
2  x1

n−1

⋮ ⋮ ⋮ ⋱ ⋮
⋮ ⋮ ⋮ ⋱ ⋮
1 xn xn

2  xn
n−1⋅c1c2⋮cn=

f 1
f 2
⋮
f n


Properties of the Taylor interpolation:
• Unique solution
• Numerical problems / inaccuracies
• Complete system has to be solved again if a single value is changed
• Not intuitive

Example:
Given are 3 samples: f(1)=2, f(2)=5, f(4)=3
This leads to the following linear system of equations.

1 1 1
1 2 4
1 4 16∣253⇒1 1 1

0 1 3
0 0 6∣ 23−8

⇒c1=−
11
3

, c2=7 , c3=−
4
3

The interpolated function: f  x =−4
3
x27 x−11

3

1.2.2 Generic interpolation problem
Given are n sampled points X={x i}⊆⊆ℝ

d with function values f i .
The n-dimensional function space n

d  has the basis {∮i=1n
}

We search coefficients ciwith f =∑
i
ci⋅∮i

 x 

The samples are represented by: f x j= f j∀ j=1n
We have to solve the linear system of equations M⋅c= f with M ji=∮i

x j ,c i=ci , f j= f j

Note: The number of points n determines dimension of vector space (= degree of
polynomials)



Other basis functions result in other interpolations schemes:
• Lagrange interpolation
• Newton interpolation
• Bernstein basis: Bezier curves (approximation)
• Hermite basis

1.2.3 Cubic Hermite polynomials H
The coefficients describe the end points and the tangent vectors at the end points.

Hermite polynomials
The picture shows the cubic Hermite polynomials.

H 0
3t =1−t 212 t 
H 1
3t =t 1−t 2

H 2
3t =−t21−t 

H 3
3t =3−2 t t2

Example for Hermite interpolation
The image shows 4 curves which illustrate the influence of the coefficients.

The problem of this approach is the coupling of the number of samples n and the degree
of polynomials.
Solution: Spline interpolation

1.2.4 Spline interpolation
• Smooth piecewise polynomial function
• Continuity / smoothness at segment boundaries!



B-Spline basis functions.
The picture shows B-Spline basis functions.

1.2.5 Piecewise linear interpolation
This is the most simple approach (except for nearest-neighbor sampling). The main
advantage is that it is fast to compute. The piecewise linear interpolation is often used in
visualization applications.
Given are data points x0 , y0 , ,xn , yn

Piecewise linear interpolation
The image illustrates the computation of the value f(x) for a point x between two points x i , x i1 .

For any point x with x ixx i1 evaluate f x =1−u y iuyi1 where

u=
x−x i
x i1−x i

∈ [0,1] .

1.3 Differentiation on grids
First Approach
Idea: Replace differential by “finite differences”.

Note that approximating the derivate by f ' x =df
dx

 f
 x

causes subtractive

cancellation and large rounding errors for small h.

f '  x ≈ f xh− f x 
h

Second Approach
Approximate / interpolate (locally) by differentiable function and differentiate this function.



1.3.1 Finite differences on uniform grids with grid size h
(1D case)

Finite differences on uniform grids with grid size h
The picture shows data values on a uniform 1D-grid with size h

• Forward differences: f ' x i=
f x i1− f x i

h

• Backward differences: f '  x i=
f x i− f x i−1

h

• Central differences: f ' x i=
f x i1− f x i−1

2
h

Error estimation:
• Forward / backward differences are first order.
• Central differences are second order.

1.3.2 Finite differences on non-uniform rectilinear grids
Forward and backward differences as for uniform grids with
x i1−x i=h
x i−x i−1=h

Finite differences on non-uniform grids
The illustration shows the differences h and h .

The central differences are given by the Taylor expansion around the point x i .

f x i1= f x ihf ' x i
h2

2
f ' ' x i

f x i−1= f x i−hf ' x i
h2

2
f ' ' x i



⇒ 1
2
 f x i1− f x i−

1
2
 f  x i−1− f x i=

h

f ' x i

h

f ' x iO h

3

The final approximation of the derivate:

f '  x i=
1

h  f x i1−


f x i−1

2−2


f x i

1.3.3 2D or 3D uniform or rectangular grids
The differentiation can be computed along each coordinate axis in the same way as in the
univariate case.

2D uniform grid
The picture shows a 2D uniform grid

The gradient in a uniform grid is given by:

grad f∂ f∂ x∂ f∂ y∂ f
∂ z
= f i1, j , k− f i−1, j , k

2
h

f i , j1,k− f i , j−1,k
2

h

f i , j , k1− f i , j , k−1
2

h
1.4 Interpolation on grids
For manifolds with more than 1D we use a combination of several univariate
interpolations.
Example for a 2D surface:

A 2D surface, with 3 basis functions in x-direction and 4 basis functions in y-direction.
The illustration shows a 2D surface

Given are n⋅m values f jl with j=1n and l=1m at points
X×Y=x1 , , xn× y1 , , ym

n univariate basis functions  j x on X and m univariate basis functions l  y onY are
combined to n⋅m basis functions on X×Y :



ij x , y = j x ⋅l  y

The tensor product is: f x , y= ∑
i=1, j=1

n ,m

ij x , ycij

This means that we gain one bivariate basis function with two variables out of two
univariate basis functions with one variable. The task is to solve a linear system of
equations for the unknown coefficients cij .
An extension to k dimension is done in the same way.

Example:
Given are 4 samples: f(0,0)=2, f(0,1)=0.5, f(1,0)=3, f(1,1)=1

We choose the monom basis for  j and l : 1=1, 2=x , l=1, 2=x

⇒11=1 , 12=x , 21= y , 22=xy

This leads to the following system of equations:
2=c11
1
2
=c11c21

3=c11c12
1=c11c12c21c22

⇒c11=2 , c12=1 , c21=−
3
2
, c22=−

1
2

The interpolated function is given by: f x , y=−1
2
xyx−3

2
y2

1.4.1 Bilinear interpolation on a rectangle
• Tensor product for two linear interpolations
• 2D local interpolation in a cell
• Known solution of the linear system of equations for the coefficients cij
• Four data points x i , y j  , , x i1 , y j1 with scalar values f kl= f x k , yl 
• Bilinear interpolation of points (x,y) with x ixx i1 and yi y yi1

Bilinear interpolation on a rectangle
The picture shows 4 grid points, the corresponding data values and an interpolated data value between these points.

f x , y=1−[1− f i , j f i1, j ][1− f i , j1 f i1, j1] = 1− f j f j1

with:



f j=1− f i , j f i1, j
f j1=1− f i.j1 f i1, j1

and local coordinates:

=
x−x i
x i1−x i

, =
y− yi
y i1− y i

,  ,∈[0,1]

Bilinear interpolation on a rectangle
The image shows 4 data values which form a rectangle and a interpolated data value with its local coordinates α and β.

The equation above for f(x,y) can be rewritten as follows:
f x , y=1−1− f i , j1− f i1, j1− f i , j1 f i1, j1

The point to be interpolated divides the rectangle into 4 areas. The corresponding data
value can be computed by weighting the 4 given data values with area of the
corresponding opposite area.

Bilinear interpolation on a rectangle
The picture shows how the point to be interpolated divides the rectangle into 4 areas.

Note: Bilinear interpolation is not linear. This is illustrated in the animation
BilinearInterpolation.divx. You see a plane which is generated by interpolating between 4
points. In the animation you see how the shape of the plane changes when the points are
moved.
Maya-Animation: BilinearInterpolation.divx

Trilinear interpolation on a 3D uniform grid:
• Straightforward extension of bilinear interpolation
• Three local coordinates  , ,
• Known solution of the linear system of equations for the coefficients cij
• Trilinear interpolation is not linear!
Extension to higher order of continuity:
• Piecewise cubic interpolation in 1D
• Piecewise bicubic interpolation in 2D
• Piecewise tricubic interpolation in 3D
• Based on Hermite polynomials



1.4.2 Interpolation on structured grids (triangle meshes
etc.)
Some definitions:

An affine combination a is a linear combination of n points x i , i∈{1, ,n} :

a=∑
i=1

n

i x i where 0i1,∀ i and ∑
i=1

n

i=1

The α i are called barycentric coordinates.
A  set  of  points  is  called  affinely  independent if  no  point  can  be  expressed  as  affine
combination of the other points. The maximum size of a affinely independent set in ℝd is
d+1.
A simplex in ℝd is the span of d+1 affinely independent points.
Examples:
• 0D : point
• 1D : line
• 2D : triangle
• 3D : tetrahedron

Simplexes
The picture shows a point, a line, a triangle, and a tetrahedron.

1.4.2.1 Barycentric interpolation on a simplex
Given are d+1 points x i with function values f i .

Search coefficients i with x=∑
i
i x i and ∑

i
i=1 .

The function value at x is given by: f =∑
i
i x i .

1.4.2.2 Barycentric coordinates from area/volume
considerations

i=
Vol x1 , , x i−1 , x , x i1 , , xd1

Vol x1 , , xd1

Vol x1 , , xd1=detx1  xd1
1  1 

Examples:



Barycentric coordinates from area/volume considerations for d=2 and d=3
The image shows examples for barycentric coordinates from area/volume considerations for d=2 and d=3.

Barycentric interpolation in a triangle:
Geometrically, barycentric coordinates are given by the ratios of the area of the whole
triangle and the subtriangles defined by x and any two points of x1 , x2 , x3 .

Vol x1 , x2 , x3=detx1 x2 x3
y1 y2 y3
1 1 1=±2 Area x1 , x2 , x3

1=
Vol  x , x2 , x3
Vol x1 , x2 , x3

So we end up with x=∑
i
i x i and ∑

i
i=1 .

Barycentric interpolation in a triangle
The image illustrates the barycentric interpolation in a triangle.

1.4.2.3 Interpolation in a generic quadrilateral
The main application for this approach are curvilinear grids. The problem is to find a
parameterization for arbitrary quadrilaterals.

Interpolation in a generic quadrilateral
The picture illustrates the problem of finding a parameterization for arbitrary quadrilaterals.

The mapping  from rectangular domain to quadratic domains is known: Bilinear
interpolation on a rectangle.
x12=1⋅x11−1⋅x2
x34=1⋅x41−1⋅x 3
x=2⋅x121−2⋅x34



1∈[0,1] , 2∈[0,1]
Computing the inverse of  is more complicated. There are two possibilties:
• Analytically solve quadratic system for 1 ,2
• Numerical solution by Newton iteration
The final value is given by: f =2⋅1⋅ f 11−1⋅ f 21−2⋅1 f 41−1 f 3
The Jacobi matrix J  is given by:

J ij=
∂i

∂ j

J ij describes direction and speed of position changes of  when  j are varied
Newton iteration:
start with seed points as start configuration, e.g. i=

1
2

while ∥x−1 ,2 ,3∥
compute J 1 ,2 ,3
transform x in coordinate system J  :

x=J 1 ,2 ,3
−1⋅x−1 ,2 ,3

update i=ix , i
Other primitive cell types are possible. Examples:

Other primitive cells
The illustration shows a prism where the interpolation is done twice barycentric and once linear and a pyramid where the interpolation is done first bilinear on base face and then
linear.

1.4.2.4 Inverse distance weighting
The Shepard interpolation [D. Shepard, A two-dimensional interpolating function for
irregularly spaced data. Proc. ACM. nat. Conf., 517--524, 1968] was originally developed
for scattered data.
Interpolated values: f  x =∑

i
i x f i

The sample points are the vertices of the cell.

Basis functions: i  x =
∥x−x i∥−p

∑∥x−x j∥−p

Define values at sample points: f x i:= f i=lim x x i
f x 



1.5 Interpolation without grids
1.5.1 Shepard interpolation
• Different  exponents  for  inner  and  outer  neighborhood  (default:  2  in  the  inner

neighborhood and 4 in the outer neighborhood)
• The neighborhood sizes determine how many points are included in inverse distance

weighting
• The neighborhood size can be specified in terms of

• Radius or
• Number of points or
• Combination of the two

• The neighborhood is not given explicitly (as opposed to inverse distance weighting on
grids)

1.5.2 Radial basis functions
• n function values f i given at n points x i

• Interpolant: f x =∑
i=1

n

i∥x−x i∥∑
m=0

k

cm pmx 

• Univariate radial basis r 
• Examples:

• Polynomials r v

• Gaussians exp r−2
• Polynomial basis {pm} for (k+1)-dimensional vector space
• Under-determined system: n equations for n+(k+1) unknowns

• Additional constraints (orthogonality / side conditions): ∑
i=1

n

i pm x i=0 ∀m=0k

• Well-defined system of linear equations (vector / matrix notation):

 A P
PT 0c= f0

Ai , j=∥x i−x j∥
P: Polynomial basis
 : Coefficients for radial function

f: Function values at sample points
c: Coefficients for polynomials

1.6 Filtering by Projection or Selection
Very often there is too much information to be visualized at once. The strategy is to
reduce the displayed information by filtering. A popular approach is to reduce from
nd m v to n ' d m' v , with n 'n and / or m'm .

The possible techniques are: projection, selection, and slicing. For these user input is
needed.
Projection  :
• Functional description for both the

• Domain and
• Data values



• Projection into subspaces
• Often a mapping to a sub set of the original values is chosen
Selection  :
• Selection of data according to logical conditions (predicates)
• Example:

• Height field 2d 1 v with data (x,y,h)
• Dσ={x , y ,h∣x

2 y25km∧h1km}
Slicing:
• Example: 2D cutting surface (slice) through a 3D volume

Slicing
The picture shows a cube with a cutting surface.

1.7 Fourier Transform
The fourier transformation is often used for image processing, especially for filtering. Here,
the image is converted from the spatial domain to the frequency domain by using the
fourier transformation. In the frequency domain the image is multiplied by a filter (e.g.
Gauss-filter, box filter, etc.). Afterwards the image will be transformated back to the spatial
domain.
In the spatial domain a signal ht  is given by the amplitude value as a function of time.
The analogous representation H v in the frequency domain is a function of the
frequency v .
Via the fourier transform these two representations can be converted into each other.

• forward transform: H v=∫
−∞

∞

ht e−2 ivt dt

• inverse transform: h t =∫
−∞

∞

H ve2 ivt dv

The convolution is defined by: g∗ht =∫
−∞

∞

g ⋅h  t−d 

The  convolution  theorem: g∗ht ⇔G v ⋅H v ,i.e.  a convolution  in  the  time domain
corresponds to a multiplication in the frequency domain.
Examples:



Examples for functions in the time domain and the corresponding functions in the
frequency domain
The above images show different functions with their representations in the frequency domain.

In applications mostly discrete Fourier transform, which are based in a discrete signal, are
used.

1.8 Sampled Signals
Assume that a signal h t   is band limited with frequencies smaller than B .
The so called Nyquist frequency is defined as vNyq=2B

The signal can be discretized with a constant step size  t=
1
vNyq

= 1
2B

Sampled signal: h j=h j⋅ t 
If only a finite interval j=0..n-1 is used, periodicity is assumed.
Sampling Theorem (Shannon 1949):

If H  f =0 for all ∣v∣B=
vNyq
2

, then h t  is uniquely given by the samples hi :



h t = ∑
j=0..n−1

h j⋅sinc ⋅vNyq t− j⋅ t 

Issue 1: Undersampling

If h(t) has frequencies larger than B=
vNyq
2

, then h(t) cannot be reconstructed from the

sampled values (Aliasing).

An undersampled signal
The picture shows how an undersampled signal differs from the original signal.

Issue 2: Finite window size
The Fourier Transform is theoretically defined for signals of infinite duration or for periodic

signals. Often the signal h(t) is measured on a finite interval [−T
2
, T
2 ] (without

periodicity).
This can be considered as a multiplication with a window function: h t ⋅1[−T2 , T2 ]

t  . In

the frequency space this means a convolution with a sinc() function.

Finite window size
The image shows a box filter in time domain and the corresponding sinc() filter in frequency domain

A problem of a finite window size is the fact that the differences between the starting and
the ending values of the segment produces a discontinuity which generates high-
frequency spurious components. The use of a Bartlett window solves this problem.

Bartlett window
The picture shows a Bartlett filter in comparison to a sinc() filter.

1.9 Reconstruction and Frequency Filtering
Filter design is mostly based on the Fourier analysis.
A low pass filter with limit frequency v0 can be realized with
• a convolution with a sinc() function in coordinate space or
• a Fast Fourier Transformation (FFT), a multiplication with a box filter v  and then

an inverse FFT



A low pass filter
The image shows a low pass filter with a limit frequency in time and frequency domain

A high pass filter emphasizes features, e.g. edges.

High pass filter
The picture shows a high pass filter in time and frequency domain

Reconstruction issues:
The measurements m t  of the original signal s t  are based on a point-spread
function p t−t i , not on the ideal delta function t−t i . A convolution in coordinate
space corresponds to a multiplication in the frequency space:
m t =∫

−∞

∞

p t−s d  ⇔ M v =P v S v 

An Applet for Fourier Analysis can be found at: http://www.gris.uni-
tuebingen.de/projects/grdev/applets/fourier/html/index.html


