
Basic Mapping Techniques
Mapping is one of the most important parts of visualization. In this chapter the most
popular Mapping Techniques are shown, which are used to represent data.
In this part you will learn to handle 3 dimensional objects with matrices, designing 3D
Scenes using scene graphs, Projections, z-buffer Algorithm, lighting techniques...

1 Diagram Techniques
In this part you get an insight of the most common mapping techniques like scattered
plots, Bar and Pie graphs, line graphs, and 3D height fields.
Typically a data set of information is given in an complex array of numbers. It is aspired to
vizualize a set of data in a way, to be easily understood by a human. Dependant of the
data structure, it is possible to choose between several different Techniques.

1.1 Scatter plots
The easiest and most intuitive way to visualize complex, quantitative data is a diagram,
based on a two-dimensional coordinate system. One possible option is to use scatter
plots to illustrate correlations of discrete data.

This picture shows a scatter plot generated with gnuplot. The x- and y-axis are scaled, a
simple grid and bigger points are used to improve recoginization of important parts.
This picture shows a scatter plot with single points distributed in x- an y- direction. For one value on the x-axis mutliple values on the y-axis are possible and vis versa.

Exercise 1:

Start the Gnuplot command line in a terminal and load the file "scatterplot.dat".
Set the range for the x and y axis and label them, use a grid and increase the pointsize to improve the view of the diagram.

Solution 1:

Used gnuplot commands:
plot "scatterplot.dat"
set pointsize 4
set xrange [2:3]
set yrange [0.5:6.5]
set grid
set ytics 1

set xtics 0.2
set mxtics 0.1
set xlabel "x"
set ylabel "y"
replot

1.2 Line graph
A simple line graph or a line connection between discrete points can be used to display a
continuous function, that for example changes its value over time.

This Graphic illustrates a point-graph with connections between the single points.
For this graph we have two simple functions, drawn pointwise on the two-dimensional grid. The single points are connected with simple line pieces to give the functions a piecewise
continuous characteristic. The two functions can cross in any point or overlap by having the same value at several consecutive points. To distinguish the two functions, one is drawn
red and one green. In contrast to the scatter plot we cannot have multiple y-values for one x-value per function unless we are in the complex coordinate system.

This plot represents a continuous line graph.
The continuous line graph is a simple extension of the line graph, here we don't connect points with line pieces, but we draw the function as one continuous steady line.

Exercise 2:

Start the Gnuplot command line in a terminal and load the file "linepoints.dat ".
Try to connect the dicrete points of the two data sets with lines in different colors. Increase the pointsize and use a grid.

Solution 2:

Used gnuplot command:
plot "linepoints.dat" index 0:0 w lp, "linepoints.dat" index 1:1 w lp
set grid
set xrange [0:25]

set yrange [0:12]
set pointsize 4
replot

Exercise 3:

Start the Gnuplot command line in a terminal and load the file "Data.dat".
Plot the data with a continuous line. Use a logarithmic scale for the x-axis and optimize the range of the y-axis.

Solution 3:

Used gnuplot command:
plot "Data.gnuplot" with lines
set logscale
set yrange[100:102.5]
replot

1.3 Bar graph
If a set of discrete data is given, in some cases it is better to visualize it with a simple bar
graph.
In this kind of diagram the domain is a discrete, independent variable, labeled with
nominal, ordinal or quantitative value. Whereas the range is a quantitative dependent
variable, naturally the data set.

Repersentation of the same data set with a discrete bar graph.
The bar graph is drawn with simple small equidistant boxes in x-dimension, expanding from zero up to the y-value. It can be considered as approximation of surface area under the
function.

Exercise 4:

Start the Gnuplot command line in a terminal and load the file "Data.dat" from example 3 again.
Plot the data with a discrete bar graph. Use a logarithmic scale for the x-axis and optimize the range of the y-axis.

Solution 4:

Used gnuplot command:
plot "Data.gnuplot" with boxes
set logscale
set yrange[100:102.5]
replot

1.4 Pie graph
To visualise quantitative data that adds up to a fixed number, or a condition that is
calculated in percent, the use of a pie graph is favorably.

Pie charts for the representation of data that adds up to a fixed number. The size of a
piece is propoprtional to the percentage of its portion of the whole pie.
As the name already says, the pie graph looks like a round pie with differently large pieces. For better cognition each piece is painted with a different color.

2 Function Plots and Height Fields
Visualization of 1D or 2D scalar fields.
1D scalar field: ⊂ℝℝ
2D scalar field: ⊂ℝ2ℝ

A Heightfield is a two-dimensional array in X and Y direction. The array values represent
the Z value of a surface at each point. Heightfields are used to model any kind of surface,
e.g. Landscapes.
The surface is smoothly interpolated between the defining points using a linear filter.

There are three different types for the representation of surfaces:
• Wireframe
• Hidden Lines
• Shaded surface

Wireframe representation:
The wireframe representation requires the specification of viewing parameters. Every
edge of the grid is drawn, even if it is hidden by a face lying in front. For the viewer the
result appears as a transparent surface.

This graphic shows a 3D height field. The given plot represents the function

f x , y= sin x 
x
 x

2 y
y2
 y

2 x
x

Wireframe representations are three-dimensional plots that can represent any given function. The plot on this picture looks like a ridge with higher and lower areas.

Plot of the function f x , y=sin x ⋅cos  y in wireframe representation.
This funktion looks like the ocean with waving mountains and waving valleys.

Exercise 5:

Start the Gnuplot command line in a terminal and plot the function f x , y= sin x 
x
 x

2 y
y2
 y

2 x
x

.

Rotate the point of view to an angel of 45 degrees for x- and y-axis.
Solution 5:

Used gnuplot command:
f(x,y) = sin(x)/x * x*x*y/y*y + y*y*x/x
splot f(x,y)
set view 45,45
replot

Hidden lines representation:
Contrary to a wireframe the hidden lines representation removes all edges that belong to
hidden faces.
Due to this occlusion it gives the viewer a better spatial orientation.

Plot of the function f  x , y = sin x 
x
 x

2 y
y2
 y

2 x
x with hidden lines.

Plot of the function f x , y=sin x ⋅cos  y in hidden lines representation.
In the hidden line plots of the same two functions as above, one cannot see through the lattice, so lines that lie behind oter lines are occluded. The front faces are drawn red and
the backfaces green.

Exercise 6:

Start the Gnuplot command line in a terminal and plot the same function f x , y= sin x 
x
 x

2 y
y2
 y

2 x
x

 as in exercise 5. This time you should try to

hide masked lines. Rotate the point of view to an angel of 45 degrees for x- and y-axis.
Solution 6:

Used gnuplot commands:
f(x,y) = sin(x)/x * x*x*y/y*y + y*y*x/x

splot f(x,y)
set view 45,45
set hidden3d
set grid
replot

Exercise 7:

Start the Gnuplot command line in a terminal and plot the function f x , y=sin x ∗cos y  .

Set the x and y range form -5 to 5, rotate the view to 45,25. Use a contour and remove hidden faces.
Solution 7:

f(x,y) = sin(x) * cos(y)
splot [x=-5:5][y=-5:5] f(x,y)
set isosamples 30
set view 45,25
set hidden3d
set contour
replot

Shaded surface representation:
The shaded surface is an extended version of the hidden lines representation. In addition
to removed hidden faces it shades every polygon dependant on the influence of incident
light. Therefore it requires the specification of a lighting/shading model.

This picture shows a shaded surface with the light source in the top right corner.
In this picture the three-dimensional mesh is shaded with different grey tones. Surfaces that are aligned in direction of the source of light appear brighter than surfaces that point
away from it.

3 Isolines
3.1 Isolines
Isolines are used for the visualization of 2D scalar fields, given as a scalar function
f : x∈ℝ and a scalar value c∈ℝ . Isolines consists of points {x , y ∣ f  x , y∈c}

which result in contour lines if connected. If f  is differentiable and grad  f ≠0 ,
then isolines are curves.

Isolines are often used for weather charts, to illustrate flow paths of high and low pressure
areas.
This image shows a three-dimensional weather chart and is seperated in different colored, circular pressure regions. The color depends on the degree of pressure and ranges from
blue in the outer ring, over green up to red in the center of the high pressure area.

Isolines are often used for maps, weather charts, thermal diagrams or any other kind of 2
or 3 dimensional data representation.
Isolines can be implemented with a simple pixel by pixel contouring algorithm. It is a
straightforward approach, scanning all pixels for equivalence with a given isovalue.

Problem: Isolines can be missed if the gradient of f  is too large (despite range )
Input:

f :1,... , xmax×1,... , ymaxℝ
Isovalues I 1 , ... , I n and isocolors c1 , ... , cn

Algorithm:
for all x , y ∈1,... , xmax×1,... , ymax do
 for all k∈{1,... , n} do
 if ∣ f x , y−I k∣ then

draw x , y , ck 

3.2 Marching squares
The Marching squares algorithm is used to compute the representation of a scalar
function on a rectilinear grid. Due to the discrete scalar value at each vertex of a cell,
interpolation of points within cells is necessary. The marching squares algorithm is the 2D
equivalent to the marching cubes algorithm, described in chapter 5. It uses a devide and
conquer approach by considering cells independently of each other.

Rectilinear grid with scalar values represented as points.
This rectilinear grid shows three cells in x-, and three cells in y-direction. As we learned in the second chapter, the spacing is not necessarily equidistant, so here it changes from
small to large, to middle size in x-direction, while the spacing in y-direction stays nearly the same.

Basic idea of the algorithm:
• Which cells will be intersected ?

• Initially mark all vertices by + or - , depending on the condition
f ij≥c , f ijc

• c is the user defined isofvalue.
• No isoline passes through cells (rectangles) which have the same algebraic sign at all

four vertices.
• So we only have to determine the edges with different signs at their

adjacent vertices.

Rectilinear grid with isolines intersecting cells, depending on the algebraic signs of the
vertices.
In this picture, the vertices of the rectilinear grid are marked with + or -. All edges that connect vertices with different signs are intersected by the wanted isoline. In our case it looks
like
+ + + +
+ + + +
+ + - +
+ - - -

• Concerning symmetry characteristics there are only 4 different cases of combinations of
signs.

• Symmetry characteristics are: rotation, reflection, change + and -
• Compute intersections between isoline and cell edge, based on linear interpolation

along the cell edges.

4 different cases of intersecting isolines, two of them are ambiguous and must be solved
somehow.
The 4 different cases are

For the last case, we have two isolines intersecting the cell and we have to decide if they run from upper left to down right or from down left to the upper right side.

• Cases of ambiguity can be distinguished by a decider.

Mid point decider:
• Determine the function value in the center by bilinear interpolation

f center=
1
4
 f i , j f i1, j f i , j1 f i1, j1

• If f centerc we choose the right case, otherwise we choose the left case.

Mid point decider can be used to solve the ambiguity problem.
In this picture, both possibilities of how the isolines could intersect the cell are shown. The black dot in the middle of the cell stands for the calculated value of the midpoint decider.
If this value is greater than the searched isovalue c, our point lies on a hill and the isolines intersect the cell from the upper left to the lower right side. Otherwise if this value is less
than the isovalue, our point lies in a vally and therefore the isolines intersect from lower left to upper right.

• This is not always the correct solution.

Asymptotic decider:
The Asymptotic Decider resolves the ambiguity in Marching squares.
• Consider the bilinear interpolant within a cell.
• The true isolines within a cell are hyperbolas.

The asymptotic decider can be used to solve ambiguity more reliable.
The hyperbolas in this picture run from left to bottom edge, bottom to right, right to top and top to left edge of our cell. All hyperbolas converge against one asymptote in x-, and one
in y-direction. The value at the intersection point of those two asymptotes is our reference value that we can compare with the searched isovalue c.

• Interpolate the functon bilinearly
f  x , y= f i , j 1−x 1− y f i1, j x 1− y  f i , j11−x  y f i1, j1 xy

• Transform f  to
f  x , y=x−x0 y− y0

•  is the function value in the intersection point of the asymptotes.

• If ≤c we choose the right case, otherwise we choose the left case.

By interpolating with the asymptotic decider the two possibilities of intersecting isolines
resulting from the ambiguity can be solved.
Dependent on the sign which results from the computed formula the arrangement of the
lines is clearly given.
In this image we see besides the two valid cases one invalid case of intersecting isolines. In this case the isolines do noit only intersect the edges of the cell, but also the
asymptotes. This is wrong, because the hyperbolas cannot intersect the asymptotes they converge against, so this solution would not make sense.

• Explicit transformation f   to
f  x , y=x−x0 y− y0 can be avoided

• Idea: investigate the order of intersection points either along x or y axis.
• Build pairs of first two and last two intersections.

Cell order approach for marching squares:
• Traverse all cells of the grid.
• Apply marching squares technique to each cell.
Disadvantage
• Every vertex (of the isoline) and every edge in the grid is processed twice.
• The output is just a collection of pieces of isolines which have to be postprocessed to

get (closed) polylines.

Contour tracing approach:
• Start at a seed point of the isoline
• Move to the adjacent cell which is entered by the isoline.
• Trace isoline until

• Bounds of the domain are reached or
• Isoline is closed.

Problems:
1. How to find seed points efficiently:

• In a preprocessing step, mark all cells which have a sign change.
• Remove marker from cells which are traversed during contour tracing

(unless there are 4 intersection edges !).
2. How to smooth isolines:

• Evaluate the gradient at vertices by central differences.
• Estimate tangents at the intersection points by linear interpolation (Note that

the gradient is perpendicular to the isoline !).
• Draw a parabolic arc which is tangentail to the estimated tangents at the

intersections:
• Quadratic Bezier curve
• Approximmation with 2-3 subdivision steps is sufficient.

Example of a Quadratic Bezier approximation in three steps.
In each step the curve gets more and more approximated by adding an addidtional point in the middle of the line between 2 othe points. In step 1 we have given 2 lines that
intersect in 1 point, so we only need 3 points to describe the lines. At each line center, we add a new point and connect the points with a further line. This makes 5 points and 3
lines at the start of step 2. So we add the points in the line centers and connect them by lines again, which leads to 8 points and 5 lines. Note that only neighboring middlepoints are
connected.

4 Color Coding
Colors are an essential component of visualization. Most visualization techniques contain
a step in which different data values are mapped to different colors to make the range of
the data visible. Since the mapping of data values to colors involves color coding, we will
describe this in some detail. Issues of the visualization prozess are what kind of data can
be color-coded and what kind of information can be efficiently visualized?
Color coding extends over a broad application scope. Some examples are:
• Provide information coding
• Designate or emphasize a specific target in a crowded display
• Provide a sense of realism or virtual realism
• Provide warning signals or signify low probability events
• Group, categorize, and chunk information
• Convey emotional content
• Provide an aesthetically pleasing display

Problems:
• Distract the user when inadequately used
• Dependent on viewing and stimulus conditions
• Ineffective for color deficient individuals

• Results in information overload
• Unintentionally conflict with cultural conventions
• Cause unintended visual effects and discomfort

Nominal data color coding:
By nominal color coding one understands the aesthetic and functional use of color to
impart qualitative information and psychological aspects in graphical environments.
• Assignment of colors needs to be well distinguished.
• According to standard is the use of arround 8 different basis colors.
• Localisation of data.

Co-citation analysis displayed with a nominal data diagram.
Fields of research are shown as colored circles, relations are marked with lines.
Here we can see variably sized circles with different colors, that stand for different fields of research. Fields that are related are connected by lines.

Another example of a nominal data diagram. Fields of research are given as different
colored and sized quadratic regions.
Ordinal and quantitative data:

• The order of data should be represented by the order of colors
• Stand for psychological aspects
• x1x2xnE c1E c2E cn

Color coding for scalar data:
• Assign to each scalar value a different color value
• Assign via transfer function T

T : scalarvaluecolorvalue
• Code color values into a color lookup table

default range of a color lookup table is 256

The simple structure of a color lookup table is given by a array with 256 fields.
This image shows a simple color lookup table with 256 RGB entries. The transferfunction mapps the given scalar value to one of the fields.

Pre-shading vs. post-shading
• Pre-shading

• Assign color value to original function value (e.g. at vertices of a cell)
• Interpolate between color values (within a cell)

• Post-shading
• Inerpolate between scalar values (within a cell)
• Assign color values to interpolated scalar values

Linear transfer function for color coding
• Specify color for f min and for f max

• Rmin ,Gmin , Bmin and Rmax ,Gmax , Bmax
• Linearly interpolate between them (same idea as inverse distance weighting):

f 
f − f min
f max− f min

Rmax ,Gmax , Bmax 
f max− f
f max− f min

Rmin ,Gmin , Bmin

• Different color spaces lead to different interpolation functions
• In order to visualise (enhance/suppress) specific details, non-linear color lookup tables

are needed

Gray scale color table
• Intuitive Ordering

Gray scale color table.
Here we have a smooth transition from black to white, which results in a gray scale color table.

Rainbow color table
• Less intuitive
• HSV color model

Rainbow color table.
The rainbow color table has transitions from purple to blue, to green, to yellow, to orange, to red, to purple again.

Temperature color table
• black – red – yellow - white

Temperature color table.
Temperature is colored from black over red over yellow, to white.

• Bivariate and trivariate color tables are not very useful:
• No intuitive ordering
• Colors are hard to distinuish

• There exist many more color tables for specific applications
• Design of good color tables depends on psychological / perceptional issues

• Frequently transfer functions are specified interactive, in order to extract important
characteristics

Example:
• Special color table to visualize the brain tissue
• Special color table to visualize the bone structure

Original, Brain, Tissue.
In this picture we can see the same MRT date set displayed 3 times with 3 different transfer functions, so that you can focus on some special detail or area of interrest.

5 Glyphs and Icons
Glyphs belong to the family of Iconography. They are appointed to assign data values on
graphic attributes. Each multi-dimensional data element is represented by a Glyph.
Features should be easy to distinguish and combine
• Icons should be seperated from each other
• Mainly used for multivariate data

Stick-figure icon:
The stick figure was developed by [Pickett-1988-IDV]. The icon consists of several lines
forming some kind of manakin. It consists to be added of a base line and at their ends
further lines which one can understand as extremities. Its dimension is represented by the
number and length of the lines and the angle to each other. Variables can represent the

length, thickness and color of the lines. A representation of different dimensions is
possible. If the data records compared to the screen dimensions, lie relatively close
together, the resulting visualization shows a structure sample, which varies in accordance
with the data characteristics.

• 2D figure with 4 limbs
• Coding of data via

• Lenght
• Thickness
• Angle with vertical axis

• 12 Attributes
• Exploits the human capability to recognize patterns / textures

These pictures show some examples of how stick figure icons can look like.
The characteristic extremities at the end of the trunk are well recognizable.
The typical stick figure looks as follows. One vertical trunk in the middle and at each end we can have one or two extremities. So altogether we can have 4 extremities. Each
extremitie itself can have one ore more hinges, but if that is so, we have to substract the number from the other ones, because we can only have up to 4.

Several stick figure icons arranged next to each other on a surface supplie a surface
texture.
Color icons:
The fundamental principle of color icons (published by [Levkowitz-1991-CIC]) is similar to
the stick figures. A square surface is divided into several different colored regions, each
region stands for an attribute, each color for a value. Arrangeing several squares on a
surface also produces surface texture.

If one generates a color icon, the following characteristics should be considered:
• Subdivision of a basic figure (triangle, square, ...) into edges and faces
• Mapping of data via color tables
• Grouping by emphasizing edges or faces

An example for a color icon is a square divided in eight equal parts.
This image shows a square that is devided horizontal, vertical and abreast from top left to down right and from down left to top right corner. This fragmentation gives us 8 equally
sized but different colored triangles.

Many of these quadratic color icons combined on a surface genarate a texture as well.
Chernoff Faces:
Another kind of glyphs are the Chernoff faces. In case of geometrical coding schematic
faces are used, in order to illustrate trends in multi-dimensional data. Since humans are
very good in interpreting faces and they can easily sense their emotions, this metaphor is
a simple however effective way of visualizing n-dimensional data in order to pick out
trends from the data. This method was developed by [Chernoff-1973-UOF]. The size,
form and distances between the parts of the face represent the extents of the individual
variables.
• Possible assignement in the decreasing order of importance:

• Area of the face
• Shape of the face
• Length of the nose
• Location of the mouth
• Curve of the smile
• Width of the mouth
• Location, seperation, angle shape and width of the eyes
• Location of the pupil
• Location, angle and width of the eyebrows

• Coding of 15 attributes
• Additional variables could be encoded by making faces asymmetric

Chernoff Faces.
Each chernoff face consists of one enclosing circle, two little circles as eyes, two lines as eyebrows, one vertical line as nose and on horizontal or curved line as mouth. All these
Attributes can vary in its size or thickness.

Chernoff and sun-ray plots lose their simplicity as the sample size gets large.

Circular icon plots like star plots, sun ray plots, etc ... follow a ''spoked wheel'' format.
Values of variables are represented by distances between the center (''hub'') of the icon
and its edges.

Star Glyphs:
Star glyphs have been established by [Fienberg-1979-GMS].With star glyphs data values
of any dimension are stretched in length by lines. Each line has the same origin and
spreads radially from the center. The termination points of the lines are connected, in
order to form a polygon.

• A star is composed of equally spaced radii, stemming from the center
• The length of the spike is proportional to the value of the respective attribute
• The first spike / attribute points to the right
• Subsequent spikes are arranged counterclockwise
• The ends of the rays are connected by a line

Star glyphs of some famous cars (from left to right: Audi 500, Dodge St. Regis and Ford
Mustang 4).
This illustration shows the star glyphs of some famous cars, the audi 500 glyph for example expands extremely with one edge into the upper left corner, the two edges of the left
and right of the extreme one spread still moderatly, but the remaining edges downward and to the right are relatively small.

Sun ray plots:
Sun ray plots are similar to star glyphs, they also have a star-shaped structure and are
used to compare more than two endpoints or data types. They are most effective when
the reference condition is incorporated into the axes.

Illustration of some sun ray plots.
The sun ray plot remindes one of a analog clock with one axis in the direction of each hour. The values are then applied along each axis.

6 Multiple Attributes
Another approach to visualize multivariate data is to map data values to different visual
primitives. Multiple attributes are a typical combination of:
• Geometric position, e.g. height field
• Color: saturation, intensity, tone
• Texture

