3. Interpolation and Filtering

Data is often discretized in space and / or time
Finite number of samples
The continuous signal is usually known only at a few points (data points)
In general, data is needed in between these points
By interpolation we obtain a representation that matches the function
at the data points
Evaluation at any other point possible
Reconstruction of signal at points that are not sampled
Assumptions needed for reconstruction
Often smooth functions

LA
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3.1. Voronoi Diagrams and Delaunay Triangulation

Given irregularly distributed positions without connectivity information
Problem: obtain connectivity to find a “good” triangulation
For a set of points there are many possible triangulations

A measure for the quality of a triangulation is the aspect ratio of the so-
defined triangles

Avoid long, thin ones

4

/\

vertex

face

o
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3.1. Voronoi Diagrams and Delaunay Triangulation

Scattered data triangulation
A triangulation of data points S = s, s, ..., s, € R? consists of
- Vertices (0D) =S
- Edges (1D) connecting two vertices
- Faces (2D) connecting three vertices
A triangulation must satisfy the following criteria

v faces = conv(S), i.e. the union of all faces including the boundary is the
convex hull of all vertices

The intersection of two triangles is either empty, or a common vertex, or a
common edge, or a common face (tetrahedra)

o,
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3.1. Voronoi Diagrams and Delaunay Triangulation

Triangulation with

holes, faces overlap, T-vertices

are not valid

o
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3.1. Voronoi Diagrams and Delaunay Triangulation

How to get connectivity/triangulation from scattered data ?
Voronoi diagram
Delaunay triangulation

o,
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3.1. Voronoi Diagrams and Delaunay Triangulation

Voronoi diagram

For each sample every point within a Voronoi region is closer to it than to
every other sample

Given: a set of points X={x,,...,x, } from RY and a distance function
dist(x,y)
The Voronoi diagram Vor(X) contains for each point x; a cell V(x;) with

Vi(x; )={x | dist(x, x;) < dist(x, x;) Vj=i}

o
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3.1. Voronoi Diagrams and Delaunay Triangulation

Voronoi cells

The half space h(x,x;) is separated by the
perpendicular bisector between x;and x;

h(x,x;) contains x;
Voronoi cell:

Vix;) = a” h(xilxj)

Voronoi cells are convex

o
Xi@
" h
(Xi:Xj) [ Y
o
X @ ([
J
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3.1. Voronoi Diagrams and Delaunay Triangulation

Delaunay graph Del(X)
The geometric dual (topologically equal) of
the Voronoi diagram Vor(X)
Points in X are nodes
Two nodes x; and x; are connected iff
the Voronoi cells V(x) and V(x) share a
same edge

Delaunay cells are convex

Delaunay triangulation = triangulation of
the Delaunay graph

o
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3.1. Voronoi Diagrams and Delaunay Triangulation

Delaunay triangulation in 2D
Three points X, X, x, in X belong to a face from Del(X)
iff no further point lies inside the circle around x;, Xjy X
Two points x; x; form an edge
iff there is a circle around x, X; that does not contain a third point from X
For each triangle the circumcircle does not contain any other sample
Maximizes the smallest angle
Maximizes the ratio of (radius of
incircle)/(radius of circumcircle) « 7
It is unique (independent of the [
order of samples) for all but
some very specific cases £

S =

o,
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3.1. Voronoi Diagrams and Delaunay Triangulation

Local Delaunay property

Local Delaunay

Local Delaunay Local Delaunay violated

ey
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3.1. Voronoi Diagrams and Delaunay Triangulation

Algorithms for Delaunay triangulations
- Edge flip algorithm

find an initial (valid) triangulation
find all edges where local Delaunay property is violated

mark these edges and push them onto the stack

while (stack not empty)
pop edge from stack
if (edge does not satisfy Delaunay property)
flip this edge
flip all adjacent edges for which the Delaunay
property is violated due to the flip

VIS, University of Stuttgart

L
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3.1. Voronoi Diagrams and Delaunay Triangulation

- Edge flip algorithm

=,
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3.1. Voronoi Diagrams and Delaunay Triangulation

- Plane-sweep algorithm for finding an initial triangulation
- Imaginary vertical sweepline passes from left to right
- As the sweepline moves:
Problem has been solved for the data to the left of the sweepline
Is currently being solved for the data at or near the sweepline and
Is going to be solved sometime later for the data to right of the sweep-line
- Reduces a problem in 2D space to a series of problems in 1D space

. 1
°
° ° 7
° q
o * ° L
H |
[} 4
I
LD
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3.1. Voronoi Diagrams and Delaunay Triangulation

- Plane-sweep algorithm for finding an initial triangulation

sort points from left to right
construct initial triangle using first three vertices
for i=4 to n do

use last inserted p;; as starting point

walk counterclockwise along convex polygon (hull) of
triangulation until the tangent points,

inserting edges between p; and polygon points

walk clockwise along convex polygon of triangulation
until the tangent points,

inserting edges between p; and polygon points
update convex hull

endfor
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3.1. Voronoi Diagrams and Delaunay Triangulation

Plane Sweep algorithm

Also for triangulating polygons

Visualization,

)

1T,
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3.1. Voronoi Diagrams and Delaunay Triangulation

15
.0

Bowyer-Watson algorithm
[D.F. Watson. Computing the -Dimensional Delaunay Tessellation with Application to

Voronoi Polytopes. The Computer Journal, 24(2):167-172, 1981]

[A. Bowyer.Computing Dirichlet Tessellations. The Computer Journal, 24(2):162-166,

1981]

Incremental insertion of points into the triangulation

point to be
added

Visualization,

Summer Term 03

|_enclosing
polygon

new point
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3.1. Voronoi Diagrams and Delaunay Triangulation

Bowyer-Watson algorithm

Start with initial triangulation which covers the domain (e.g. two triangles
of bounding box)

Incremental insertion of points into the triangulation
All triangles whose circumcircles contain the inserted point are removed

... cont.
point to be
added
enclosing
polygon
=
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3.1. Voronoi Diagrams and Delaunay Triangulation

- Bowyer-Watson algorithm cont.
The resulting cavity is triangulated by linking the inserted point to all
vertices of the cavity boundary
The cavity is star-shaped: Edges from the location of the newly inserted
point

new point

—_|_enclosing
polygon

=,
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3.1. Voronoi Diagrams and Delaunay Triangulation

- Bowyer-Watson algorithm

determine the super triangle that encompasses all vertices
add super triangle vertices to the end of the vertex list
add the super triangle to the triangle list
for (each point in the vertex list)
calculate the triangle circumcircle center and radius
insert new point
if (new point lies in a circumcircle)
add the three triangle edges to the edge buffer
remove the triangle from the triangle list
delete multiple specified edges from the edge buffer, which
leaves the edges of the enclosing polygon
add all triangles formed of the point and the enclosing
polygon
remove all triangles from the triangulation that use the
super triangle vertices and remove their vertices from the
vertex list

Visualization, Summer Term 03 VIS, University of Stuttgart
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3.1. Voronoi Diagrams and Delaunay Triangulation

. Demo

& Soronoi Diagram  © Delauray Triangulation  Clear

Show Empty Circles Show Delaunay Edges Show Yoronoi Edges

.
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3.1. Voronoi Diagrams and Delaunay Triangulation

Other techniques exist
Radial sweep
Intersecting halfspaces

Divide and conquer (merge-based or split-based)

Running times (worst-case)

Flipping

Plane-sweep (as above)
Randomized incremental (BW)
Improved plane-sweep

Divide and conquer
Randomized incremental (BW)

L
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5.

O(n?)
O(n?)

O(n log n)
O(n log n)
O(n log n)
O(nldi2)

VNNNNND

w
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3.2. Univariate Interpolation

Univariate interpolation: interpolation for one variable

Nearest neighbor (0 order)
Linear (first order)
Smooth“(higher order)

Xo X X2 X3

LA
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3.2. Univariate Interpolation

Taylor interpolation
Basis functions: monom basis (polynomials)
m; = x' with ieN,

P7={1,x,x?,...,x"} is m+1-dimensional vector space of all polynomials
with maximum degree m
Coefficients c; with f = ¢y x/
Representation of samples:

f(x;)=f, vj=1.n
Interpolation problem

/\ samples
Viec=f
— coefficients (to be solved)
with the Vandermond matrix V;; = x;/*

o,
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3.2. Univariate Interpolation

Properties of Taylor interpolation
Unique solution
Numerical problems / inaccuracies
Complete system has to be solved again if a single value is changed
Not intuitive
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3.2. Univariate Interpolation

Generic interpolation problem:

Given are n sampled points X = {x;}cQ2cR?
with function values f;
n-dimensional function space @,9(£2) with basis {¢,_, .}
Coefficients c; with f= ¢ ¢
Representation of samples:
f(x;)=f. vj=1.n
Solving the linear system of equations

Mc=f

with M; = ¢(x;), ¢;=c;, and . =f,

Note: number of points n determines dimension of vector space
(= degree of polynomials)

o,
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3.2. Univariate Interpolation

- Other basis functions result in other interpolations schemes:
Lagrange interpolation
Newton interpolation
Bernstein basis: Bezier curves (approximation)
Hermite basis
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3.2. Univariate Interpolation

Cubic Hermite polynomials H
Coefficients describe:

End points

Tangent vectors at end points

\ Ho(t) = (1-1)*(1+21)
1 / T_r"’ ™ HE(t) = t(1- t)?
/ [ L, H®m=-£(1-1)
{ H3(t) = (3-2t)t?
[ A3
e

VIS, University of Stuttgart

3.2. Univariate Interpolation

Problem: coupling of number of samples n and degree of polynomials

f;

I

v

i X
Solution: Spline interpolation
Smooth piecewise polynomial function
Continuity / smoothness at segment boundaries!
N2 N2 Ng N2 N2 Ng?
X
t,=t,=t, t, ts ts t=t=1,

B-Spline

L)
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3.2. Univariate Interpolation

Piecewise linear interpolation
Simplest approach (except for nearest-neighbor sampling)
Fast to compute
Often used in visualization applications

CO continuity at segment f
boundaries i+1 SN

Data points: (x,,f),....(X,,T,) f, - N
For any point x with fi+2

X< X < Xppq
X X X

X
described by local coordinate u=(x-x)/(x;.,~x;) € [0,1]I
. 4-uU :"'\*‘
that is X=X, HU(Xi %) =(1-U)X; FUX;yq 5
u i
evaluate  f(x)=(1-u)f,+ uf,,, Al |
x, Y x TUx,,

LD
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3.3. Differentiation on Grids

First approach
Replace differential by ,finite differences”
Note that approximating the derivative by

f'(x)= af - Af
ax AX

causes subtractive cancellation and large rounding errors for small h

Second approach

Approximate/interpolate (locally) by differentiable function and differentiate
this function

ey
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3.3. Differentiation on Grids

Finite differences on uniform grids with grid size h (1D case)

f(x)

LD
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3.3. Differentiation on Grids

Finite differences on uniform grids with grid size h (1D case)

Forward differences f'(x)= f(X)- f(X)
' h
Backward differences f(x)= f(x)- f(X-1)
' h
Central differences f'(x)= f(X1)~ F(X-1)

Error estimation:
Forward/backward differences are first order
Central differences are second order
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3.3. Differentiation on Grids

Finite differences on non-uniform grids

Forward and backward differences as for
uniform grids with

Xy —X; = ah

X;—X.4 =Bh

I Bh oh

Xi-1 Xi Xiwq X

7,
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3.3. Differentiation on Grids

Finite differences on non-uniform grids
Central differences by Taylor expansion around the point x;

ahf'(x,)+@f"(x,)+...
) = 100> )+ P ) .
L/'\

1
B

o L)~ )= ()= ) =" )+ pre )+ o)
a o i)

The final approximation of the derivative:

iy (B e N @B
o= m[qf(xm) FUCRE f(x,)J

=,
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3.3. Differentiation on Grids

2D or 3D uniform or rectangular grids
Partial derivatives

of of of

ox oy oz
Same as in univariate case along
each coordinate axis

Example: gradient in a 3D uniform grid

of fi+1,j,k - fH,j,k

0X 2h
gradf = if _ fi,j+1,k B fi,H,k
oy 2h
of fi,j,k+1 - f;‘,j,k—1
oz 2h
35 @ Visualization, Summer Term 03
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3.4. Interpolation on Grids

Manifolds with more than 1D

Tensor product

Combination of several univariate

interpolations

Example for 2D surface:
n'm values f, with j=1..n and I=1..m
given at points XxY=(x,,....X,)x (V4,--.Y,)
n univariate basis functions & (x) on X
m univariate basis functions y;(y) on Y
n-m basis functions on XxY:

g (x.y) = &(%) yi(y)

Tensor product: f(x,y)=

i=

3

U(Xay)CU

=1

L
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3.4. Interpolation on Grids

Tensor product

n

f(x.y)=

3

U(Xay)C/]

=1

i=

Solve a linear system of equations for the unknown coefficients c;

Extension to k dimensions in the same way

o
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3.4. Interpolation on Grids

Bilinear interpolation on a rectangle
Tensor product for two linear interpolations
2D local interpolation in a cell
Known solution of the linear system of equations for the coefficients c;
Four data points (X, y)).....(X.1,¥;.,) With scalar values f; =f(x, y)), ...
Bilinear interpolation of points (x,y) with x<x<x,,, and y<y<y;
b g f(Xi+7fyj+1)
f(X/,}/£-+7) . = » v‘

f(Xzy]) - “‘af‘(x,}/)
(X'-%L”)» 7 / (Xiv1:Yje1)
‘ e f(X,‘+1 f
/ Axy)
(%,y) (X1, Y)
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3.4. Interpolation on Grids

Bilinear interpolation on a rectangle

f(x,y)=01-pB)I1 _a)f/,j +af;‘+1,j] +Al(1 _a)fi,m +afi+1,j+1]
=(1-B)f, + B, fiat fivt ot

with fj 2(1_a)fi,j +afi+1,j ------ o B

[

1

fa=0-a)f  +af ., |

1

1

A

7
. f// a fri
and local coordinates 1)

X—X; Y-y
a= L B=—"", a, B e[0]]
Xis1 — X Yin—Yi
L
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3.4. Interpolation on Grids

Bilinear interpolation on a rectangle

fxy)=(-a)1-p); +a(1-B)f.;

FA—a)f .+

Weighted by local
areas of the opposite point

Bilinear interpolation is not
linear (but quadratic)!

Cannot be inverted easily!

f,

i1,

ay
20 C‘\ JJ Visualization, Summer Term 03 VIS, University of Stuttgart




3.4. Interpolation on Grids

Trilinear interpolation on a 3D uniform grid
Straightforward extension of bilinear interpolation
Three local coordinates a,B,y

Known solution of the linear system of equations for the
coefficients c;

Trilinear interpolation is not linear!

Efficient evaluation:

f(a,B,y)= a+a(b+ B(e+hy))+ B(c+f y)+ y(d+ga)
with coefficients a, b, c, d, e, f, g from data at the corner vertices

Extension to higher order of continuity
Piecewise cubic interpolation in 1D
Piecewise bicubic interpolation in 2D
Piecewise tricubic interpolation in 3D
Based on Hermite polynomials

o,
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3.4. Interpolation on Grids

- Interpolation on un/structured grids (triangle meshes etc.) ?

Affine combination of points x (in Euclidean space):
Linear combination Z; ¢; -X;
O<o;<1,Vi
=1
o; are barycentric coordinates
Affinely independent set of points:
No point can be expressed as affine combination of the other points
Maximum number of points is d+7 in R4

=,
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3.4. Interpolation on Grids

. Simplex in R4

d+1 affinely independent points °

Span of these points o o
0D: point

1D: line

2D: triangle

3D: tetrahedron

£,
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3.4. Interpolation on Grids

- Barycentric interpolation on a simplex
d+1 points x; with function values f;
Point x within the simplex described as affine combination of x;

1
Possible approach:
solve for coefficients o; based on x = 3; ¢;x; and 2 o; = 1

Function value at x: f = %, ¢;-f.is affine combination of f;
- Barycentric coordinates from area/volume considerations:

g - Vol(X,,...,X; 1, X, X;, 1., Xg,q)
’ Vol(x,,...,x,,,)

Vol(x,,...,xd”):det(x; x‘;”J

generalized measure for area/volume

o,
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3.4. Interpolation on Grids

Barycentric coordinates from area/volume considerations

d=1 o—e o a=L/ Opposite
X4 X Ly X, local length
X =0x, +a,x, o+, =1
x=(1—u)x, +ux, u=a, (Z1=A1/A Opposite
local area
d=2
X, X,
d=3 x Opposite
4 local volume
a=V/N
S X2
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3.4. Interpolation on Grids

Barycentric interpolation in a triangle
Geometrically, barycentric coordinates are given by the ratios of the
area of the whole triangle and the subtriangles defined by x and
any two points of x,, X, X,.

X, X, X, x1=(1,0,0)
=0
Vol(x,,x,,x;)=det y, y, y,|= (113,113, 1/3) %
1 1 1
=12 Area(A(X,,X,,X;)) X,=(0,1,0) X5=(0,0,1)

_ Vol(x,x,,x,)
" Vol(x,,x,,x;)

X = a,X; + 0,X, + 03X,

D o))
= ; oy=1—a,—a,
y c d\a,

SX) =0, fi+a,f, +asf;

o,
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3.4. Interpolation on Grids

Interpolation in a generic quadrilateral
Main application: curvilinear grids
Problem: find a parameterization for arbitrary quadrilaterals

v

Qay
local coordinates

LA
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3.4. Interpolation on Grids

Mapping ¢ from rectangular domain to quadratic domains is known:
Bilinear interpolation on a rectangle

X = a; Xy + (1- ay) X, a,€[0,1]

X34 = ayXy * (1- ay) X

X = ay X+ (1- ay) Xy, a,€[0,1] x
2

f, fs
Computing the inverse of ¢ is more complicated:
Analytically solve quadratic system for a; a,
Or: numerical solution by Newton iteration

Final value: f= ay(a,f, + (1- ay)f,) + (1- o) (e fy + (1- a)fy)

ey
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3.4. Interpolation on Grids

- Jacobi matrix J(@)
S(); =,
J(®),; describes direction and speed of position changes of @
when ¢; are varied

- Newton iteration
start with seed points as start configuration, e.g., a,=7/2

while ( ||x- Aayg,apa)ll > i\)_/\
compute J(D(ay, a5, a3)
transform X in coordinate system J(®):

Xo= J(D(as,09,29)) " ( X - Dy, a,005) )

update ;= o;+X,;

maximum
error ¢

49 @ Visualization, Summer Term 03
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3.4. Interpolation on Grids

- Other primitive cell types possible

=,
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f, x
X, fs 141
X3
X5
f f fs
6
X5 Xg
x, f,
f X3 f3 4 4
X, 14
Prism: Pyramid:
- twice barycentric - bilinear on base face
- once linear - then linear
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3.4. Interpolation on Grids

o0
(/@)
51 é’

Inverse distance weighting

Shepard interpolation [D. Shepard, A two-dimensional interpolating function for irregularly
spaced data. Proc. ACM. nat. Conf., 517--524, 1968]

Originally developed for scattered data
Interpolated values: f(x)= % ¢(x) f;
Sample points are vertices of the cell

Basis functions 4(x) = Jx =,

Z =]

Define values at sample points f(x;) := f,=lim,  f(x)

Visualization, Summer Term 03 VIS, University of Stuttgart

3.5. Interpolation without Grids

s,
.0

Shepard interpolation

Different exponents for inner and outer neighborhood
(default: 2 in the inner neighborhood and 4 in the outer neighborhood)
Neighborhood sizes determine how many points are included in inverse
distance weighting
The neighborhood size can be specified in terms of

- Radius or

- Number of points or

- Combination of the two
Neighborhood is not given explicitly (as opposed to inverse distance
weighting on grids)
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3.5. Interpolation without Grids

Radial basis functions (RBF)
n function values f; given at n points x;

n k
Interpolant  f(X)= z/”t, ¢(Hx - x,H)+ Zcm pm(x)
i=1 m=0

Univariate radial basis ¢(r)

Examples:
- Polynomials r
. Gaussians exp(r2)

Polynomial basis {p,,} for (k + 1)-dimensional vector space

LD
53 Q Visualization, Summer Term 03 VIS, University of Stuttgart

3.5. Interpolation without Grids

Radial basis functions (RBF)
Under-determined system:
n equations for n + (k+1) unknowns
Additional constraints (orthogonality / side conditions):

Zn:/l,. p,(x,)=0 Vm=0.k

Well-defined system of linear equations (vector / matrix notation):

A (? Coefficients for radial function

(A p] (A] (fj Function values at sample points

Polynomial basis \j

ey
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X; _XJH)

A= ¢q

Coefficients for polynomials

-




3.6. Filtering by Projection or Selection

Very often: too much information to be visualized at once
Strategy is to reduce the displayed information by filtering

Popular approach:
Reduce from ndmv to n'dm’v , with n’<nand/orm’<m [Wong]
Techniques:
Projection
Selection
Slicing
User input needed

o,
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3.6. Filtering by Projection or Selection

Projection =

Functional description for both the
Domain and
Data values

Projection into subspaces

Often a mapping to a subset of the
original values is chosen

ey
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3.6. Filtering by Projection or Selection

Selection o

Selection of data according to logical conditions (predicates)
Example:

Height field 2d 7v with data (x,y,h)

D,={(xy,h) | (x*+y? < 5km) A (h > Tkm) }

LA
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3.6. Filtering by Projection or Selection
Slicing

Example: 2D cutting surface
(slice) through a 3D volume

ay
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3.7. Fourier Transform

Fourier analysis

Function h(t) in coordinate representation (time domain)

Analogous representation H(v) with frequencies v (frequency domain)
Fourier transform:

H(v)= [h@e*™dt <  h(t)= [H(v)e*™dv
forward transform inverse transform
Convolution (9*h)(®)= [g(t)-h(t-T)ck

Convolution theorem: (g=h)(t) < G(v)-H(v)

LA
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3.7. Fourier Transform

Examples
A A
h(t)=k H(f=k-5(v)
=
> ¢ >y
A A
h(t)=k -(t) H(v)=k
=
>t >y

ay
60 C‘\ JJ Visualization, Summer Term 03 VIS, University of Stuttgart




3.7. Fourier Transform

Examples
R H(v) = kAt sinc(zAtv)
k h(t) .
sin(x)
sinc(x) =
At < " st X
> Box v
A
h(t) = kAv - sinclzA vt
(t) (wAvt) o H)
" < Av
¢ sinc >,
PN
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3.7. Fourier Transform
Examples
H(v) = kAt - sinc(zAtv )
k h(t) (nhty)
= Y,
(—3 Triangle v
2t function
A 1
At h() z H(v)
=
Comb
t v

5
. O
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3.7. Fourier Transform

In applications: mostly discrete Fourier transforms
Based on a discrete signal
Implementation in the form of the Fast Fourier Transform (FFT)

o,
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3.8. Sampled Signals

h(t) is assumed to be band limited with frequencies smaller than B
Nyquist frequency vy, =2B

Discretization with constant step size At = 1/vy,, = 1/(2B)
Sampled signal:  h;=h(j-At)

Periodicity is assumed if only a finite interval j = 0..n-1 is considered

Sampling theorem (Shannon 1949):
If H(f) = Ofor all |v|> B = vy,,/ 2, then h(t) is uniquely given by the
samples h;.

h(t) = 2o .1 h;-SINC(7 vy ot At)

o4 C‘\ JJ Visualization, Summer Term 03 VIS, University of Stuttgart




3.8. Sampled Signals

Issue 1: Undersampling
If h(t) has frequencies larger than B = v,/ 2
h(t) cannot be reconstructed from sampled values

Aliasing
A .
|H(f)|? FT with
4~ Aliasing
” - N 2 - = ~
s N SN~ o
7’ . N~ Original
e Mirror N .
Rl R I ~ Signal
=" R [ S
-B B v
A
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3.8. Sampled Signals

Issue 2: Finite window size

Fourier transform is theoretically defined for signals of infinite duration or
for periodic signal

Often h(t) is measured on a finite interval [-T/2, T/2] (without periodicity)
Yielding a multiplication with a window function: h(t)-1;.,, 75(t)
Convolution with sinc() function in frequency space

1 w(t) W(v)

T < s

> Window
>t %

ey
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3.8. Sampled Signals

Issue 2: Finite window size

Problem: Differences between the starting and ending values of the
segment produces a discontinuity which generates high-frequency
spurious components

Solution: Data windowing
Bartlett window is often used

Bartlett

t

Other examples: Hamming, Hann windows

LA
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3.9. Reconstruction and Frequency Filtering

Filter design based on Fourier analysis

Low pass filter with limit frequency v,
Convolution with sinc() function (in coordinate space) or
FFT, then multiplication with box filter @(v), then inverse FFT

#(t) = 2v, ‘SinC(27rvot) A
D(v)
< 2 v,
sinc

v
<

Vo

ey
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3.9. Reconstruction and Frequency Filtering

High pass filter with limit frequency v,:
Emphasizes features, e.g., edges

#(t) = 5(t)— 2v,, - sinc(2zv,t)

A
D(v)
1/ =
2 VO 2 Vv
t sinc >
\Y
Vo
LAY
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3.9. Reconstruction and Frequency Filtering

Reconstruction issues

Measurements m(t) of the original signal s(t) are based on a point-spread
function p(t-t), not on the ideal delta function &(t-t)

Convolution in coordinates space, multiplication in frequency space

m(t)sz(t-r)S(f)dr o M(v)=P(v)S(v)

Additional noise
What is the ideal, original signal s(t)?

ey
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3.9. Reconstruction and Frequency Filtering

o | Flu)|
[ I 195 [Frmr Samoling i
75| ‘ N S ! pling in
Sampling s I 0 B frequency
25| ‘ . 15 T O ) O domain
0. ! 1 0| ] |
0 128 256 384 512 -5 25 0 25 5
(a) (b)
| Fluy| | Fafur)|
; : o . : i ample
Signal in ~ 2F : : : ; : ‘
freg uenc LS i ot - signalin
s gce Yl == frequency
P ol ol. domain
-5 25 0 25 5
le)
o
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3.9. Reconstruction and Frequency Filtering
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75| . .
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Beforere- s ,‘| ‘ e 5| Box filter in
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3.9. Reconstruction and Frequency Filtering

75 A [
Reconstruction 5 N V\'b 5
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1 a)
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3.9. Reconstruction and Frequency Filtering
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3.9. Reconstruction and Frequency Filtering
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3.9. Reconstruction and Frequency Filtering

ORTSRAUM

LA o €S I ] ]

Demo (Applet)

FREGUENZRAUM

f il

ﬁ\‘ Mﬁ\”\II - ,
\/|V I

Za ma[as oA |
0

0 ECO |

ERN

03 . |

73

Visualization, Summer Term 03 VIS,

University of Stuttgart




