

2.1. Data Sources

- The capability of traditional presentation techniques is not sufficient for the increasing amount of data to be interpreted
 - · Data might come from any source with almost arbitrary size
 - Techniques to efficiently visualize large-scale data sets and new data types need to be developed

· Real world

- · Measurements and observation
- · Theoretical world
 - · Mathematical and technical models
- Artificial world
 - Data that is designed

2.1.	Data Sources	
• Th • Co •	neoretical world omputer simulations Sciences	
	Molecular dynamicsQuantum chemistryMathematics	MB
	Molecular modelingComputational physicsMeteorology	GB
	Computational fluid mechanics (CFD) Engineering	
	 Architectural walk-throughs Structural mechanics Car body design 	GB
0	Visualization, Summer Term 03	VIS, University of Stuttgart

Artificia	al world	
 Dra Pai 	awings inting	MB
Put TV	(teasers, commercials)	GB

2.3. Sources of Error Data acquisition · Sampling: are we (spatially) sampling data with enough precision to get what we need out of it? Quantization: are we converting "real" data to a representation with enough precision to discriminate the relevant features? Filtering · Are we retaining/removing the "important/non-relevant" structures of the data ? Frequency/spatial domain filtering · Noise, clipping and cropping Selecting the "right" variable · Does this variable reflect the interesting features? · Does this variable allow for a "critical point" analysis ? $\langle \mathcal{O} \rangle$

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

Discrete r The ot	epresentations pjects we want to visualize are often 'continu	ous'
 But in space 	most cases, the visualization data is given o and/or time	nly at discrete locations in
 Discretice cells at 	te structures consist of samples, from which re generated	grids/meshes consisting of
Primitives	in multi dimensions	
Primitives	s in multi dimensions	mesh

2.5. Domain

- The (geometric) shape of the domain is determined by the positions of sample points
- Domain is characterized by
 - Dimension
 - Influence
 - Structure

20

2.6. Data Structures

- Uniform grids
 - Similar to Cartesian grids
 - Consist of equal cells but with different resolution in at least one dimension (dx \neq dy (\neq dz))
 - Spacing between grid points is constant in each dimension -> same indexing scheme as for Cartesian grids
 - Most likely to occur in applications where the data is generated by a 3D imaging device providing different sampling rates in each dimension
 - · Typical example: medical volume data consisting of slice images
 - Slice images with square pixels (dx = dy)
 - Larger slice distance (dz > dx = dy)

2.6. Data Structures

· Typical implementation of structured grids

DataType *data = new DataType[Nx•Ny•Nz]; val = data[i•(Ny•Nz) + j•Nz + k];

... code for geometry ...

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

2.7. Data Values

- Data types
 - Scalar data is given by a function $f(x_1,...,x_n): \mathbb{R}^n \to \mathbb{R}$ with *n* independent variables x_i
 - Vector data represent direction and magnitude and is given by a *n*-tupel (f₁,...,f_n) with f_k=f_k(x₁,...,x_n), n ≥ 2 and 1≤ k ≤ n
 - Tensor data for a tensor of level k is given by t_{i1,i2,...,ik}(x₁,...,x_n) a tensor of level 1 is a vector, a tensor of level 2 is a matrix, ...

Structure of the data

.

- · Sequential (in the form of a list)
- · Relational (as table)
- Hierarchical (tree structure)
- Network structure

