
Volume Visualization
Volume visualization is used to create two-dimensional graphical representations from
scalar datasets that are defined on three-dimensional grids. Examples of 3D data range
from medical applications like CT, MRI scans, confocal microscopy over ultrasound and
seismic data to fluid dynamics. There are two fundamental types of volume visualization:
direct volume rendering (DVR) algorithms and indirect volume rendering- or surface-fitting
(SF) algorithms. 

 

 

 



 

 

Standard surface modeling only defines the opaque outer surface of an object, so you can
not see inside of it. The basic idea of volume visualization is to make the boundaries of an
object transparent, so that one can see inside. Volume data consist of two different typical
characteristics, which should be considered. They contain the essential interior
information of an object, but geometric representation of fire, clouds or gaseous
phenomena can not be described. So you have to distinguish between shape (given by
the geometry of the grid) and appearance (given by the scalar values or color, texture,
lighting conditions, etc.). Even if the data could be described geometrically, in general
there are too many primitives to be represented.

In general, volume rendering can be classified in two groups, the direct and indirect
techniques. Further on there exist techniques for 2D scalar fields, or techniques which
reduce or convert volume data to an intermediate representation (surface representation),
which can be rendered with traditional techniques. Another possibility is to consider  the
data as a semi-transparent gel with physical properties and directly get a 3D
representation of it.



Slicing:
Slicing techniques are common methods for visualization, and are used to examine
scalar fields. They display the volume data mapped to colors on a 2 dimensional slice
plane.

Isosurfacing: 
Isosurfaces are 2D surfaces that can be extracted from 3D (or higher dimensional)
sample volumes. They generate opaque/semi-opaque surfaces.
One problem is that all voxels from the same isosurface have the same color, which
only leads to a flat surface with a single color. A reasonable 3D effect originates only if
one computes the lighting of the surface on the basis of the normal vectors. 

Transparency effects: 
Volume material attenuates reflected or emitted light.

Indirect volume rendering techniques:
The strategy of indirect volume rendering is to generate a surface model of the given
volume data which is efficiently manageable and representable. In general the surface
is opaque. 
It is assumed that coherent structures (e.g. skin, bone) are represented by point sets
with the same sampling rate. The surfaces of these pointsets are approximated by
polygons. This often results in complex representations, where pre-processing of the
surface representation might help. Even graphics hardware is used for interactive
display.
In practice one starts with the volume data and tries to find a triangle mesh, that
represents the volume as well as possible. Once the 2D mesh is found, it can be
rendered with traditional techniques. 

Direct volume rendering techniques:
The characteristic of direct volume rendering is the direct mapping of voxels on pixels
of a 2D image plane. It allows for the "global" representation integrating physical
characteristics, but prohibits interactive display due to its numerical complexity in
general. Nowadays (2003) it is possible to realize interactive direct volume rendering
on standard graphic hardware for a volume with approximately 256 cubes with up to 5
fps.
In practice the data can be considered as a semi-transparent gel and the user decides
which parts of the object should be opaque or transparent. The final 2D image is
computed by projecting, in visibility order, the voxels onto the image plane, and
incrementally compositing the voxel's color and opacity into the final pixel.



Opaque slice, opaque isosurface and semi-transparent tissue.
This picture shows the semi-transparent visualization of a leg, cut below the knee.
The goal of volume rendering is, to integrate all different techniques in order to represent
the data as “good” as possible.
But you have to keep in mind, that the most correct method in terms of physical realism
must not be the most optimal one in terms of understanding the data. Further, to render
and display 3D values, you always have to create 2D images, which involves a projection
and a loss of data, because you throw away one dimension.

Different grid structures:
• Structured: uniform, rectilinear, curvilinear
• Unstructured
• Scattered data

Pixel is an abbreviation for picture element; a dot that represents
 the smallest graphic unit of display on the screen.
Here we can see a car body, with every single part differently colored. The complete
surface is rasterized and the smallest part of this raster is called pixel.



Voxel stands for volume element; which is equal to a pixel, but in 3D space. Values are
constant within a region around a grid point.
The voxel is a 3D cube with constant value.

A cell describes the volume framed by grid points, values between grid points are re
sampled by interpolation.
The cell is also a 3D cube however not with one constant value but different values at
each of the 8 corners.

1 Classification
Important for visualization is the process of classification, which assigns a material
characteristic to each voxel, based on any of a wide variety of data characteristics, such
as data value (scalar or vector), derivative measures, or local histograms. The so created
material occupancy assignment is called a classification-, or transfer function. 

Transfer function 
The transfer function describes the relationship between the input and the output of a
system. Its role in volume rendering is to map the voxel information to renderable
properties of opacity and color.

The classification of transfer functions is non trivial, it is often based on a color table and
maps raw voxel value into presentable entities like color, intensity, opacity, etc. By
extracting important features of the data set the user is empowered to recognize  and
select structures. Due to difficult finding of good transfer functions, it is often better to



support interactive manipulation, sometimes a histogram can be a useful hint. The most
widely used approach for transfer functions is to assign each scalar value a different color
value: T : scalarvalue colorvalue . A common choice for color representation is
R ,G , B , , where the alpha value describes the opacity. The color values are coded

into a color lookup table (LUT) whereby an on-the-fly update is possible. 
A known problem of transfer functions is the so called partial volume effect which
appears, when two or more substances mix in one voxel. In that case you cannot decide
which material has to be represented. This problem can be solved with a good pre-
classification, that means that each voxel has to be labeled with its associated material.

Coding scalar values into a color lookup table (LUT).
This image shows a simple color lookup table with 256 RGB entries. The transferfunction mapps the  given scalar value to one of the fields.

Interactive manipulation of transfer function with different results.
Two examples of different transfer functions applied to the same data set of a foot. First one shows only the bones and the second one visualizes also red, semi-transparent tissue
arround the bone.



Heuristic approach, based on measurements of data sets.
This picture shows a coordinate system with 4 boxfunctions representing the 4 mateials air, fat, tissue and bone. The four box functions overlapp, so it is not always which material
should be applied to which value.

For densitometry of materials exists the original measuring system of computer
tomography by Hounsfield. A Hounsfield unit (HU) for CT data sets describes the density
of material by a 12 bit CT-measurement and ranges from -1000 for air over 0 for water to
values over 4000 for carbide. From the arising absorption differences Hounsfield set up a
density scale, which itself initially moved from -1000 to +1000. With advanced
development of computer and software the range of the firm body fabrics could be
expanded further. Thus a very exact density allocation is possible. 



Table with Hounsfield units (HU).
Some examples for Houndsfield units are -1000 for air, -55 to -75 for fat, 0 for water, 20 to 60 for tissue, 50 to 1900 for bone and over 4000 for metal.

One existing problem with 12 bit CT datasets is that modern graphics hardware only
supports a 8 bit color range.  This means that for visualization, the 12 bit has to be
reduced to 8 bit, which results in a loss of dynamic range. 

Pre-shading:
First the color values are assigned to the original function value of the lookup table,
before texture interpolation is accomplished. This can lead to color-blending artifacts.
In practice pre-classification results in a apparently smoothed transitions.

Post-shading:
First the scalar values are interpolated, then the appropriate color from the lookup table
is assigned to the interpolated value. This makes a higher detail accuracy possible. In
practice transitions of post-classification are much more discrete, but give more volume
information of the rendered objects.

The general interest of volume visualization is not a particular isosurface but whole
regions of change. This suggests a feature extraction with a high value of opacity in
regions of change. Large homogeneous regions are less important than regions with
strong structural changes. In order to emphasize changes it is useful to consider gradients
of the scalar field, whereby the transfer function becomes two-dimensional.



The gradient of a pixel points to the direction of largest change. Transitions between same
colors (e.g. same gray to white) result in same length of the gradient, no matter of its
direction.
In this image we have two rastered squares, some cells are colored black and some cells are colored white. Here it should be clearyfied, no mater in which direction we compute the
gradient (vertical, horizontal or aslope) the result depends only on the change of color.

A multidimensional transfer function has been introduced by [Levoy-1988-DSV], he used
the gradient magnitude for the second dimension as shown in the illustration below. The
gradient as a vector represents the direction of  strongest change in the scalar field, the
gradient magnitude is a local property and gives us information about how fast values are
changing.

At the point f v in the image below the gradient is very low, which means that the
changes in this region of data are very small and the structure one wants to detect here is
very thin.
In contrast to that, points lying at the opposite side of the point f v , have a very high
gradient, which means that they cover a fuzzy range of structure and one can detect thick
structure regions here. 

Scalar value and gradient of the scalar field in a transfer function to emphasize

isosurfaces x i=v1−
1
r
∣
f v− f x i
∣ f ' x i∣

∣ .

Multidimensional transfer functions are of importance for volume visualization, because
by having more variables they can differentiate better between various structures in
volume data. Additionally to the gradient magnitude other values can be used to gain
dimensions, e.g. the second derivation along the gradient direction. Further on one can



use the result of an edge detection algorithm by Marr – Hildreth [Kniss-2001-IVR] or the
Laplacian operator which uses the second derivation of the scalar field. Each variable
represents one axis of the transfer function and thus stands for one dimension. 
 
Approach for 3D transfer function can depend on:
• Scalar value
• Magnitude of the gradient
• Second derivative along the gradient direction

One decisive advantage that speaks in favor for using more dimensions is, that thereby
the area of transition from e.g. air to bone can be represented, although these materials
don't have overlapping HU values as shown in the heuristic approach diagram above.
A big problem of multidimensional transfer functions is, by adding more dimensions, you
are adding an enormous number of freedom in which the user can get lost. It is already
difficult for one dimension to find a good transfer function because each control point adds
two degrees of freedom. Further, transfer functions are non-spatial which means that they
do not include the spatial position in their domain.

In this graphic, f  x  shows the smooth transition between two materials.
The first derivative f ' x  represents the gradient, which stands for the strength of
magnitude.
In certain cases this is not precise enough to detect boundaries, so the second derivative
f ' ' x  can also be used for the transfer function.

The change of color e.g. From white to black can be written as a function f x  constantly rising from 0 to 1. The first derivation  f '  x is called gradient and

has has its saddle point exactly in the center of the transition. The second derivation f ' ' x is called second order gradient which is positive until it intersects the x-axis

right in the middle of the black to white transition and then continues with negative values.

2 Segmentation
Segmentation is a pre-processing method and needed for volume rendering to separate
different objects from each other. Once the dataset is segmented, those quantities are



easily measured. The difficult part of finding an accurate segmentation is that different
materials can have the same scalar value, e.g. with a CT scan, different organs have
similar X-ray absorption whereby a proper classification can not be distinguished. This is
the reason why segmentation is mostly a semi-automatic or even manual process, and
requires expert knowledge.

Heuristic approach, based on measurements of data sets.
This picture shows a coordinate system with 4 boxfunctions representing the 4 mateials air, fat, tissue and bone. The four box functions overlapp, so it is not always which material
should be applied to which value.

3 Volumetric Shading
In general shading is used to visualize the 3D structure on a 2D plane. Without shading,
different voxels of  the same slice will have the same color after mapping by a transfer
function. This leads to the fact that we notice the result as a plane 2D surface, although it
is a 3D object. By shading this surface, one can pretend the human perception a 3D
effect.
With volumetric shading techniques, it is possible to create scenes with effects like fog
or  smoke by simulating the scattering and reflection of light as it passes through the
atmosphere. This takes effect on the color of each voxel in the volume dataset, which is
generally represented as RGB color vector. The most common form of shading
function is RGB= F RGB V x  F V x  ,∣∇ V x ∣ where F RGB and F  are vector
functions for RGB and  respectively, V x  is the volume value and ∣∇V x ∣ is
the volume gradient length.  This means that we are only using the scalar value to
calculate the color and we are using both, the scalar value and the gradient magnitude to



calculate the opacity. By interpreting the intensity gradient we want to make use of the
human visual system’s ability to efficiently deal with shaded objects.

A simple example of 3D perception. We set several differently grey colored bars next to each other, which change its colors from dark to light and back to dark again. If the bars are
very thick, we recognize only differently colored stripes, however if they are thin, then the eye recognizes a pipe with highlight in the center.

Review of the Phong illumination model:
In 3D graphics, the polygons that make up an object need to be shaded. One
sophisticated lightning model that eliminates the faceted appearance of flat shading is the
standard phong shading method. It is very similar to Gouraud shading, where for each
vertex an average normal vector is computed out of the normal vectors of the adjacent
surfaces. In addition to that Phong shading interpolates the vertex normals across the
surface of a polygon to gain a surface normal at each point for illuminating each pixel.
This kind of shading is very expensive and cannot be computed in real time on common
hardware. That's why the most implementations are based on optimized approximations.
The standard phong shading formula is made up  of three components:

Ambient light: C=k aC aOd

• k a  is ambient contribution
• C a  is color of ambient light
• Od  is diffuse color of object

Diffuse light added: C=k aC aOdk dC pOd cos
• k d  is diffuse contribution
• C p  is color of point light
• Od  is diffuse color of object
• cos   is the angle between normal vector and incoming light vector

Specular light added: C=k aC aOdk dC pOd cosk sC pOs cos
n

• k s  is specular contribution
• C p  is color of point light
• cos   is the angle between normal vector and halfway vector

cosn stands for the effect of the exponent of highlight. When n∞ then
cosna0 , which means that the viewer comes close to the reflection-vector. The result

is a sharp increase of the light intensity.



cos =N∗E (Phong), cos =N∗H (Blinn-Phong) ,  H= LE
∥LE∥ .

The Phong lighting model needs several vectors to compute the color at one given point. We need the light vector L, the normal vector N, the reflection vector R, the eye vector E
and the halfway vector H, all starting from the given point..

Effect of the exponent of highlight. cos10=N∗H 10 .
For highlighting we only need the normal vector N and the halfway vector H.

 



 

 

 
K a=0.1 , K d=0.5 , K s=0,4

These pictures show the results of the individual components ambient, diffus and specular and the final combiation of all.

4 Numerical computation of the gradient:
Gradient in scalar fields:
The Gradient is the normal vector in a scalar field and stands perpendicular to the
isosurface.

Central difference
Commonly used is the 6-point operator, because of it's fast and easy implementation:
G x=V x1, y , z−V x−1, y , z



G y=V x , y1, z−V x , y−1, z

G z=V x , y , z1−V x , y , z−1

The convolution kernel is very simple, works with subtraction and one to one weighting: [-1
0 1]. It simply computes an average difference of values along each axis. Although this
operator is not very accurate, it is a good estimation. The result is a kind of high-pass
filter, which smooths noise.
The disadvantage of this operator is its non isotropic characteristic, the magnitude of
gradient change with the orientation of boundary, which means the length of the gradient
is at a ratio of 1 to 2  in D (look at the picture below). Further the gradient needs to
be normalized.

Central difference. Orientation of the gradient in dependence of the scalar field.
Given are 9 pixels, 3 in x-, and 3 in y-direction, so that the middle pixel has 8 neighbors. If we compute the gradient vertical or
horizontal (represented as an arrow), its length is different as if we compute it aslope from the middle to one of the corner pixels.

Intermediate difference (forward/backward difference)
Slightly different is the intermediate differences approach. Here, the gradient is calculated
right in between sample points and then interpolated, i.e. 
G

x1
2

=V x1, y , z−V x , y , z

G
y1
2

=V x , y1, z−V x , y , z

G
z1
2

=V x , y , z1−V x , y , z

This convolution kernel is very simple too: [-1 1]. It is very cheap for computation and it
considers  its own scalar value. Intermediate differences are more accurate and detect
high frequencies.
The disadvantage of this operator is also its non isotropic characteristic and the
susceptibility for noisy data makes it less good.

Example for a gradient computed with intermediate difference.
Given are 9 pixels as in the image above and we compute the gradient for the pixel in the with intermediate difference.

Sobel operator
The sobel operator has a 3×3×3 convolution kernel like shown in the picture below.
It is nearly isotropic and does not depend on the orientation of a structure or boundary in
data set.
But because of its 3 dimensional kernel the operator is very expensive (multiple
multiplications and summations) and has some additional smoothing in rendering.



The three slices of the sobel operators convolution kernel.
The sobel operator looks as follows:

previous slice: [−1 0 1
−3 0 3
−1 0 1]  this slice: [−3 0 3

−6 0 6
−3 0 3]  next slice: [−1 0 1

−3 0 3
−1 0 1]

5 Slicing
For indirect volume rendering there are two approaches, isosurfacing and slicing, which
extract a subset of data and visualize the subset with traditional rendering techniques.
Slicing can be divided again in two different procedures: Orthogonal and oblique slicing.

Orthogonal slicing
• Interactively resample the data on slices perpendicular to the x-,y-,z-axis
• Use visualization techniques for 2D scalar fields

• Color coding
• Isolines
• Height fields

Result of orthogonal slicing.
This illustration shows 5 different orthogonal slices of a CT data set, representing a head. We can see the bone, tissue arround it, but the brain is not visualized with this transfer
function.

Oblique slicing
• Resample the data on arbitrarily oriented slices
• Resampling in software or hardware
• Exploit 3D texture mapping functionality

• Store volume in 3D texture
• Compute sectional polygon (clip plane with volume bounding box)
• Render textured polygon

Each pixel value of the generated slice plane can simply be found by taking the
corresponding cell from the volume for the given x,y,z coordinate and interpolating the
values given at the eight corners of the cell.



Examples of oblique slicing.
This illustration shows 4 different oblique slices of the same CT data set. Here we can also see the brain.

6 Indirect Volume Rendering
Contrary to direct volume rendering, indirect volume rendering techniques first transfer
the volume dataset into a new domain, before it is rendered. These algorithms are often
chosen because of their speed advantage, or a possible hardware acceleration, although
they are not so precise. The general idea of those techniques is, if f x , y , z   is
differentiable in every point, then the level-sets f  x , y , z =c  are isosurfaces to the
defined isovalue c. That means that the algorithm goes through all voxels and determines,
if each voxel belongs to the isosurface with value c. Common indirect volume rendering
techniques to determine and reconstruct isosurfaces from volume data are:
• Contour tracing
• Cuberille, opaque cubes
• Marching cubes/tetrahedra

Contour tracing
The contour tracing approach was often used in prominent medical applications before the
marching cubes algorithm was invented. The simplified proceeding of contour tracing can
be described as follows. It is a local operation on a (by a threshold value) binarized 2D
slice of the volume dataset. By clockwise traversing the adjacent pixels of the contour, a
chain of pixels is gained that forms a polyline. The proceeding to find isosurfaces from 2D
contours can be as follows:

• Segmentation: find closed contours in 2D slices and represent them as
polylines

• Labeling: identify different structures by means of the isovalue of higher
order characteristics

• Tracing: connect contours representing the same object from adjacent
slices and form triangles

• Rendering: display triangles
• Choose topological or geometrical reconstruction

Problems:
• Sometimes there are many contours in each slice or there is a high variation between

slices 
 Tracing (assignment) becomes very difficult, so the main task of contour tracing is,

how to correctly connect the vertices of the triangles on different isosurfaces.



Illustration of contour tracing between two different slices.
In this image we have two neigbouring slices each containing a differently oriented triangle. The problem is to connect the two triangles in a meaningful way. If we connect the
vertices lying next to each other we get an octaeder.

Problem with contour tracing: labeling of a vessel branch in medical data volumes.
In this picture we have one further problem of contour tracing, a vessel branch. In the first slice we have only one circle and in the neighbouring slice there are two circles. The
problem is in fact to recognize that it concerns a vessel branch and also to connect the three circles correctly like an y.

Of course there is not only one single way of representing a surface in indirect volume
rendering, it always depends of the projection used. To make this clear two more methods
will follow.

Generic surface fitting techniques
• Choose an isovalue (arbitrarily or from segmentation)
• Detect all cells the surface is passing through by checking the vertices
• Mark vertices with respect to f x , y , z c    ∨ f x , y , z  c − 
• Consider all cells with different signs at vertices
• Place graphical primitives in each marked cell and render the surface

Cuberille (opaque cubes) approach [Herman-1979-DHO]
(A) Binarization of the volume with respect to the isovalue
(B) Find all boundary front-faces

if the normal of each face points outward the cell, find all faces where the
normal points towards the viewpoint N •V0

(C) Render these faces as shaded polygons

• “Voxel” point of view: NO interpolation within cells. The approximated boundary is not
very precise.



The cuberille approach does not use interpolation, it marks whole cells.
We have 5 cells in x-, and 3 cells in y-direction. Each cell is marked with + or – and those cells whose neighbors have a different sign get colored but as a whole, not with
interpolation. In the picture it looks as follows:
+ + + + +
+ + - - - 
+ - - - -
- - - - -

• Cuberille approach yields blocky surfaces
• Improve results by adaptive subdivision
• Subdivide each marked cube into 8 smaller cubes
• Use trilinear interpolation in order to reconstruct data values at new cell corners
• Repeat cuberille approach for each new cube until pixel size

Subdivision of the quadtree for the cuberille approach.
A quadtree is a square, which is recursively divided into four smaller squares equal in size until we reach pixel size.

7 Marching Cubes
In order to get a better approximation for rendered isosurfaces of volumetric data, the
Marching Cubes (MC) algorithm was developed by [Lorenson-1987-MCA].
The algorithm works on the original volume data, it defines a voxel (cube) by the pixel
values at the eight corners of the cube. This cube is “marching” through the whole volume
dataset and subdivides space into a series of cubes. At each step we classify each vertex
of the cube as inside or outside the isosurface. Edges that are adjacent to one “inside”
and one “outside” classified vertex are intersected by the isosurface and we can create a
triangle patch whose vertices are found by linear interpolation along those cell edges.
Further we use the gradients as normals of the triangle surfaces. By connecting the
patches from every step of the cube we get an approximated isosurface represented by a
triangle mesh. We gain efficient computation by means of lookup table that  stores all



possible constellations of triangle patches.
MC is THE standard geometry-based isosurface extraction algorithm!

The core MC algorithm:
• Cell consists of 4(8) pixel (voxel) values: i[01] , j[01] , k[01]

1. Consider a cell 
2. Classify each vertex as inside or outside 
3. Build an index 
4. Get edge list from table[index] for triangulation
5. Interpolate the edge location 
6. Compute gradients 
7. Consider ambiguous cases 
8. Go to next cell

The cube of the MC algorithm is a 3D cell with coordinates given at each corner of the cell. Starting at the left lower corner moving counterclockwise, for the front face the indices

are: i , j , k  , i1, j , k  , i1, j , k1 , i , j , k1 . The backface indices are: i , j1, k  ,

i1, j1, k  , i1, j1, k1 , i , j1, k1 .

• Step 1: Consider a cell defined by eight data values.

Each vertex of the cell has its own isovalue. Front face: 8, 8, 5, 5. Back face: 10, 8, 10, 10. If we search for a specific isosurface with value 9, we mark the vertices: Front face:
inside, inside, inside, inside. Back face: outside, inside, outside, outside.

• Step 2: Classify each voxel according to whether it lies
• outside the surface, when voxel value  iso value c (+ or 0)
• inside the surface, when voxel value ≤ iso value (- or 1)



In this picture we build an binary index for the vertices from the result above, based on 1 for inside and 0 for outside. For the searched isovalue 9 the index would look like
11110100.

• Step 3: Use the binary labeling of each voxel to create an index

The 15 combinations for intersecting isosurfaces are:  
1. no intersection
2. one vertex marked, at the front face
3. two neighbouring vertices marked, at the front face
4. two opposing vertices marked, at the front face
and so on.

• Step 4: For a given index, access an array storing a list of edges
• All 256 cases can be derived from 15 base cases due to symmetries. 
• Get edge list from table
• Example for Index = 10110001
triangle 1 = e4,e7,e11
triangle 2 = e1, e7, e4
triangle 3 = e1, e6, e7
triangle 4 = e1, e10, e6



If 4 neighbouring vertices are marked with 1 and 4 neighbouring vertices are marked with 0 (example 01110010) we get a surface described by a hexagon that can be devided in 4
triangles.

With this code you know for each triangle, which edge is intersected, but you don't know
where exactly it intersects.

If we have the index 11111110 we get a triangle in the back upper corner. The size of the triangle depends on the searched isovalue and therefore on the linear interpolation
between the vertices. 

• Step 5: For each triangle edge, find the vertex location along the edge using linear
interpolation of the voxel values

• This step has to be done for all cubes and all edges that intersect the current cube.

At each vertex of the cube we attach the calculated normal vector, symbolized as an arrow.

• Step 6: Calculate the normal at each cube vertex
G x=V x1, y , z−V x−1, y , z
G y=V x , y1 , z−V x , y−1, z
G z=V x , y , z1−V x , y , z−1

• Use linear interpolation to compute the polygon vertex normal (of the isosurface). After
that normalization is needed to do smooth shading (gouraud shading).

• Note that different isosurfaces can never intersect, because each one has only one
unique isovalue.



In this picture, both possibilities of how the isolines could intersect the cell are shown. Each possibility leads to a different surface, so we need to decide which case we have to
take.

• Step 7: Consider ambiguous cases
• Ambiguous cases: 3, 6, 7, 10, 12, 13
• Adjacent vertices: different states
• Diagonal vertices: same state
• Resolution: decide for one case
• Asymptotic Decider [Nielson-1991-TAD]
• Assume bilinear interpolation within a face
• Hence isosurface is a hyperbola
• Compute the point p where the asymptotes meet on the face
• Sign of S(p) decides the connectivity

The hyperbolas in this picture run from left to bottom edge and from top to right edge of our cell. All hyperbolas converge against one asymptote in x-, and one in y-direction. The
value at the intersection point of those two asymptotes is our reference value that we can compare with the searched isovalue c.

• Summary:
• 256 Cases
• Reduce to 15 cases by symmetry
• Ambiguity resides in cases 3, 6, 7, 10, 12, 13
• Causes holes if arbitrary choices are made

• Up to 5 triangles per cube
• Dataset of 512×3  voxels can result in several million triangles (many MB)
• Semi-transparent representation  sorting

• Optimization:
• Reuse intermediate results
• Prevent vertex replication
• Mesh simplification



Example for 1 isosurface, 2 isosurfaces and 3 isosurfaces.

8 Marching Tetrahedra
The Marching Tetrahedra algorithm was developed by [Shirley-1990-PAR], it is very
closely related to the Marching Cube algorithm because the fundamental idea is the same.
Primarily it was used for unstructured grids, by splitting the cell into tetrahedras it was
easier to handle. Due to the simpler geometry of the tetrahedra we only have three
different cases how the isolines can intersect. 
1. No intersection
2. One vertex negative (-) and three vertices positive (+) or vice versa, so the surface is

defined by one triangle.
3. Two vertices negative (-) and two vertices positive (+), so the surface is defined by a

quadrilateral  that can  be divided in two triangles using the shorter diagonal. 
Further interpolation became much easier because we can use linear interpolation on
triangular surfaces.

Split the cell into 5-6 tetrahedras.
The marching tetrahedra splits the 3D cube in 5 tetrahedras, in fact 4 equally sized tetrahedras on the outside and 1 isosceles on the inside.



Properties of Marching Tetrahedra:
• Fewer cases, i.e. 3 instead of 15

• no problems with consistency between adjacent cells
• Number of generated triangles might increase considerably compared to the MC-

algorithm due to splitting into tetrahedra
• Huge amount of geometric primitives
• But, several improvements exist:

• Hierarchical surface reconstruction
• View-dependent surface reconstruction
• Mesh decimation

Mesh decimation for Marching Tetrahedra.
An interesting question is, how to shade isosurfaces generated by Marching Tetrahedra?
The answer is in deed not very difficult, since the function for interpolating the colors
varies linear between the coordinates of the vertices, the gradient is the first derivative and
it will be constant. So we compute an average gradient for each vertex using each surface
normal (which is the gradient) of  all adjacent triangles.

9 Dividing Cubes
Dividing Cubes was established by [Cline-1988-ROT] it is one acceleration approach of
the standard marching cubes algorithm. Nowadays it is not used any longer, but however
it is historically worth mentioning. The algorithm works on uniform grids and takes the
advantage of the observation that the size of generated triangles, when rendered and
projected, is often smaller than the size of a pixel. So the basic idea is to create surface
points instead of triangles, that means the input volume is subdivided down, until a cube
has approximately the same size as a pixel. This allows a point based rendering. The
surface normal which is needed for rendering is the averaged normal of the cubes corner
normals.

The algorithm works as follows:
• Choose a cube
• Classify, whether an isosurface is passing through it or not
• If (surface is passing through)

• Recursively subdivide cube down to pixel size
• Compute normal vectors at each corner of the cube
• Render shaded points with averaged normal

Properties:
• View dependent load balancing, that means when you look at the object from a certain

side, the subdivision of the cubes can stop earlier, which leads to a speed up.
• Better surface approximation due to trilinear interpolation within cells.
• Only good for rendering, but since no surface representation is generated it does not

allow further computations on the surface. So once a model is rendered it cannot be



scaled for various resolutions anymore since it was generated with a particular display
resolution.

• Eliminates scan conversion step
• Point cloud rendering randomly ordered points
• No topology

Subdividing the voxel into pixel sized cubes.
In this picture we see a big cube subdivided in three on four smaller cubes. At each corner of the big cube, there is a voxel normal attached, which are used to bilinear interpolate
the normals of the smaller cubes.

10 Optimization of Fitted Surfaces
All surface fitting techniques produce a huge amount of geometric primitives which can be
a problem for interactive rendering. Therefore several improvements exist like:
• Hierarchical surface reconstruction
• View-dependent surface reconstruction
• Mesh decimation

Hierarchical surface reconstruction
Try to reconstruct the surface hierarchically by generating copies of the dataset at different
resolutions. For lower resolutions down sample the eight neighbor voxels into one, and
then compute Marching Cubes.
For displaying select level-of-detail (LOD) based on error criterion like the distance of
approximation to "original" surface. If things are far away, an object is rendered with fewer
polygons.



Full reconstruction of a human abdomen with 6M triangles.
This illustration shows the reconstruction of a human large intestine with high resolution, which leads to smooth transitions.

Reconstruction of the same abdomen with 123K triangles.
Here we can see the same reconstruction as in the illustration above, but with lower resolution. This leads to visible triangle surfaces and hard transitions between them.

View-dependent surface reconstruction
Here we have a user defined level-of-detail (focus point oracle, like a lens that could be
moved across the volume, points near the focus we have better resolution parts further
away we have inferior resolution). 
With view frustum culling regions that are outside the viewing pyramid are avoided to
reconstruct. This makes close-up scenes with few objects much faster.
Further on occlusion culling avoids the reconstruction of regions that are already occluded
by a surface (this implies front-to-back traversal). Efficient occlusion culling is very difficult
and only done as pre-processing step.
Finally there is the dividing cubes idea, which means to avoid  the reconstruction in cells
that are below pixel size. 



View-dependent surface reconstruction with focus point oracle in the middle of the brain. It
is needful to show the surroundings, so that the user has a feeling for the context.
Three representations of the same brain. The first one is a simple rough dissoluted triangle mesh, which gives us a simple impression of the geometry. The second one has a focus
in the middle of the brain which is called the area of interrest. This area is reconstructed with higher resolution, whereas the outter region is still displayed as simple triangle mesh.
The third image is the fully dissolved brain reconstructed with dividing cubes, this means that every detail is visible.

Mesh decimation
Mesh decimation algorithms are usually applied to geometric models, nevertheless they
can be used to simplify isosurfaces. For example you first use Marching Cubes to
generate an isosurface and then use the decimation algorithm to minimize the quantity of
triangles. The basic concept is to remove triangles, end up with polygons and re-
triangulate these with less triangles. Consider deviation between mesh before and after
decimation, then generate a hierarchical mesh structure as a post-process and switch to
appropriate resolution during display.

Picture of a buddah statue with differently strong mesh decimations.
Here we see the same statue in four different resolutions. The less triangles we use for the reconstruction the more stylized the statue gets.

11 Discretized Marching Cubes
Decisive for the idea of the Discretized Marching Cubes algorithm was the ambition to
find an algorithm that does not create so many triangles. One way but the wrong way was
to run marching cubes first to create isosurfaces and to apply Mesh Decimation to the
result. But it turned out very soon that this way was very slow and not efficient. The
Discretized Marching Cubes (DiscMC) is a mixture in-between the Cuberille approach



(constant scalar value on each voxel) and the Marching Cubes (trilinear interpolation in
cells), it was published by [Montani-1994-DMC] and is based on the following idea. 
If the cube is not much larger than a pixel, it is not useful to create much smaller triangles.
To accelerate the standard MC algorithm the DiscMC specifies that if an isosurface
intersects the cube, it always intersects the middle of the edges, thus one saves the linear
interpolation. Further this constraint leads to a limited set of planes with also restricted
orientations. 

For each cube there are 13 different vertex positions, 12 edge-midpoints + 1 centroid.
The cube has 12 intersection points at the middle of each edge and 1 intersection point in
the center of the cube. These vertices are used to clamp the triangles of the intersecting
isosurfaces.

Finite set of planes on which faces can lie.
This image shows an example of 13 possibilities for isosurfaces, they are numbered, in order to compute a unique classification.

• Classification of a facet by
• Plane incidence (code of the orientation of the normal) and
• Shape

• Sign of incidence determines orientation of facet
• Classification of isosurface fragment (facet set)

• Indices to incidences and shapes



Classification of the facets.
• Lookup table

• Based on MC LUT
• Simple reorganization
• Indices as above

• Vertex positions of facet determined by vertex configuration of cell
• No linear interpolation needed



All remaining possibilities stored in a Lookup table.
Algorithm:
• Analogously to MC: traversing the grid
• Normal vectors based on gradients (same as MC)
• Post processing: merging facets and edges

Advantages of MC:
• Simple classification of facet sets
• Many coplanar facets due to small number of plane incidences   significantly

reduces number of triangles after merge
• No interpolation needed, i.e., only integer arithmetic
• Still quite good results

Good to know:
• Triangles or planes in neighboring cubes continue with the same surface structure,

because of limited number of orientation. 
• For shading it is not necessary to use the normals of the discretized triangles, one can

use the information from the original data set. 
• It turned out that although of all this significant improvement, in industry no medical

product implemented this algorithm.

12 Octree-Based Isosurface Extraction
In order to accelerate the MC algorithm there exist two more interesting approaches, the



domain spaced approaches which operate on the voxel values and the range query
approaches based on scalar values. All these algorithms have in common that they
search as fast as possible for cells, which contribute to isosurfaces. We will start with a
domain based approach.
The Octree-based approach was published by [Wilhelms-1992-FIG], and it works with a
spatial hierarchy on a grid that is constructed as a tree. During generation of the tree, for
each node the minimum and maximum scalar value is stored by looking at the values of
all 8 children (for the 3 dimensional approach). Once this tree is computed, it can be
traversed (bottom up) to search for an isosurface with a specified isovalue. Obviously the
isosurface cannot be inside of a voxel, if the isovalue does not lie in-between the stored
minimum and maximum values of the node. In this case we can skip those parts of the
tree.

Geometrical structure of an quadtree in 2 dimensional space.
The octree is a square which is recursively subdivided down in 4 equaly sized squares.
It is important to find the right data structure for the octree. If you have a data set with one
million voxels and you plan to use a pointer structure to save the volume, you have to
allocate one pointer for each voxel. This means that you have one million pointers, each
pointer itself has a size of a double word which corresponds to 32Bit. So you end up with
3.9MB only for the data structure. So it is better to use a simple array like structure,
especially when you work with a full octree, because you just have to allocate one array,
which is much smaller since it only includes start point and size.

Advantages when using full octree:

• Simple array-like structure and organization
• No pointers needed
• Number of nodes in full octree:

nnodes=i=0log2 s−18i=s3−17≈0 .14ndatapoints

 optimal ratio is data 
nnodes
ndatapoints

≈0 .14

Problem with memory consumption of complete octree:
• Ideal: grid size of 2n⋅2n⋅2n
• Normally different resolutions that are not powers of two



Example:
• Data set: 32032040
• 4M data points
• Full octree: 123432563=20M elements (nodes)
• 2 values per element: minimum and maximum values

Solution: Branch on Need Octree (BONO)
• Consider octree as conceptionally full
• Avoid allocating memory for empty subspaces
• Delay subdivision until needed
• Allocate only dimensions of powers of two
• Aspects of a bottom-up approach

• For above example: approx. 585k nodes (opposed to 20M nodes)

• Ratio almost optimal: 
nnodes
ndatapoints

≈0 .1428

• Ratio never exceeds 0.162 (~16% memory overhead)

Example for Even-Subdivision and BONO Strategy.
Example for different strategies. Given is a field of 6 on 5 voxels. The even-subdivision-strategie subdivides the field in 3 on 3 in x-direction and 2 on 3 in y-direction in the first step.
The branch-on-need-strategie always subdivides in steps with the power of two. This means for the first step in 4 on 2 in x-direction and 1 on 4 in y-direction. In the long term this
approach needs less memory.

13 Range Query for Isosurface Extraction
The second alternative to accelerate MC are range query approaches,  which data
structures are based on scalar values and not like before on domain decomposition . 



The one dimensional interval space approach works as follows:
All possible isovalues are listed along the x-axis. For each cell the min and max value is
determined, considering all vertices that  belong to the cell. The computed min and max
values for each cell are stored in a sorted list (for example sorted by min value). Now you
can extract an isosurface with a specific isovalue by searching the list for cells with a
smaller min and a greater max value. E.g. a search for isovalue 7 in the graphic below
returns the cells d, e, f, g, h, i.

One dimensional interval structure for min / max values.
On the basis of a ray of integers from 2 to 12 as x-axis, each single cell is listed as line from its min to max value, i.e. cell a from 2 to 5, cell d from 4 to 8, or cell i from 7 to 12.

In two dimensional span space.
Given is a simple two dimensional coordinate system with the min values as x-axis and
the max values as y-axis. The points for each cell lie above the first bisecting line.
The two dimensional span space approach bases on the following idea:
Each cell is represented by one point, whose x value corresponds to the minimum and y
value to the maximum. All points lie above the main bisecting line, because otherwise they
would have a larger min then max value. If you search for a specific isovalue you know
that all relevant points lie in a rectangular region in span space. 



Span space approach.
The Problem for both one-, and two dimensional approaches is how to find the
corresponding cells efficiently. One way to do so is the “optimal isosurface extraction from
irregular volume data” published by [Cignoni-1996-OIE]. This method uses a so called
interval tree with the following characteristics:
• h  different extreme scalar values
• Balanced tree: height= log h
• Bisecting the discriminant scalar value
• Node contains:

• Scalar values
• Sorted intervals AL (ascending left)
• Sorted (same) intervals DR (descending right)

Example for sorted interfals data structure for ascending left (AL) and descending right
(DR). The root node in this graphic has an error in the DR case.
In this picture we can see a simple sorted binary tree. Each cell is represented as node with its isovalue attached to it.



• Running time: Oklog h due to
• Traversal of interval tree: logh (height of the tree)
• k  intervals in the node = number of relevant cells (i.e., output sensitive)

Variations of the above range query based on interval trees:
• Near optimal isosurface extraction (NOISE) [Livnat-1996-IEA]
• Isosurfacing in span space with utmost efficiency (ISSUE) [Shen-1996-ISS]

NOISE:
• Based on span space
• Create Kd-tree for span space, here you begin with one axis perpendicular to either x or

y axis and divide further (see picture below). The result is a balanced tree.
• Worst case running time: Okn  where
• k = number of relevant cells (with isosurface)
• n  = total number of grid cells

Near optimal isosurface extraction. Kd-tree with its axes perpendicular to x or y axis.
The two dimensional coordinate system with all cells lying above the first bisecting line.
The space is divided into halfspaces by axes running through particular cell points.

ISSUE: Isosurfacing in span space with utmost efficiency
• Based on span space
• Lattice subdivision on span space

• Average running time: Oklog nLnL 
• L  = dimension of grid in x and y

• All range-query algorithms suitable for structured and unstructured grids.



Example for Isosurfacing in span space with utmost efficiency.
The two dimensional coordiate system is partitioned by a grid with equidistant stepsize.

14 Contour Propagation
Contour propagation is an acceleration of cell traversal and proceeds as follows. Look
for a seed cell from which one knows it  contains an isosurface and from there on, visit all
adjacent cells but avoid visiting empty cells. Problem is that isosurfaces can consist of
several not connected components, and for every one a seed cell must be found or whole
parts of the isosurface will be lost.

Algorithm:
• Trace isosurface starting at a seed cell
• Breadth-first traversal along adjacent faces
• Finally, cycles are removed, based on marks at already traversed cells

Similar to 2D approach
• Same problem:

• Find ALL disconnected isosurfaces
• Issue of optimal seed set


