Tensor Field Visualization

Tensor is the extension of concept of scalar and vector, it is the language of mechanics.
Therefore, tensor field visualization is a challenging issue for scientific visualization.
Scientists and engineers need techniques that enable both qualitative and quantitative
analysis of tensor data sets resulting from experiments or numerical simulations. Tensor
data for a tensor of level k isgivenby ¢, .(x ....x,) ,second-order tensor are
often represented by a matrix.
Examples:
- Diffusion tensor (from medical imaging, see later)

Material properties (material sciences):

Conductivity tensor1

Dielectric susceptibility

Magnetic permutivity

Stress tensor

1 Diffusion Tensor

A typical second-order tensor is the diffusion tensor. Its characteristics are:
- Diffusion: based on motion of fluid particles on microscopic level

Probabilistic phenomenon

Based on particle’s Brownian motion

Measurements by modern MR (magnetic resonance) scanners

Diffusion tensor describes diffusion rate into different directions via symmetric tensor

(probability density distribution)

In 3D: representation via 3*3 symmetric matrix

Symmetric diffusion matrix can be diagonalized:
3 Real eigenvalues A, >A,>A,
Eigenvectors are perpendicular

Isotropy / anisotropy:
Spherical:  A,;=A,=A,
Linear: A,~A,~0
Planar: A,~A, and A,~0

linear

spherical _

Spherical: all eigenvalues are the same.
Linear: One eigenvalue is large, the others are almost 0.

Planar: Two eigenvalues are large and one is almost 0.
Arbitrary vectors are generally deflected after matrix multiplication



- Deflection into direction of principal eigenvector (largest eigenvalue)

Tensor is something that you apply to a vector and you get a different vector. So the
Tensor tells you about the behavior of the vector.

2 Basic Mapping Techniques

Matrix of images:
- Slices through volume
- Each image shows one component of the matrix

This illustration shows a matrix of images of diffusion tensor.
Symmetric tensor can be diagonalized

- Representation by an ellipsoid

- Glyph-based approach
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Example for isotropy (spherical) and anisotropy.

Diffusion tensor magnetic resonance imaging [Pierpaoli-1996-MRIJ.
C. Pierpaoli, P. Jezzard, P. J. Basser, A. Barnett, and G. Di Chiro, Dif-
fusion tensor MR imaging of the human brain, Radiology, vol. 201, no.
3, pp. 637--648, 1996

Uniform grid of ellipsoids
Second-order symmetric tensor mapped to ellipsoid
Sliced volume

Example for a Diffusion Tensor Magnetic Resonance Image of the human brain.
Uniform grid of ellipsoids
Normalized sizes of the ellipsoids
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Brushstrokes [Laidlaw-1998-VDT]

Influenced by paintings

Multivalued data

Scalar intensity

Sampling rate

Diffusion tensor

Textured strokes

L -

scalar sampling rate tensor

Ellipsoids in 3D:
Problems:
Occlusion
Missing continuity



Haber glyphs [Haber-1990]
Rod and elliptical disc
Better suited to visualize magnitudes of the tensor and principal axis

Box glyphs [Johnson-2001]



1 i

Reyno.ldé glyph [Moore-994]

Cluadric : Reynolds
Glyph Glyph

Generic iconic techniques for feature visualization [Post-1995]



Glyph probe for local flow field visualization [Leeuw, Wijk 1993]
Arrow: particle path
Green cap: tangential acceleration
Orange ring: shear (with respect to gray ring)

Glyph for fourth-order tensor
(wave propagation in crystals)
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3 Hue-Balls and Lit-Tensors

Hue-balls and Lit-tensors [Kindlmann, Weinstein 1999]

- ldeas and elements

- Visualize anisotropy (relevant, e.g., in biological applications)
- Color coding

- Opacity function

+ lllumination

« Volume rendering

- Color coding (hue-ball)

- Fixed, yet arbitrary input vector (e.g., user specified)
- Color coding for output vector

- Coding on sphere

Idea:

- Deflection is strongly coupled with anisotropy

"

Barycentric opacity mapping
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Emphasize important features
Make unimportant regions transparent
Can define 3 barycentric coordinates cl, cp, cs
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Examples for transfer functions.
Lit-tensors
. Similar to illuminated streamlines
lllumination of tensor representations
Provide information on direction and curvature
Cases
Linear anisotropy: same as illuminated streamlines
Planar anisotropy: surface shading
Other cases: smooth interpolation between these two extremes

Example for different Lit-tensors.
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Variation: streamtubes and streamsurfaces [Zhang-2000]
- Streamtubes: linear anisotropic regions
- Streamsurfaces: planar anisotropic surfaces

4 Hyperstreamlines and Tensorlines

Hyperstreamlines [Delmarcelle, Hesselink 1992/93]

- Streamlines defined by eigenvectors

- Direction of streamline by major eigenvector

- Visualization of the vector field defined by major eigenvector
- Other eigenvectors define cross-section



Idea behind hyperstreamlines:
Maijor eigenvector describes direction of diffusion with highest probability density
Ambiguity for (nearly) isotropic case

Problems of hyperstreamlines

Ambiguity in (nearly) isotropic regions:

Partial voluming effect, especially in low resolution images (MR images)
Noise in data

Solution: tensorlines

Tensorline

Hyperstreamline
Arrows: major eigenvector



Tensorlines [Weinstein, Kindimann 1999]

Advection vector

Stabilization of propagation by considering

Input velocity vector

Output velocity vector (after application of tensor operation)

Vector along major eigenvector

Weighting of three components depends on anisotropy at specific position:
Linear anisotropy: only along major eigenvector

Other cases: input or output vector

Tensorlines.



