
Vector Field Visualization
The need to visualize vector fields in two or three dimensions is common in many
scientific disciplines, as well as it is necessary in some industrial branches. Examples of
vector fields include velocities of wind and ocean currents, results of fluid dynamics
solutions, magnetic fields, blood flow or components of stress and strain in materials.
Existing techniques for vector field visualization differ in how well they represent such
attributes of the vector field as magnitude, direction and critical points.

Vector:
A mathematical object having the properties of magnitude and direction, usually
pictorially represented by a line segment with an arrowhead. In 3D modeling a vector is
often given a geometric interpretation, for example, position or displacement. Vector
algebra and calculus are effective tools for creating and manipulating certain kinds of
models.

Vector field:
A region of space under the influence of some vector quantity, such as magnetic field strength, in which
each point can be described by a vector.

An 3D vector data set each point is represented by a vector that stands for a direction and
magnitude. The vector field is given by a n−tupel  f 1 , , f n with

f k= f k  x1 , , xn , n2∧1kn and specific transformation properties. Typically the
dimension is n=k=2 or n=k=3 .
The main application of vector field visualization is flow visualization with the following
attributes:
• Motion of fluids (gas, liquids)
• Geometric boundary conditions
• Velocity (flow) field v x , t 
• Pressure p
• Temperature T
• Vorticity ∇×v  (rotation operator)
• Density 
• Conservation of mass, energy, and momentum
• Navier-Stokes equations
• CFD (Computational Fluid Dynamics)
CFD data based flow visualization with lines, icons and glyphs. By extending the lines to
2D bands, one can see if the band rotates around the own axis.



This image shows a car body with several different visualization techniques, representing the flow arround the hull, like stream lines, stream ribbons and arrow glyphs.

For all kinds of flow visualization, but especially in the range of automobile wind tunnel
testing a good classification is needed:
• Dimension (2D or 3D) e.g. the surface is 2D but lies in 3D space.
• Time-dependency: stationary (steady) vs. instationary (unsteady).
• Grid type: e.g. cartesian or tetrahedral grids have different ways to trace particles

through the grid.
• Compressible vs. incompressible fluids
In most cases numerical methods are required for flow visualization.

1 Vector Calculus
• Review of basics of vector calculus
• Deals with vector fields and various kinds of derivatives
• Flat (Cartesian) manifolds only
• Cartesian coordinates only
• 3D only

At first just in order to refresh some basics again, a few needful definitions:
Gradient:
The gradient of a (differentiable) function f = f x= f x1 , , x0 of n variables is

the vector of partial derivatives grad  f =∇ f = ∂ f
∂ x1

, , ∂ f
∂ xn

 It can be pictured as a

vector pointing in the direction of fastest increase of f , whose length ∣∇ f ∣  is the
rate of increase of f  in this direction. Thus, at any given point ∇ f  is normal to
the level surface f x1 , , xn  = constant which goes through that point. 

Jacobi matrix: 
In general a function f = f x of one variable is differentiable at x with derivative

f ' x if f  xh = f x f ' x⋅hRh where lim
∣h∣0

R h/∣h∣=0 .
This definition can be generalized to the case of m functions of n variables. Then



x and h are n×1 matrices, f and R are m×1 matrices, and one defines
for example ∣h∣2=h1

2hn
2 .

f ' x then becomes an m×n matrix, called the Jacobi matrix whose elements are
the partial derivatives:

f ' x= ∂ f 1
∂ x1


∂ f 1
∂ xn

⋮ ⋮
∂ f m

∂ x1


∂ f m

∂ xn


Divergence:

Given a vector field v x , y , z =v1x , y , z iv2x , y , z  jv3x , y , z k . Each of its 3
components has derivatives with respect to each of the 3 variables, which gives a total
of 9 first derivatives. The divergence of v  is a combination of these of particular
importance, it is a scalar function, defined as the dot product of the vector operator

 ∂∂ x
, ∂
∂ y

, ∂
∂ z . Thus we have d i v v=

∂ v1
∂ x


∂ v2
∂ y


∂ v3
∂ z

.

This vector operator is often written as ∇ , and called “del”. The divergence is written
as either d i v v  or ∇⋅v  .

• Scalar function  x , t 

• Gradient ∇x , t = ∂∂ x
 x , t 

∂
∂ y

x , t 

∂
∂ z
x , t =

∂
∂ x
∂
∂ x
∂
∂ x
x , t  points into direction of maximum

change of x , t  .
The gradient takes a scalar field and gives us a vector field.

• Laplace x , t =∇⋅∇  x , t   

= ∂2

∂ x2
x , t  ∂2

∂ y2
x , t  ∂2

∂ z2
x , t  where

∇⋅∇ = scalar product of two vectors is a scalar value
x , t  = scalar function

The Laplace function takes a vector and gives back a scalar value.
• Vector function v  x , t 
• Jacobi matrix (“Gradient Tensor”)

J=∇ v x , t =grad V x

grad V y

grad V z
= ∂∂ x

V x
∂
∂ y

V x
∂
∂ z

V x

∂
∂ x

V y
∂
∂ y

V y
∂
∂ z

V y

∂
∂ x

V z
∂
∂ y

V z
∂
∂ z

V z


The Jacobi matrix tells you everything of the first order derivatives (gradient) of the
vector field, and therefore how various components of the vector field change if you go
in a certain direction. The derivative of velocity is acceleration (the first diagonal in the
Jacobi matrix).



• Divergence: d i v v x , t =∇⋅v x , t = ∂
∂ x

V x x , t  ∂
∂ y

V y x , t  ∂
∂ z

V z x , t  where 

∇ = Nabla is an operator vector with 3 components.
∂
∂ x

V x x , t  = result is something scalar.
The Divergence takes a vector field and gives back a scalar field. In physical terms, the
divergence of a vector field is the extent to which the vector field flow behaves like a
source or a sink at a given point.

The Divergence theorem in vector calculus is more commonly known as Gauss
theorem. It is a result that links the divergence of a vector field to the value of surface
integrals of the flow defined by the field. Let V be a region in space with boundary ∂V
. Then the volume integral of the divergence ∇⋅v  of v over V and the surface
integral of F over the boundary ∂V of V are related by:
∫
V
∇⋅v dV=∫

∂V
v⋅dA

The divergence theorem is a mathematical statement of the physical fact, that in the
absence of the creation or destruction of matter, the density within a region of space can
change only by having it flow into or away from the region through its boundary.
A special case of the divergence theorem follows by specializing to the plane. Letting S
be a region in the plane with boundary ∂ S the equation then collapses to :
∫
V
∇⋅v dV=∮

S
v⋅ds

The Gauss theorem tells us about the behavior of the vector field on the surface. We
integrate over the outer bounds instead over the whole volume to get what is flowing into
or out of it.
We see the surface S of a cube with volume V. 3 vectors v point point away from the surface, they stand for the flow out of the volume.

Properties of divergence:
• d i v v is a scalar field ( v is a vector field)
• d i v v x00 : v has a source in x0
• d i v v x00 : v has a sink in x0
• d i v v x0=0 : v is source-free in x0
• Describes flow into/out of a region

Divergence with sink in x0 and divergence with source in x0 .



Given is a 2D coordinate system. If all vectors point to the origin, we have a sink and if all vectors point away from the origin, we have a source.

• The Continuity equation expresses a conservation law by equating a net flux over a
surface with a loss or gain of material within the surface. Continuity equations often can
be expressed in either integral or differential form. 

• Flow of mass into a volume V  with surface S : −∮
S
 v⋅dA where

 = volume intensity (integrating over intensity yields the mass)

• Change of mass inside the volume: ∂
∂ t∫V dV=∫

V

∂
∂ t

dV

If there is mass generated inside the volume or mass has been lost, it must
have flown into or out of the volume.

• Conservation of mass: ∫
V

∂
∂ t

dV=−∮
S
v⋅dA where 

∮
S
 = closed integral over all densities in the volume

Application of Gauss theorem to the continuity equation (must be met for any
volume element):

∫
V

∂
∂ t

dV∮
S
 v⋅dA=∫

S
∂∂ t

∇⋅ vdV

yields the continuity equation in differential form:
∂
∂ t
∇⋅ v=0 where

 = velocity
v = scalar value 
 v = volume current j

The change intensity is described by the sources or the sinks of the volume
and they are described by the divergence.

• Curl:



curl v  x , t =∇×v x , t = ∂∂ y
V z x , t − ∂

∂ z
V y x , t 

∂
∂ z

V x x , t − ∂
∂ x

V z x , t 

∂
∂ x

V z x , t − ∂
∂ y

V x x , t 
The curl operator takes a vector field and gives back a vector field.

• Stokes theorem: The Navier-Stokes equation is the fundamental partial differential
equation that describes the flow of incompressible fluids. It relates line integrals of
vector fields to surface integrals of vector fields. 
∫
S
∇×v⋅dA=∮

C
v⋅ds

Looking at the curl of a vector field, we have to integrate over its surface. By drawing a
closed path around the surface, we can integrate over this line instead, to simplify the
equation.
This image shows a simple rectangle with surface S. Arround the surface there is a closed vector curve C  in counterclockwise direction.

Properties of curl:
• Describes vortex characteristics in the flow
• From non-curl free flow ∇×v≠0 we can follow that ∫

S
∇×v⋅dA≠0 and ∮

C
v⋅ds≠0

• Vorticity: ∇×v
If we compute the curl of a vector field with velocity = 0 we will get its vorticity.

Curl of a vector field.
Here we have a 2D coordinate system with several circles arround the origin. All circles have different radius and run in counterclockwise direction.

• Decomposition of a vector field (Helmholtz theorem): If we know the divergence and
the curl of a vector field then we know everything there is to know about the field. In
fact, this is the case. There is a mathematical theorem which sums this up. It is called
Helmholtz theorem. The equation tells us, that we can take any vector field and split it
up into two essential parts:



• Divergence-free (transversal) part
• Curl-free (longitudinal) part

Decomposition:
v x=vcxvd x where
∇×vc x=0 = curl-free part. If eq. Is true, there are no closed field lines.
∇⋅vd  x=0 = divergence-free part. If eq. Is true, there are no sinks or sources.

Other way round: v  is uniquely determined by divergence-free and curl free parts (if
v  vanishes at boundary / infinity).

Now, we want to represent any given vector field as laplacian vector field. Suppose we
have a representation of v by the Poisson equation:

v x=− z x
the curl-free part written as a gradient:

vc x=−∇ u x where 
u x=∇⋅z x = (scalar) potential u

and the divergence-free part as a curl:
vd x=∇×w x where
w  x=∇×z  x = vector potential w

2 Characteristic Lines
The visualization of flow data has become one of the research topics in scientific
visualization. Several techniques for visualizing the flow of fluids and gases have been
developed. In this chapter we introduce some important approaches of characteristic lines
in a vector field [Theisel-1998-UFF]:
• Stream lines: tangential to the vector field.
• Path lines: trajectories of massless particles in the flow.
• Streak lines: trace of dye that is released into the flow at a fixed position.
• Time lines (time surfaces): propagation of a line (surface) of massless elements in time.

Stream lines:
Stream lines are the tangent curves of the vector field V . For every time and every
location there is one and only one stream line through it (except for critical points). The
stream line is a solution to the initial value problem of an ordinary differential equation:

L 0=x0 , 
dL u

du
=v Lu , t  where

L = curve of the stream line 
L 0 = initial value with seed point x0
dLu

du
= tension direction of the curve is the first derivative (tangential)

v L u , t  = velocity at this position at fixed time t

The stream line for one point is the curve L u with the parameter u , if we want the
stream lines for the whole domain, we have to integrate the ordinary differential equation.

Path lines:
Path lines are obtained by setting out a particle and tracing its path in the unsteady flow.
In other words, they are trajectories of massless particles in a time-dependent flow.
Therefore, path lines are projections of the tangent curves of V  into a plane t=const.



For every location and every time there is one and only one path line through it (except for
critical points). Path line is a solution to the initial value problem of an ordinary differential
equation:

L 0=x0 , dL u
du

=v L u , u  where

L = curve of the stream line 
L 0 = initial value with seed point x0
dL u

du
= tension direction of the curve is the first derivative (tangential)

v L u , u = if we move along the path, we have to take the new velocity at
that point and time.

Comparison of path lines, streak lines and stream lines.
Path lines are time dependent and follow one particle through time and space. Streak
lines connect all particles at one time step that started at the same seed point (from
jungest to oldest particle). Stream lines integrate from point to point at one time step to
yield a tangent curve. 
Path lines, streak lines and stream lines are identical for steady flows.
Given are 4 grids with 5 on 3 cells, each grid stands for one timestep. On every corner we have an outgoing vector pointing in the direction of the flow. These vectors can change at
each timestep.

Streak lines:
A streak line is the connection of all particles set out at one seed point at different time
steps. It can be imagined the trace of dye, that is released into the flow at a fixed point.
Dealing with streak lines gives the following two problems:
• A streak line through a certain point u at time step t1  is not uniquely defined.

Another choice of t0 might lead to another streak line through u at t1 .
• Computing a streak line through u at t1 , we have to compute the tangent curve

l1 of V . This is only possible by integrating l1 numerically – a procedure we
wanted to avoid.

Time lines:
Time lines are obtained by setting out particles located on a straight line at a fixed time
and tracing them in the unsteady flow. The result is the propagation of a line (surface) of
massless elements in time.
A time line connects particles that were released simultaneously.



This picture contains a grid with 6 on 5 cells. At timestep t0 we release a particle at each cell  x1, y1x1, y5 . At timestep t1 every particle has

covered a different distence. I.e. x1, y1x4, y1 , x1, y2x2, y2 ,  x1, y3x5, y3 and

x1, y4x3, y4 .

Summary of characteristic lines:
• Stream lines: generated by tracing the direction of flow at one single time step.
• Path lines: generated by tracing the path of a single particle in continuous time.
• Streak lines: generated by continuously injecting particles from a fixed location.
• Time lines: generated by tracing a line of particles which are all released at the same

time.
• For a vector field that is constant in time it is essential that path lines, streak lines and

stream lines are equal. 

Difference between Eulerian and Lagrangian point of view:
• Lagrangian:

The Lagrangian point of view can be imagined as to sit on a particle and move along
with it (good for stream lines). We have the following properties:

• Individual particles
• Can be identified
• Attached are position, velocity, and other properties
• Explicit position
• Standard approach for particle tracing

• Eulerian:
For the Eulerian point of view one stays at a certain grid point and watches what is
passing by. For other algorithms then stream lines, this method is better and suits for
graphics hardware, where you can describe points in space as texture. We have the
following properties:

• No individual particles
• Properties given on a grid
• Position is implicit

3 Arrows and Glyphs
Same as in 2D visualization, for 3D vector field visualization we also need graphical
primitives that can express important features. That's where arrows and glyphs come into
account again. Arrows are icons for vectors, and the most obvious way to visualize a
velocity field in computer graphics is an arrow plot (sometimes called ’hedgehog’). Base
points are given in one or more planes, or throughout the field, and arrows indicate both
velocity direction and speed at these points. In this way, a complete view of a vector field
can be given. Arrows can give reasonable results in 2D, but there are numerous problems



in the 3D case: directional ambiguity, cluttering and a poor spatial effect. As a result, in
general arrow plots are not suitable for 3D vector field visualization. Precisely because it is
very complicated to get and represent global information of a 3D vector field, we are
primary interested to visualize local features of the vector field, like:
• Vector itself
• Vorticity
• Extern data: temperature, pressure, etc.
And important elements of a vector:
• Direction
• Magnitude
• Not: components of a vector
Today's approaches tend to use arrow plots or glyphs. Particularly for particle tracing
which is the standard mechanism in vector field visualization. With simple arrows, we can
visualize direction and orientation of a vector field, and by varying the length, thickness or
color of the vector, this can stand for its magnitude.

Visualization of a vector field by simple arrows.
At every gridpoint there is a vector attatched. Each vector has normalized size, but different thickness.

A so called hedgehog image.
A problem with these illustrations is, that we cannot clearly say if this is a 2D or a 3D vector field. In this case proper lighting can improve the cognition of the viewer.

With glyphs we can visualize more features of the vector field (flow field), but one has to
learn how to read the symbol.
A glyph with 7 dimensions.



Advantages of glyphs and arrows:
• Simple to generate (go to position of grid and look up velocity).
• 3D effects.
Disadvantages:
• Heavy load in the graphics subsystem.
• Inherent occlusion effects.
• Poor result if magnitude of velocity changes rapidly (Use arrows of constant length and

color code magnitude).

4 Mapping Methods Based on Particle
Tracing
The use of particles is well-known in computer graphics. Recently several variations of the
concept were developed for visualization purposes. Moving particles give a good
indication of the direction and magnitude of the velocity. So the basic idea is to trace
particles and visualize them effectively with characteristic lines. One great advantage of
particle tracing is, that global methods exist, which will be discussed later in this chapter.
Besides characteristic lines of course there exist other mapping approaches like surfaces,
individual particles or sometimes even animations.

• Path lines: As described before path lines are trajectories of individual particles
released in the flow.

Examples for path lines.



• Stream balls: Here we can encode an additional scalar value by radius. If the balls are
far apart, velocity is high, if they are close to each other, velocity is small.

In this picture, the stream balls represent the air flow in a ventilated room.
In this picture we can see a room with little balls lined up like one chain and following the current of air flow.

• Streak lines: Illuminating the surface of the bands leads to shading effects, so that the
viewer gets a better 3D impression.

Flow visualization with streak lines and stream bands.

• Stream ribbons: The concept of a streamline can be readily extended to a surface. If
the stream lines of two close-by traced particles are connected by a mesh of polygons,
a stream ribbon results (note that we have to keep the distance constant). Alternatively,
a ribbon can reflect local rotation (vorticity) of the flow by using the vorticity vector to
orient the ribbon at each step.

With stream ribbons vorticity can be displayed effectively.



• Stream tubes: Stream tubes are nothing else than the extension of stream lines to a
3D tube. We specify a contour, e.g. a triangle or circle, and trace it through the flow.

Examples of different stream tubes.

• Motion of individual particles: Particle motion can be effectively visualized using
animation. This is perhaps the most realistic visualization of flow. Velocity of particles is
shown directly, provided that consecutive particle positions are given at constant time
steps, and display update time is constant.

• LIC (Line Integral Convolution): LIC is a very important global visualization method for
2D and 3D and will be discussed in the following section.

LIC generates texture by noise and gives a global representation of the flow.
This pictures contains a silhouette of a porsche. Arround its hull we have the smeard out global representation of the flow, like it is typical for the LIC.

• Texture advection: Can be used for animation.
Advection:
The term advection is generally understood as transport with the current and therefore
a concentration peak should move through the system, like a sheet on the water.

Visualization of the interaction of a planar shock with a longitudinal vortex by noise and
dye advection. The intensity of the gray-scale image is weighted by the magnitude of the
velocity to enhance the important structures in the flow.



In this picture, we have a texture of alternating red and green stripes advected to the flow, which results in a distorted image of the stripes.

5 Numerical Integration of Ordinary
Differential Equations
Numerical solution of ordinary differential equations (ODE) is the most important
technique in continuous time dynamics. Since most ordinary differential equations are not
soluble analytically, numerical integration is the only way to obtain information about the
trajectory. Many different methods have been proposed and used in an attempt to solve
accurately various types of ordinary differential equations. There are a handful of methods
known and used universally that we will discuss in this chapter, i.e. Runge-Kutta, Euler,
Midpoint. All these methods discretize the differential system to produce a difference
equation or map. The methods obtain different maps from the same differential equation,
but they have the same aim; that the dynamics of the map should correspond closely to
the dynamics of the differential equation. 
The typical problem of particle tracing (for path lines) can be defined as follows:

L 0=x0 , dL u
du

=v L u ,u where

L = the path
u = velocity

Here we have the initial value problem, well, first we have to decide what kind of numerical
solver to choose, than the conditions on the solution of the differential equation are all
specified at the start of the trajectory – they are initial conditions.
As we rewrite the ODE in generic form, this leads to initial value problem for:
ẋ t = f x , t  where
ẋ = x , y , z  given by derivative of time
f x , t  = function depends on position and time

The most simple (naive) approach is the Euler method:
x t t =x t  t f x , t  where



x t t  = position at next time step
x t  = position at time t
f x , t  = velocity function

Based on Taylor expansion:
x t t =x t  t ẋ t O  t2 where
 t ẋ t  = derivative of x in sector t = f x , t 

Euler method, showing three different stepsizes.
The smaller the stepsize of the euler method, the more accurate the approximation gets.

The Euler approach is a first order method. Problem with this simple method is that you
need a very small step size if you want to achieve good results, which increases
computation time. Though, most particle tracing modules have implemented only Euler
method. Further problems are the inaccuracy and unstableness. Inaccuracy becomes
apparent, when you try to track a circle (which is not linear), you will end up with a spiral.
This means that you will leave the circle, no matter how small the time steps are.
Unstableness for example appears, when the derivative of the function looks quite the
same as the function itself.
Example:
f =−kx

x=e−kt divergence for  t 2
k

This picture shows the inaccuracy problem of the Euler method.
This picture shows several circles with different radius lying into one another. The euler starts in the center of the circles, but if we trace a circular flow with the euler method, the
function will diverge, no matter how small we choose the stepsize.

The Euler approach is unstable when functions have similar derivations.



If a function is given, that converges against an asymptote from minus infinity and from infinity, the euler will result in a zig zag pattern.

Better and more accurate approaches are methods of higher order. The midpoint
method is a second order method and therefore more exact:
1. Euler step brings us 

 x= t f  x , t 
2. Evaluation of f at midpoint

f mid= fx x2 , t
 t
2 

3. Complete step with value at midpoint
x t t = t f mid

More accurate results with midpoint approach.

Runge-Kutta schemes are one-step or self-starting methods; they give xn1  in terms of
xn only, and thus they produce a one-dimensional map if they are dealing with a single

differential equation. For the Runge-Kutta of 4th  order we interpolate velocity at 4 positions
by trilinear interpolation, this means more effort for computation but gives good results.

k 1= t f x , t  Function at start point.

k 2= t fx k 12 , t t2  Function a little away from start point.

k 3= t fx k 22 , t t2  Function near mid point.

k 4= t f xk 3 , t t  Function at final point.

x t t =x
k 1
6

k 2
3

k 3
3

k 4
6
O  t5 Where



x t t  = next position and  t fixed step size.

x
k1
6
 = actual position plus various contributions.

Adaptive step size control is a very usefull acceleration technique for Runge-Kutta
schemes, the approach can be done as follows:
• Change step size according to the error.
• Increase / decrease step size depending on whether the actual local error is low / high
• Higher integration speed in “simple” regions.
• Good error control.
Scientific approaches are:
• Step size doubling.
• Embedded Runge-Kutta schemes.

Step size doubling:
• Estimating the error based on two way (one big step vs. two small steps):

x1=RK4  x ,2 t 
x2=RK4 RK4  x , t  , t 

⇒ x t2 t =
x12 t 

5O  t 6
x22 t 

5O  t 6
so if we end up with the same position for x1 and x2 , we can use 2 t as step
size.

• Indication of truncation error: =∥x2−x1∥ (length difference)
• If error  is larger than a given tolerance level  , the step is redone with a new

step size  t .
• Otherwise the step is taken and  t ' is estimated for the next integration step:

 t '= t⋅⋅5  , with safety factor 1

this can take some time, because it is repeated until the step size fits.

The embedded Runge-Kutta was originally invented by Fehlberg. The algorithm
compares between results taken from two steps with schemes of different order
=∥x−x '∥ . A typical example: x  is computed with fifth order, x ' with fourth order

RK. The main idea is to reuse function evaluations from higher order scheme to speed up
the evaluation of lower order scheme.
Example with fourth order RK embedded in fifth order RK: Fourth order RK needs only the
(six) function evaluations from fifth order RK and no further evaluations! 
Practical choice for new step size for 4th / 5th order embedded RK:

 t '=
 t⋅⋅5  , if 

 t⋅⋅4  , if 

The choice for safety factor is for example =0.9

So far we have only spoken about explicit methods, which means that for all formulas,
the needed information to compute the position of the new time step only involves
information of old time steps. But the stability problem can be solved by implicit
methods.

• Implicit Euler method:
x t t −x t = t f x t t  , t t  where
x t t  = depends on position we do not know jet, so we transpose this

problem to the next time step.



• “Reversing” the explicit Euler integration step.
• Taylor expansion around t t instead of t .
• Solving the system of non-linear equations to determine x t t  .
• Using implicit methods allows larger time steps.

6 Particle Tracing on Grids
Particle tracing is a widely used method to analyze and interpret results of flow
simulations. In addition, it is a preliminary step for more advanced techniques like line
integral convolution. If a vector field is given on a grid, we have to solve L 0=x0 ,
dL t 
dt

=v Lt  , t  , to get a discretized path line of the particle. As we learned before, we

have to numerically integrate this ordinary differential equation, which is easily done with
the Euler formula.

Discretized path line of a particle trace.
Given is a grid with 4 on 4 cells, we have 8 particles more or less distributed in a semicircle. The traced path connects the semicircle in clockwise direction.

The most simple case of finding a path line is on cartesian grids. We can incremental
integrate step by step using Euler, Midpoint or Runge-Kutta. The basic algorithm looks
like:
Basic particle tracing algorithm:
Select start point (seed point)
Find cell that contains start point //
point location
While (particle in domain) do

Interpolate vector field at current point // interpolation
Integrate to new position //
integration
Find new cell // point location
Draw line segment between latest
  particle positions

Endwhile
Note that vector field interpolation is done by bilinear / trilinear interpolating each
component x , y , z separately.

Point location (cell search) on Cartesian grids:
• Indices of cell directly from position x , y , z 

• For example: i x=
x−x0
 x



• Simple and fast
Interpolation on Cartesian grids:
• Bilinear (in 2D) or trilinear (in 3D) interpolation
• Required to compute the vector field (= velocity) inside a cell
• Component-wise interpolation
• Based on offsets (= local coordinates within cell)

Since the Cartesian grid is not the only kind of grid used in visualization, we need particle
tracing for all other kinds of grids. For example curvilinear grids are very common too, so
the question is, how are curvilinear grids handled? A simple answer is, if we have a
problem we don't know how to solve, we try to reduce it to a problem we already know
how to solve. So for curvilinear grids we have C-space (computational space) vs. P-space
(physical space)  and we need to find a non linear mapping from PC  .

Mapping from P-space to C-space.
Curvilinear grids can be adapted more to the outer geometry of a particle.

Particle tracing can either be done in C-space or P-space. Since tracing in C-space is
much easier, we trace in C-space and transform the result back into P-space like shown in
the picture below. 
Transformation of 
• Points by 
• Vectors by J
All cells have a different function  and a different Jacobian J , since all cells are
differently deformed.

Transformation between C-space and P-space by  and J .
Transformation of points:
• From C-space to P-space: r=s
• From P-space to C-space: s=−1r 



Transformation of vectors:
• From C-space to P-space: v=J⋅u
• From P-space to C-space: u=J−1⋅v
• J is Jacobi matrix:

J=∂x

∂ p
∂x

∂q
∂ y

∂ p
∂ y

∂q
 (2D case)

The Jacobian tells us, if we move a little bit in C-space, how we move in P-space.  p
and q in C-space gives us  x and  y in P-space.
Particle tracing algorithm in C-space:
Select start point r in P-space (seed point)
Find P-space cell // point location
Transform start point to C-space s
While (particle in domain) do

Transform vu at vertices PC  // once we
have velocities 

// we can
interpolate
Interpolate u  in C-space // interpolation,
use velocities 

// from all 4
cell vertices
Integrate to new position s  in C-space // integration
If outside current cell then

Clipping
Find new cell // point location

Endif
Transform to P-space s r   PC 
Draw line segment between latest 
  particle positions

Endwhile
Transformation of points from C-space to P-space r=s :
• Bilinear (in 2D) or trilinear (in 3D) interpolation between coordinates of the cell’s vertices
Transformation of vectors from P-space to C-space u=J−1⋅v : 
• Needs inverse of the Jacobian
Numerical computation of elements of the Jacobi matrix:
• Backward differences (bd)
• Forward differences (fd)
• Central differences (cd)

Example for forward, backward and central differences.
For the forward-forwadr difference we have 2 outgoing vectors in x-, and y-direction. For the forward-backward difference we have 1 outgoing vector in y-direction and 1 incoming
vector in x-direction. For the central difference the vector in x-direction goes from the last to the next point and jumps over the current point. The same applies for the vector in y-
direction.

Choices for attaching Jacobi matrix on curvilinear grids:



• Once per cell (central differences): fast, inaccurate
• Once per vertex (central differences): slower, higher accuracy
• 4 (in 2D) or 8 (in 3D) per vertex (backward and forward differences): very time-

consuming, completely compatible with bilinear / trilinear interpolation, accurate

Different possibilities to attach Jacobian to curvilinear grids.
The different possibilities to attatch the Jacobian to a grid are: One per cell. We calculate the central difference at lower left corner and attatch it to the middle of the cell. Second
possibility is to calculate and attatch the central difference at each of the 4 vertices. The third possibilitie is to calculate 4 Jacobians at each vertex of each cell.

Particle tracing algorithm in P-Space:
Select start point  r in P-space (seed point)
Find P-space cell and local coords //
point location
While (particle in domain) do

Interpolate v  in P-space // interpolation
Integrate to new position r  in P-space // integration
Find new position // point location
Draw line segment between latest
  particle positions

Endwhile
Main problem: Point location / local coordinates in cell
• Given is point r in P-space
• What is corresponding position s in C-space?
• Coordinates s are needed for interpolating v

Solution: Stencil-walk algorithm [Bunnig ’89]
• Iterative technique
• Needs Jacobi matrices

Stencil-walk on curvilinear grids
• Given: rold , rnew , sold ,sold =rold
• Determine snew
• Transformation of distances  s=snew−sold and  r=rnew−rold
• Taylor expansion:  r=rnew−rold=snew−sold =J sold ⋅ s
• Therefore  s≈[ J sold ]

−1 r

Stencil walk on curvilinear grid.



Differential elements are connected by the Jacobian Matrix. If we have a differential Element and we move a little bit in p and q , we multiply it with the Jacobian.

Stencil Walk is an iterative technique that can operate directly on the curvilinear grid. It
appears that Stencil Walk is very accurate, but also rather slow. The basic idea of stencil-
walk is to:
• Pick a point in P-space. We do not know the corresponding point in C-space.
• Guess start point in C-space.
• Compute difference between corresponding position and target position in P-space.
• Improve position in C-space.
• Iterate so that position gets more and more accurate.

Stencil-walk algorithm:
Given: target position r target in P-space required accuracy   in C-
space
Guess start point s  in C-space
Do

Transformation to P-space r=s
Difference in P-space  r=r target−r
Transformation to C-space  s=J−1 r
If ( ∣ s∣ )then exit

s=s s
If ( s  outside current cell) then

Set s  = midpoint of corresponding neighboring
cell

Endif
Repeat
High convergence speed of stencil walk
• Typically 3-5 iteration steps in a cell

Interpolation of velocity in P-space approach:
• Bilinear or trilinear within cell, based on local coordinates s



• Alternative method: inverse distance weighting   no stencil walk needed

Important properties of C-space integration:
☑Simple incremental cell search
☑Simple interpolation
–Complicated transformation of velocities / vectors

Important properties of P-space integration:
☑No transformation of velocities / vectors
–Complicated point location (stencil walk) for bilinear or trilinear interpolation

Remarks on P–space and C–space algorithms
• C–space algorithm with one Jacobian per cell is fastest
• C–space algorithms with one Jacobian per cell or per node might give incorrect results
• Accuracy of C–space algorithm depends strongly on the deformation of the grid
• The best C–space algorithm can be as good as P–space algorithms
• In general, however, P-space algorithms are more accurate and even faster than C-

space algorithms
• Only if stencil walk implementation is not considered

• Choice of method depends on:
• Required accuracy
• Data set
• Interpolation method

7 Line Integral Convolution
The Line Integral Convolution method (LIC) [Cabral-1993-IVF] is a texture synthesis
technique that can be used to visualize vector field data like dense flow fields, by imaging
its integral curves. Taking a vector field and a random texture, usually a stationary white
noise image, as input, the algorithm uses a low pass filter to perform one-dimensional
convolution on the noise image. The convolution kernel follows the paths of streamlines
originating from each pixel in both positive and negative directions. As a result, the output
intensity values of the LIC pixels along each streamline are strongly correlated so the
global features of the flow field can be easily visualized.

Look of 2D LIC images:
• Intensity distribution along path lines shows high correlation.
• No correlation between neighboring path lines.

The 2D LIC gives information about global features of the flow. 
This image contains a tube and the calculated LIC arround it. Although the tube is symmetrical, there are different turbulences within the upper and lower range behind it.

In a nutshell, the basic idea of Line Integral Convolution (LIC) is:
• Global visualization technique
• Start with random texture
• Smear out along stream lines
A Stationary white noise texture as input results in the final smeared LIC texture.



This illustration shows the tail of a porsche and the turbulences at the spoiler.

Algorithm for 2D LIC
• Let t0t   be the path line containing the point x0 , y0
• T x , y   is the randomly generated input texture
• Compute the pixel intensity as:

I x0 , y0=∫
−L

L

k t ⋅T 0t dt convolution with kernel where

k t  = weighted kernel 
0 = texture look up 
t = parameter along the stream line

Kernel:
• Finite support [−L , L]
• Normalized
• Often simple box filter
• Often symmetric (isotropic)

Symmetric convolution kernel.

The symmetric convolution kernel with firm incrementation L : ∫
−L

L

k t dt=1

Convolve a random texture along the stream lines. For the pixel, move up into the vector
field and compute the stream line.



In this picture we have 4 planes one above the other showing the procedure of the LIC. The top plane contains the Vector field, the plane below contains the calculated path lines.
The third plain is the random noise input texture and the last plane is the output image.

This picture illustrates the proceeding of the algorithm.
Given is the noise texture and the vector field as input, these are charged with the convolution kernel and result in the final LIC image.

Problems with standard LIC:
• New stream line is computed at each pixel
• Convolution (integral) is computed at each pixel
• Slow



Idea of Fast LIC:
• Compute very long stream lines
• Reuse these stream lines for many different pixels
• Incremental computation of the convolution integral
• Discretization of convolution integral
• Summation: we go L steps forward and L steps backward, sum them all up and

devide by 2 L1 .

Summation of 2 L1 steps.
Given are 23 particles, lined up as a chain. Outgoing from the point x0 we integrate L steps forward and L steps backward.

For the next position we only have to substract the last part and add the new part in front.
This makes computation very fast.
Fast LIC incremental integration for constant kernel:
• Stream line x−m , , x0 , , xn with m ,nL
• Given texture values T−m , ,T 0 , ,T n

• What are results of convolution: I−mL , , I 0 , , I n−L

• For box filter (constant kernel): I 0=
1

2 L1 ∑i=−L

L

T i

• Incremental integration: I j1−I j=
1

2 L1 ∑i=−L

L

T i j1−T−L j

Fast LIC incremental integration for polynomial kernels:
• Assumption: polynomial kernel (monom representation)



k i =∑
p=0

d

 p⋅I
p

• Value

I j=∑
p=0

d

 p⋅I j
p with I j

p=∑
i=−L

L

T i j⋅I
p

• Incremental update for I i
p

I j1
p − I j

p=∑
i=−L

L

T ji1−T ji⋅I
p

=∑
i=−L

L

T ji⋅i−1
p−i pT jL1⋅L

p−T j−L⋅−L−1p
 j1

p

=∑
q=0

p−1

 p
q−1p−q I q− j j1

p

Data structure for output: Luminance/Alpha image:
• Luminance = gray-scale output
• Alpha = number of streamline passing through that pixel
For each pixel p in output image

If (Alpha( p ) < #min) Then
Initialize streamline computation with x0  =
center of p
Compute convolution I x0
Add result to pixel p
For m=1 to Limit M

Incremental convolution for I xm and
I x−m

Add results to pixels containing xm

and x−m
End for

End if
End for
Normalize all pixels according to Alpha
One characteristic of fast LIC is that during computation of stream lines, we sometimes
get several paths that pass through the same pixel, so we have to devide the intensity for
this pixel by the number of paths passing through. The fast LIC is significantly faster than
normal LIC, but still achieves no interactive computation time.

Oriented LIC (OLIC):
Oriented Line Integral Convolution (OLIC) illustrates flow fields by convolving a sparse
texture with an anisotropic convolution kernel. The kernel is aligned to the underlying flow
of the vector field. OLIC does not only show the direction of the flow but also its
orientation. 
Acceleration: integrate individual drops and compose them to final image.



Oriented LIC works with an anisotropic convolution kernel, that has a different weighting
behavior for upstream and downstream movement.
The anisotropic convolution kernel with different weighting in positive and negative x-direction.

OLIC visualizes direction and orientation of the flow. The length of the little icons depends
of the length of the kernel.
3 examples for the oriented LIC, 2 of them are circular flows, 1 clockwise and 1 counterclockwise. The smeared lines get brighter and thicker in direction of the flow.

Note that LIC in general doesn't draw streamlines, but pixels that are correlated to
streamlines.

Summary:
• Dense representation of flow fields
• Convolution along stream lines   correlation along stream lines
• For 2D and 3D flows
• Stationary flows
• Extensions:

• Unsteady flows
• Animation
• Texture advection

8 Vector Field Topology
Visualization of topological information of a vector field can provide useful information on
the structure of the field.  Vector field topology [Helman-1989-RDV] has a completely
different concept as we've seen so far. The idea is to draw only stream lines that connect
“important” points and consequently show only a topological skeleton. Important points in
the vector field are critical points, they have the following attributes:
• Points where the vector field vanishes: v=0
• Points where the vector magnitude goes to zero and the vector direction is undefined
• Sources, sinks, …
The critical points are connected to divide the flow into regions with similar properties.
Once you have found all critical points, compute stream lines until they hit the end of the
domain, an object or another critical point. Stream lines don't cross, they only meet at
settle points. By looking at the Eigenvalues of the Jacobian, you can expect the behavior
around the critical point.
This picture shows an airfoil with all critical points.



Drawn are only stream lines that connect critical points.

• Taylor expansion for the velocity field around a critical point rc :
v r =v r c∇ v⋅r−rcO r−rc

2≈ J⋅r−rc

• Divide Jacobian into symmetric and anti-symmetric parts:

J=J sJ a=
 JJ T  J−J T 

2

J s=
JJ T 
2

J a=
 J−J T 
2

• The symmetric part can be solved to give real eigenvalues R  and real eigenvectors:
J s r s=Rr s , R=R1 , R2 , R3

• Eigenvectors r s  are an orthonormal set of vectors
• Describes change of size along eigenvectors
• Describes flow into or out of region around critical point

• Anti-symmetric part:

•
J a⋅d=

1
2
 J−J T ⋅d

=1
2 0

∂ v x

∂ y
−
∂v y

∂ x
∂v x

∂ z
−
∂ v z

∂ x
∂v y

∂ x
−
∂ v x

∂ y
0

∂ v y

∂ z
−
∂v z

∂ y
∂ v z

∂ x
−
∂ v x

∂ z
∂ v z

∂ y
−
∂v y

∂ z
0 ⋅d

=1
2
∇×v ×d

where derivative of 
∂v y

∂ x
−
∂ v x

∂ y
is nothing else than the curl of the vector field.

• Describes rotation of difference vector d=r−rc
• The anti-symmetric part can be solved to give imaginary eigenvalues I :

J a ra=I ra , I= I 1 , I 2 , I 3

• 2D structure: eigenvalues are (R1, R2) and (I1,I2)
Classification criteria for critical points. R1 and R2 denote the real part of the



eigenvalues of the Jacobian, I1 and I2 the imaginary part.

2D structure: eigenvalues are R1 , R2 and  I1 , I2 . If you have J and determine
the eigenvectors, you have a node which repels or attracts stream lines  source or
sink.

Some examples for the 3D case.



Mapping to graphical primitives: streamlines
• Find critical points
• Start streamlines close to critical points
• Initial direction along the eigenvectors

Trace particle line with numerical integration until you hit:
• Other “real” critical points
• Interior boundaries of an object: attachment or detachment points
• Boundaries of the computational domain

How to find critical points is very similar to Marching Cubes:
• Cell search (for cells which contain critical points):

• Mark vertices by (+,+), (–, –), (+, –) or (–,+), depending on the signs of v x

and v y

• Determine cells that have vertices where the sign changes in both
components   these are the cells that contain critical points

• How to find critical points within a (quad) cell ?
• Find the critical points by interpolation
• Determine the intersection of the isolines (c=0) of the two components,
• Two bilinear equations to be solved
• Critical points are the solutions within the cell boundaries

• How to find critical points within simplex?
• Based on barycentric interpolation
• Solve analytically

• Alternative method:
• Iterative approach based on 2D / 3D nested intervals
• Recursive subdivision into 4 / 8 subregions if critical point is contained in

cell
− , y x component may be 0 somewhere.



x ,−  y component may be 0 somewhere.
Here we have 2 cells and each of the vertices is singned:
(+,+),(+,+),(+,+)
(-,-),(+,-),(+,-)

Example of a topological graph of 2D flow field.
Drawn are only stream lines that connect critical points.

Further examples of topology-guided streamline positioning.

Military dataset of a torpedo.



Tin this image we can see the front side of a torpedo with streamlines on the surface.

Summary:
• Draw only relevant streamlines (topological skeleton)
• Partition domain in regions with similar flow features
• Based on critical points
• Good for 2D stationary flows
• Instationary flows?
• 3D?

9 3D Vector Fields
Approaches to occlusion issue:
• Sparse representations
• Animation
• Color differences to distinguish separate objects
• Continuity

Reduction of visual data:
• Sparse representations
• Clipping
• Importance of semi-transparency

Missing continuity, hard to see the direction of flow.



Color differences to identify connected structures.

Reduction of visual data - 3D LIC. 3D flow around a wheel in a wheel housing, to see if
the breaks get enough air cooling.
Improving spatial perception:
• Depth cues

• Perspective
• Occlusion
• Motion parallax
• Stereo disparity
• Color (atmospheric, fogging)

• Halos
• Orientation of structures by shading (highlights)
Illumination of stream lines.



Illuminated streamlines [Zoeckler-1996-ISL]
• Model: streamline is made of thin cylinders
• Problem

• No distinct normal vector on surface
• Normal vector in plane perpendicular to tangent: normal space
• Cone of reflection vectors

Normal space is perpendicular to the tangential part of the stream line.
• Light vector is split in tangential and normal parts

V⋅R=V⋅LT−LN 
=V⋅L⋅T T−L⋅N N 
=L⋅T V⋅T −L⋅N V⋅N 
=L⋅T V⋅T −1−L⋅T 21−V⋅T 2
= f L⋅T  ,V⋅T 

• Idea: Represent f   by 2D texture



Split the light vector in two parts:
LT : Parallel to tangential.
LN : Component of light vector in normal space with length =1.

For illumination we can use the Phong model:
I= I ambient I diffuse I specular=k ak d L⋅Nk sV⋅R

n

• Compute L⋅T  and V⋅T  per vertex (e.g. texture matrix or vertex program)
• Both L⋅N  and V⋅R  can be expressed in terms of  L⋅T and V⋅T
• Represent Phong model by 2D texture with texture coordinates L⋅T and V⋅T

2D texture of the phong model.
Halos:
Flow visualization without and with halos.




