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3. Interpolation and Filtering

• Data is often discretized in space and / or time 
• Finite number of samples

• The continuous signal is usually known only at a few points (data points)
• In general, data is needed in between these points

• By interpolation we obtain a representation that matches the function 
at the data points

• Evaluation at any other point possible
• Reconstruction of signal at points that are not sampled
• Assumptions needed for reconstruction

• Often smooth functions
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3.1. Voronoi Diagrams and Delaunay Triangulation

• Given irregularly distributed positions without connectivity information
• Problem: obtain connectivity to find a “good” triangulation 
• For a set of points there are many possible triangulations

• A measure for the quality of a triangulation is the aspect ratio of the so-
defined triangles

• Avoid long, thin ones

vertex

face
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3.1. Voronoi Diagrams and Delaunay Triangulation

• Scattered data triangulation 
• A triangulation of data points S = s0, s1, ..., sm ∈ R2 consists of 

• Vertices (0D) = S
• Edges (1D) connecting two vertices
• Faces (2D) connecting three vertices

• A triangulation must satisfy the following criteria
• ∪ faces = conv(S), i.e. the union of all faces  including the boundary is the 

convex hull of all vertices
• The intersection of two triangles is either empty, or a common vertex, or a 

common edge, or a common face (tetrahedra)
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3.1. Voronoi Diagrams and Delaunay Triangulation

• Triangulation with 

holes,                         faces overlap,  T-vertices 

are not valid
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3.1. Voronoi Diagrams and Delaunay Triangulation

• How to get connectivity/triangulation from scattered data ?
• Voronoi diagram     
• Delaunay triangulation
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3.1. Voronoi Diagrams and Delaunay Triangulation

• Voronoi diagram
• For each sample every point within a Voronoi region is closer to it than to 

every other sample
• Given: a set of points X={x1,...,xn } from Rd and a distance function 

dist(x,y)
• The Voronoi diagram Vor(X) contains for each point xi a cell V(xi ) with

V(xi )={x | dist(x, xi ) < dist(x, xj ) ∀j≠ i }
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3.1. Voronoi Diagrams and Delaunay Triangulation

• Voronoi cells
• The half space h(xi,xj ) is separated by the 

perpendicular bisector between xi and xj

• h(xi,xj ) contains xi

• Voronoi cell:

V(xi ) = ∩j≠i h(xi,xj )

• Voronoi cells are convex

xi

xj

h(xi,xj )
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3.1. Voronoi Diagrams and Delaunay Triangulation

• Delaunay graph Del(X) 
• The geometric dual (topologically equal) of 

the Voronoi diagram Vor(X) 
• Points in X are nodes
• Two nodes xi and xj are connected iff

the Voronoi cells V(xi) and V(xj) share a 
same edge

• Delaunay cells are convex
• Delaunay triangulation = triangulation of 

the Delaunay graph
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3.1. Voronoi Diagrams and Delaunay Triangulation

• Delaunay triangulation in 2D
• Three points xi, xj, xk in X belong to a face from Del(X)

iff no further point lies inside the circle around xi, xj, xk

• Two points xi, xj form an edge
iff there is a circle around xi, xj that does not contain a third point from X

• For each triangle the circumcircle does not contain any other sample
• Maximizes the smallest angle
• Maximizes the ratio of (radius of 

incircle)/(radius of circumcircle) 
• It is unique (independent of the 

order of samples) for all but
some very specific cases 
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3.1. Voronoi Diagrams and Delaunay Triangulation

• Local Delaunay property

E F

E

Local Delaunay

Local Delaunay

Local Delaunay violated
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3.1. Voronoi Diagrams and Delaunay Triangulation

• Algorithms for Delaunay triangulations
• Edge flip algorithm

find an initial (valid) triangulation
find all edges where local Delaunay property is violated
mark these edges and push them onto the stack
while (stack not empty) 

pop edge from stack
if (edge does not satisfy Delaunay property) 

flip this edge
flip all adjacent edges for which the Delaunay 
property is violated due to the flip
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3.1. Voronoi Diagrams and Delaunay Triangulation

• Edge flip algorithm
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3.1. Voronoi Diagrams and Delaunay Triangulation

• Plane-sweep algorithm for finding an initial triangulation
• Imaginary vertical sweepline passes from left to right
• As the sweepline moves:

• Problem has been solved for the data to the left of the sweepline
• Is currently being solved for the data at or near the sweepline   and 
• Is going to be solved sometime later for the data to right of the sweep-line

• Reduces a problem in 2D space to a series of problems in 1D space

Visualization,  Summer Term 03 VIS,  University of Stuttgart14

3.1. Voronoi Diagrams and Delaunay Triangulation

• Plane-sweep algorithm for finding an initial triangulation 

sort points from left to right 
construct initial triangle using first three vertices
for i=4 to n do

use last inserted pi-1 as starting point
walk counterclockwise along convex polygon (hull) of 
triangulation until the tangent points,
inserting edges between pi and polygon points

walk clockwise along convex polygon of triangulation 
until the tangent points,
inserting edges between pi and polygon points

update convex hull
endfor
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3.1. Voronoi Diagrams and Delaunay Triangulation

• Plane Sweep algorithm
• Also for triangulating polygons
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3.1. Voronoi Diagrams and Delaunay Triangulation

• Bowyer-Watson algorithm
[D.F. Watson. Computing the -Dimensional Delaunay Tessellation with Application to 
Voronoi Polytopes. The Computer Journal, 24(2):167-172, 1981]
[A. Bowyer.Computing Dirichlet Tessellations. The Computer Journal, 24(2):162-166, 
1981]

• Incremental insertion of points into the triangulation

point to be
added

enclosing
polygon

new point
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3.1. Voronoi Diagrams and Delaunay Triangulation

• Bowyer-Watson algorithm
• Start with initial triangulation which covers the domain (e.g. two triangles 

of bounding box)
• Incremental insertion of points into the triangulation
• All triangles whose circumcircles contain the inserted point are removed
• … cont.

point to be
added

enclosing
polygon
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3.1. Voronoi Diagrams and Delaunay Triangulation

• Bowyer-Watson algorithm    cont.
• The resulting cavity is triangulated by linking the inserted point to all 

vertices of the cavity boundary
• The cavity is star-shaped: Edges from the location of the newly inserted 

point

point to be
added

enclosing
polygon

new point
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3.1. Voronoi Diagrams and Delaunay Triangulation

• Bowyer-Watson algorithm

determine the super triangle that encompasses all vertices
add super triangle vertices to the end of the vertex list
add the super triangle to the triangle list
for (each point in the vertex list)

calculate the triangle circumcircle center and radius
insert new point

if (new point lies in a circumcircle) 
add the three triangle edges to the edge buffer
remove the triangle from the triangle list

delete multiple specified edges from the edge buffer, which 
leaves the edges of the enclosing polygon

add all triangles formed of the point and the enclosing 
polygon

remove all triangles from the triangulation that use the 
super triangle vertices and remove their vertices from the 
vertex list
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3.1. Voronoi Diagrams and Delaunay Triangulation

• Demo
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3.1. Voronoi Diagrams and Delaunay Triangulation

• Other techniques exist
• Radial sweep
• Intersecting halfspaces
• Divide and conquer (merge-based or split-based)

• Running times (worst-case)

Flipping
Plane-sweep (as above)
Randomized incremental (BW)
Improved plane-sweep
Divide and conquer
Randomized incremental (BW)

Dim.
2
2
2
2
2
≥ 3

O(n2)
O(n2) 
O(n log n) 
O(n log n)
O(n log n) 
O(n[d/2])
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3.2. Univariate Interpolation

• Univariate interpolation: interpolation for one variable
• Nearest neighbor (0 order)
• Linear (first order)
• Smooth (higher order)

x1 x2 x3 x4

f1

f2

x0

f0
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3.2. Univariate Interpolation

• Taylor interpolation
• Basis functions: monom basis (polynomials)

mi = xi with i∈N0

• Pm={1,x,x2,...,xm} is m+1-dimensional vector space of all polynomials 
with maximum degree m

• Coefficients ci with f = Σi ci· xi

• Representation of samples:
f(xj )=fj ∀ j=1..n

• Interpolation problem

V·c = f

with the Vandermond matrix Vij = xi
j-1

samples

coefficients (to be solved)
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3.2. Univariate Interpolation

• Properties of Taylor interpolation
• Unique solution
• Numerical problems / inaccuracies 
• Complete system has to be solved again if a single value is changed
• Not intuitive
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3.2. Univariate Interpolation

• Generic interpolation problem:
• Given are n sampled points X = {xi }⊆Ω⊆Rd

with function values fi
• n-dimensional function space Φn

d(Ω) with basis {φi =1..n }
• Coefficients ci with f = Σi ci·φi 

• Representation of samples:
f(xj )=fj ∀ j=1..n

• Solving the linear system of equations

M·c = f

with Mji = φi(xj ), ci = ci , and fj = fj

• Note: number of points n determines dimension of vector space 
(= degree of polynomials)
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3.2. Univariate Interpolation

• Other basis functions result in other interpolations schemes:
• Lagrange interpolation
• Newton interpolation
• Bernstein basis: Bezier curves (approximation)
• Hermite basis
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3.2. Univariate Interpolation

• Cubic Hermite polynomials H
• Coefficients describe:

• End points
• Tangent vectors at end points
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3.2. Univariate Interpolation

• Problem: coupling of number of samples n and degree of polynomials

• Solution: Spline interpolation
• Smooth piecewise polynomial function
• Continuity / smoothness at segment boundaries!

fi

xxi

x

1
N1

2 N2
2 N3

2 N4
2

t1 = t2 =t3 t4 t5 t6 t7= t8= t9

N5
2 N6

2

B-Spline
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3.2. Univariate Interpolation

• Piecewise linear interpolation
• Simplest  approach (except for nearest-neighbor sampling)
• Fast to compute
• Often used in visualization applications
• C0 continuity at segment

boundaries

• Data points: (x0,f0),...,(xn,fn)
• For any point x with

xi ≤ x ≤ xi+1

described by local coordinate u=(x-xi)/(xi+1-xi) ∈ [0,1]

that is          x= xi +u(xi+1-xi) =(1-u)xi +uxi+1 ;

evaluate      f(x)=(1-u)fi + ufi+1

fi+1

f
fi

xxi xi+1 xi+2

fi+2

xi xi+1xx 1-uu

f i

f i+1

ff
1-u

u
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3.3. Differentiation on Grids

• First approach
• Replace differential by „finite differences“
• Note that approximating the derivative by 

causes subtractive cancellation and large rounding errors for small h

• Second approach
• Approximate/interpolate (locally) by differentiable function and differentiate 

this function

h
xfhxfxf )()()(' −+

≈

x
f

dx
dfxf

∆
∆

→=)('
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3.3. Differentiation on Grids

• Finite differences on uniform grids with grid size h (1D case)

f(x)

xi h x
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3.3. Differentiation on Grids

• Finite differences on uniform grids with grid size h (1D case)

• Forward differences

• Backward differences

• Central differences

• Error estimation:
• Forward/backward differences are first order
• Central differences are second order

)()()(' 1

h
xfxfxf ii
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3.3. Differentiation on Grids

• Finite differences on non-uniform grids
• Forward and backward differences as for 

uniform grids with

xi+1 – xi = αh

xi – xi-1 = βh

βh αh

xixi-1 xi+1 x

f(x)
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3.3. Differentiation on Grids

• Finite differences on non-uniform grids
• Central differences by Taylor expansion around the point xi
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3.3. Differentiation on Grids

• 2D or 3D uniform or rectangular grids
• Partial derivatives

• Same as in univariate case along 
each coordinate axis

• Example: gradient in a 3D uniform grid
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3.4. Interpolation on Grids

• Manifolds with more than 1D
• Tensor product
• Combination of several univariate 

interpolations
• Example for 2D surface:

• n·m values fjl with j=1..n and l=1..m
given at points X×Y=(x1,...,xn)× (y1,...,ym)

• n univariate basis functions ξj (x) on X
• m univariate basis functions ψl (y) on Y
• n·m basis functions on X×Y:

φij (x,y) = ξi(x)·ψj(y)

• Tensor product: ij

mn

ji
ij cyxyxf ),(),(

,

1,1
∑

==

= φ
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3.4. Interpolation on Grids

• Tensor product

• Solve a linear system of equations for the unknown coefficients cij

• Extension to k dimensions in the same way

ij

mn

ji
ij cyxyxf ),(),(

,

1,1
∑

==

= φ
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3.4. Interpolation on Grids

• Bilinear interpolation on a rectangle
• Tensor product for two linear interpolations
• 2D local interpolation in a cell 
• Known solution of the linear system of equations for the coefficients cij

• Four data points (xi,yj),...,(xi+1,yj+1) with scalar values fi,j=f(xi,yj), … 
• Bilinear interpolation of points (x,y) with xi≤x<xi+1 and yj≤y<yj+1

f(xi+1,yj+1)

(xi+1,yj+1)

(xi+1,yj)

(x,y)

f(xi,yj) f(x,y)

(xi,yj)

f(xi,yj+1)

f(xi+1,yj)

(xi,yj+1)
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3.4. Interpolation on Grids

• Bilinear interpolation on a rectangle

with

and local coordinates
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3.4. Interpolation on Grids

• Bilinear interpolation on a rectangle

• Weighted by local
areas of the opposite point

• Bilinear interpolation is not
linear (but quadratic)!

• Cannot be inverted easily!
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3.4. Interpolation on Grids

• Trilinear interpolation on a 3D uniform grid
• Straightforward extension of bilinear interpolation
• Three local coordinates α,β,γ
• Known solution of the linear system of equations for the 

coefficients cij 
• Trilinear interpolation is not linear!
• Efficient evaluation:

f(α,β,γ)= a+α(b+ β(e+hγ))+ β(c+f γ)+ γ(d+gα)
with coefficients a, b, c, d, e, f, g from data at the corner vertices

• Extension to higher order of continuity
• Piecewise cubic interpolation in 1D
• Piecewise bicubic interpolation in 2D
• Piecewise tricubic interpolation in 3D
• Based on Hermite polynomials
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3.4. Interpolation on Grids

• Interpolation on un/structured grids (triangle meshes etc.) ?

• Affine combination of points x (in Euclidean space):
• Linear combination Σi αi ·xi

• 0 ≤ αi ≤ 1,∀ i
• Σi αi  = 1
• αi are barycentric coordinates

• Affinely independent set of points:
• No point can be expressed as affine combination of the other points
• Maximum number of points is d+1 in Rd
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3.4. Interpolation on Grids

• Simplex in Rd
• d+1 affinely independent points
• Span of these points
• 0D: point
• 1D: line
• 2D: triangle
• 3D: tetrahedron
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3.4. Interpolation on Grids

• Barycentric interpolation on a simplex
• d+1 points xi with function values fi
• Point x within the simplex described as affine combination of xi

• Possible approach: 
solve for coefficients αi  based on x = Σi αi ·xi and Σi αi  = 1

• Function value at x: f = Σi αi ·fi is affine combination of fi

• Barycentric coordinates from area/volume considerations:
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3.4. Interpolation on Grids

• Barycentric coordinates from area/volume considerations
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3.4. Interpolation on Grids

• Barycentric interpolation in a triangle
• Geometrically, barycentric coordinates are given by the ratios of the 

area of the whole triangle and the subtriangles defined by x and 
any two points of x1, x2, x3.
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3.4. Interpolation on Grids

• Interpolation in a generic quadrilateral
• Main application: curvilinear grids
• Problem: find a parameterization for arbitrary quadrilaterals

x1

x3
x2

x4x

f2

f1

f3

f4

f=?

α1

α2

Φ

Φ-1

local coordinates
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3.4. Interpolation on Grids

• Mapping φ from rectangular domain to quadratic domains is known:
Bilinear interpolation on a rectangle

x12 = α1·x1 + (1- α1)·x2 α1∈[0,1]
x34 = α1·x4 + (1- α1)·x3
x = α2·x12 + (1- α2)·x34 α2∈[0,1]

• Computing the inverse of φ is more complicated:
• Analytically solve quadratic system for α1, α2

• Or: numerical solution by Newton iteration

• Final value:  f =  α2·(α1·f1 + (1- α1)·f2 ) + (1- α2)·(α1·f4 + (1- α1)·f3 )

x2

x1

x3

x4x

f2

f1

f3

f4

f=?
x12

x34
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3.4. Interpolation on Grids

• Jacobi matrix J(Φ)
• J(Φ)ij = ∂Φi/∂αj

• J(Φ).j describes direction and speed of position changes of Φ
when αj are varied

• Newton iteration
start with seed points as start configuration, e.g., αi =1/2
while ( ||x - Φ(α1,α2,α3)|| > ε )

compute J(Φ(α1,α2,α3))
transform x in coordinate system J(Φ):

xα= J(Φ(α1,α2,α3))-1·( x - Φ(α1,α2,α3) )
update αi = αi + xα,i

maximum
error ε
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3.4. Interpolation on Grids

• Other primitive cell types possible

x1

x3

x2

x4

f2

f1

f3
f4

x5
f5

x1

x3

x2

x4

f1

f3

f4

x5 x6

f5 f6

Prism:
- twice barycentric
- once linear

Pyramid:
- bilinear on base face
- then linear
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3.4. Interpolation on Grids

• Inverse distance weighting
• Shepard interpolation [D. Shepard, A two-dimensional interpolating function for irregularly 

spaced data. Proc. ACM. nat. Conf., 517--524, 1968]

• Originally developed for scattered data
• Interpolated values: f(x)= Σi φi(x) fi
• Sample points are vertices of the cell

• Basis functions

• Define values at sample points f(xi ) := fi = limx xi
f(x)

∑
−

−

−

−
=

j

p
j

p
i

i )(
xx

xx
xφ
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3.5. Interpolation without Grids

• Shepard interpolation
• Different exponents for inner and outer neighborhood 

(default: 2 in the inner neighborhood and 4 in the outer neighborhood)
• Neighborhood sizes determine how many points are included in inverse 

distance weighting 
• The neighborhood size can be specified in terms of

• Radius   or
• Number of points  or
• Combination of the two 

• Neighborhood is not given explicitly (as opposed to inverse distance 
weighting on grids)
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3.5. Interpolation without Grids

• Radial basis functions (RBF)
• n function values fi given at n points xi

• Interpolant

• Univariate radial basis φ(r)
• Examples:

• Polynomials rv

• Gaussians exp(r -2)

• Polynomial basis {pm } for  (k + 1)-dimensional vector space

( ) ( )xxxx m

k

m
mi

n

i
i pc)(f ∑∑

==

+−=
01

φλ
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3.5. Interpolation without Grids

• Radial basis functions (RBF)
• Under-determined system: 

n equations for n + (k+1) unknowns
• Additional constraints (orthogonality / side conditions):

• Well-defined system of linear equations (vector / matrix notation):

( ) kmp im

n

i
i ...00

1
=∀=∑

=

xλ









=
















0
f

c
λ

0P
PA

T

Function values at sample points

Coefficients for polynomialsPolynomial basis

( )jiji xxA −= φ,

Coefficients for radial function
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3.6. Filtering by Projection or Selection

• Very often: too much information to be visualized at once
• Strategy is to reduce the displayed information by filtering

• Popular approach:
Reduce from ndmv to n’dm’v , with  n’ < n and / or m’ < m   [Wong] 

• Techniques:
• Projection
• Selection
• Slicing

• User input needed
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3.6. Filtering by Projection or Selection

• Projection π
• Functional description for both the 

• Domain       and
• Data values

• Projection into subspaces
• Often a mapping to a subset of the 

original values is chosen
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3.6. Filtering by Projection or Selection

• Selection σ

• Selection of data according to logical conditions (predicates)
• Example:

• Height field 2d1v with data (x,y,h)
• Dσ = { (x,y,h) | (x2+y2 < 5km) ∧ (h > 1km) }
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3.6. Filtering by Projection or Selection

• Slicing

• Example: 2D cutting surface 
(slice) through a 3D volume
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3.7. Fourier Transform

• Fourier analysis
• Function h(t) in coordinate representation (time domain)
• Analogous representation H(ν) with frequencies ν (frequency domain)
• Fourier transform:

• Convolution

• Convolution theorem:   (g∗ h)(t) ⇔ G(ν)·H(ν)

∫
∞

∞−

= νν νπ d)eH(h(t) ti2∫
∞

∞−

= dth(t)e)H( ti2- νπν ⇔

∫
∞

∞−

ττ⋅τ=∗ )d-h(t)g(h)(t)(g

forward transform inverse transform
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3.7. Fourier Transform

• Examples

t

h(t)=k

ν

H(f)=k·δ(ν)

⇔

t

h(t)=k ·δ(t)

ν

H(ν)=k

⇔
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3.7. Fourier Transform

• Examples

t

H(ν)

ν

⇔

sinc

1/∆ν ∆ν

k
( )t∆∆kh(t) νπν sinc⋅=

t

h(t)

ν

⇔

Box

1/∆t∆t

k

( )νπν t∆t∆k)H( sinc=

( )
x

xx )sin(sinc =
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3.7. Fourier Transform

• Examples

t

h(t)

ν

H(ν)

⇔

∆t
1/∆t

Comb

t

h(t)

ν

⇔

Triangle
function

1/∆t

2∆t

k
( )2t∆t∆k)H( νπν sinc⋅=
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3.7. Fourier Transform

• In applications: mostly discrete Fourier transforms
• Based on a discrete signal
• Implementation in the form of the Fast Fourier Transform (FFT)
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3.8. Sampled Signals

• h(t) is assumed to be band limited with frequencies smaller than B
• Nyquist frequency νNyq = 2B

• Discretization with constant step size ∆t = 1/νNyq = 1/(2B)
• Sampled signal:  hj =h(j·∆t)

• Periodicity is assumed if only a finite interval j = 0..n-1 is considered 

• Sampling theorem (Shannon 1949):
If H(f) = 0 for all |ν |> B = νNyq / 2, then h(t) is uniquely given by the 
samples hi:

h(t) = Σj=0..n-1 hj ·sinc(π νNyq(t-j·∆t))
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3.8. Sampled Signals

• Issue 1: Undersampling
• If h(t) has frequencies larger than B = νNyq / 2
• h(t) cannot be reconstructed from sampled values
• Aliasing

B-B

|H(f)|2

ν

Original
signalMirror 

image

FT with
Aliasing
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3.8. Sampled Signals

• Issue 2: Finite window size
• Fourier transform is theoretically defined for signals of infinite duration or 

for periodic signal
• Often h(t) is measured on a finite interval [-T/2,T/2] (without periodicity)
• Yielding a multiplication with a window function: h(t)·1[-T/2,T/2](t)
• Convolution with sinc() function in frequency space

t

w(t)

ν

⇔

Window

1/TT

1 W(ν)



Visualization, Summer Term 2002 19.05.2003

34

Visualization,  Summer Term 03 VIS,  University of Stuttgart67

3.8. Sampled Signals

• Issue 2: Finite window size
• Problem: Differences between the starting and ending values of the 

segment produces a discontinuity which generates high-frequency 
spurious components

• Solution: Data windowing
• Bartlett window is often used

• Other examples: Hamming, Hann windows

t

w(t)

ν

⇔

Bartlett

1/TT

1 W(ν)
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3.9. Reconstruction and Frequency Filtering

• Filter design based on Fourier analysis

• Low pass filter with limit frequency ν0:
• Convolution with sinc() function (in coordinate space)      or
• FFT, then multiplication with box filter Φ(ν), then inverse FFT

t

Φ(ν)

ν

⇔

sinc

1/2 ν0
2 ν0

( )t2(t) 00 πννφ sinc2 ⋅=

ν0
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3.9. Reconstruction and Frequency Filtering

• High pass filter with limit frequency ν0:
• Emphasizes features, e.g., edges

t

Φ(ν)

ν

⇔

sinc

1/2 ν0
2 ν0

( ) ( )t2t(t) 00 πννδφ sinc2 ⋅−=

ν0
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3.9. Reconstruction and Frequency Filtering

• Reconstruction issues
• Measurements m(t) of the original signal s(t) are based on a point-spread 

function p(t-ti), not on the ideal delta function δ(t-ti)
• Convolution in coordinates space, multiplication in frequency space

• Additional noise
• What is the ideal, original signal s(t)?

))S(P()M()d)s(-p(tm(t) ννντττ =⇔= ∫
∞

∞−
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3.9. Reconstruction and Frequency Filtering

Sampling
Sampling in
frequency 
domain

Signal in 
frequency 
space

Sampled 
signal in 
frequency 
domain
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3.9. Reconstruction and Frequency Filtering

Function
Function in
frequency 
domain

Sampled
signal

Signal in
frequency 
domain

Before re-
construction 
with sinc()

Box filter in
frequency 
domain
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3.9. Reconstruction and Frequency Filtering

Reconstruction
Reconstruction
in frequency 
domain

Before re-
construction 
with triangle

Triangle in 
frequency 
domain:
sinc()2

Reconstruction 
with triangle

Reconstruction
in frequency 
domain
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3.9. Reconstruction and Frequency Filtering

Function
Function
in frequency 
domain

Under-
sampled
signal

Signal in 
frequency 
domain

Before re-
construction 
with sinc()

Box filter in 
frequency 
domain
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3.9. Reconstruction and Frequency Filtering

Reconstruction
Reconstruction
in frequency 
domain

Before re-
construction 
with triangle

Triangle in 
frequency 
domain:
sinc()2

Reconstruction 
with triangle

Reconstruction
in frequency 
domain
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3.9. Reconstruction and Frequency Filtering

• Demo (Applet)


