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5. Volume Visualization

• Scalar volume data

• Medical Applications: 
CT, MRI, confocal micros-
copy, ultrasound, etc.
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5. Volume Visualization
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5. Volume Visualization
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5. Volume Visualization

• Some possible characteristics of volume data
• Essential information in the interior
• Can not be described by geometric representation 

(fire, clouds, gaseous phenomena) 
• Distinguish between shape (given by the geometry of the grid) and appearance 

(given by the scalar values)
• Even if the data could be described geometrically, there are, in general, too many 

primitives to be represented
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5. Volume Visualization

• Volume rendering techniques
• Techniques for 2D scalar fields
• Indirect volume rendering techniques (e.g. surface fitting)

• Convert/reduce volume data to an intermediate representation (surface 
representation), which can be rendered with traditional techniques

• Direct volume rendering
• Consider the data as a semi-transparent gel with physical properties and directly get a 

3D representation of it
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5. Volume Visualization

• Slicing: 
Display the volume data, mapped to 
colors, on a slice plane

• Isosurfacing: 
Generate opaque/semi-opaque 
surfaces 

• Transparency effects: 
Volume material attenuates reflected or 
emitted light

Slice

Semi-transparent
material Isosurface
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5. Volume Visualization

• 2D visualization
slice images
(MPR)

• Indirect
3D visualization
isosurfaces
(SSD)

• Direct
3D visualization
volume rendering
(DVR)
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5. Volume Visualization

• Direct volume rendering techniques
• Direct volume rendering allows for the "global" representation integrating physical 

characteristics
• But prohibits interactive display due to its numerical complexity, in general

• Indirect volume rendering techniques
• Often result in complex representations
• Pre-processing the surface representation might help
• Use graphics hardware for interactive display

• Goal 
• Integrate different techniques in order to represent the data as "good" as possible
• But, keep in mind that the most correct method in terms of physical realism must 

not be the most optimal one in terms of understanding the data 
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5. Volume Visualization

• Different grid structures:
• Structured: uniform, rectilinear, curvilinear
• Unstructured
• Scattered data
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5. Volume Visualization

• Pixel (picture element)

• Voxel (volume element)
• Values are constant within a region around a grid point

• Cell
• Values between grid points are resampled by interpolation
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5.1. Classification

• Color table for volume visualization
• Maps raw voxel value into presentable entities: 

color, intensity, opacity, etc.
• Transfer function
• Goals and issues:

• Empowers user to select “structures”
• Extract important features of the data set
• Classification is non trivial
• Histogram can be a useful hint
• Often interactive manipulation of transfer functions needed
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5.1. Classification

• Examples of different
transfer functions
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5.1. Classification

• Most widely used approach for transfer functions:
• Assign to each scalar value a different color value 
• Assignment via transfer function T

T : scalarvalue → colorvalue    
• Common choice for color representation: RGBA
• Alpha value is very important, describes opacity
• Code color values into a color lookup table
• On-the-fly update of color LUT

0
Scalar ∈(0,1)

RiGiBiAi

(0,1) → (0,N-1) 255
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5.1. Classification
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5.1. Classification
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5.1. Classification

• Heuristic approach, based on measurements of many data sets

air fat tissue bone
CT number

histogram

constituent’s distributions

air fat tissue bone

material assignment%

CT
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5.1. Classification

• Hounsfield units (HU) for CT data sets
• Describes x-ray attenuation, i.e., density of material
• 12 bit CT-measurements
• Range of values from -1024 to +3071 HU
• Typical values:

• Air: -1024 
• Fat: -100 to -20 
• Water: 0 
• Soft tissue such as muscle: +20 to +80
• Bone: > +500 

• For visualization 12 bit are reduced to 8 bit by windowing
(loss of dynamic range)
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5.1. Classification

• Pre-shading 
• Assign color values to original function values
• Interpolate between color values

• Post-shading
• Interpolate between scalar values
• Assign color values to interpolated scalar values
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5.1. Classification

voxels

post-
classification

interpolation

interpolation
pre-
classification

classification

transfer functions

classification
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5.1. Classification

• Usually not only interested in a particular isosurface but also in regions of 
“change”

• Feature extraction - High value of opacity in regions of change
• Homogeneous regions less interesting - transparent

• Surface “strength” depends on gradient
• Gradient of the scalar field is taken into account
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5.1. Classification

• Scalar value and gradient of the scalar field in a transfer function to 
emphasize isosurfaces [Levoy 1988]

Opacity a
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5.1. Classification

• Multidimensional transfer functions
[Kindlmann & Durkin 98, Kniss, Kindlmann, Hansen 01]

• Problem: How to identify boundary regions/surfaces
• Approach: 2D/3D transfer functions, depending on

• Scalar value, Magnitude of the gradient
• Second derivative along the gradient direction
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5.1. Classification

• Multidimensional transfer functions
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5.1. Classification

• Multidimensional transfer functions

• Histogram 

scalar value

gradient 
magnitude

second derivative
emphasis

boundary
surface
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5.1. Classification

• Multidimensional transfer functions

• Extraction of two boundaries
• Triangle function in histogram
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5.2. Segmentation

• Different features with same value
• Example CT: different organs have 

similar X-ray absorption
• Classification can not be distinguished

• Label voxels indicating a type
• Segmentation = pre-processing
• Semi-automatic process!!!

Air Fat Tissue Bone
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5.2. Segmentation

Anatomic atlas
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5.3. Volumetric Shading

• Shading:
• Simulate reflection of light
• Simulate effect on color

• We want to make use of the human visual system’s ability to efficiently deal 
with shaded objects

• Interpretation of intensity gradient
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5.3. Volumetric Shading

• Review of the Phong illumination model
• Ambient light + diffuse light + specular light

• Ambient light:   C = kaCaOd
• ka is ambient contribution
• Ca is color of ambient light
• Od is diffuse color of object

• Diffuse light:   C = kdCpOd cos(θ)
• kd is diffuse contribution
• Cp is color of point light
• Od is diffuse color of object
• cos(θ) is angle of incoming light

• Specular light: C = ksCpOscosn(σ)
• ks is specular contribution
• Cp is color of point light
• cos(σ) is angle of reflected light and eye
• n is the specular exponent
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5.3. Volumetric Shading

• cos(θ) = N * L
• cos(σ) = N * H (Blinn-Phong)

L + E
L + EH =

HN
L E

R 20
o
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0 η40
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5.3. Volumetric Shading

Ka = 0.1
Kd = 0.5
Ks = 0.4

Ambient Diffuse Specular

Phong model
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5.3. Volumetric Shading

Ka = 0.1
Kd = 0.5
Ks = 0.4

Ambient Diffuse Specular

Phong model
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5.3. Volumetric Shading

• What is the normal vector in a scalar field?
• Use the gradient!
• Gradient is perpendicular to isosurface

(direction of largest change)

• Numerical computation of the gradient:
• Central difference 
• Intermediate difference (forward/backward difference)
• Sobel Operator
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5.3. Volumetric Shading

• Central difference 
• Computation

Gx = Vx+1,y,z - Vx-1,y,z
Gy = Vx,y+1,z - Vx,y-1,z
Gz = Vx,y,z+1 - Vx,y,z-1

• Convolution kernel: [-1  0  1]
• High-pass filter
• Not isotropic; length is 1 to sqrt(3)
• Needs normalization

= 1

= 0
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5.3. Volumetric Shading

• Intermediate difference (forward / backward)
• Convolution kernel: [-1  1]
• Very cheap
• Detects high frequencies
• Noisy data --> less good
• Also not isotropic

• Sobel operator
• Nearly isotropic
• Very expensive (multiple multiplications and summations)

prev. slice             this z-slice           next slice     
-1  0  1 -3  0  3 -1  0  1  
-3  0  3 -6  0  6 -3  0  3
-1  0  1 -3  0  3 -1  0  1

partial derivative
along the z-axis

other axes by rotation
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5.3. Volumetric Shading

Central differences Intermediate differences
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5.3. Volumetric Shading

Intermediate differences           Central differences          Sobel operator
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5.4. Slicing

• Orthogonal slicing
• Interactively resample the data on slices perpendicular to the x-,y-,z-axis
• Use visualization techniques for 2D scalar fields 

• Color coding
• Isolines
• Height fields

Slice 20                    30                    40            50                    60

CT data set
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5.4. Slicing

• Oblique slicing (MPR multiplanar reformating)
• Resample the data on arbitrarily oriented slices

• Resampling in software or hardware (trilinear interpolation)
• Exploit 3D texture mapping functionality

• Store volume in 3D texture
• Compute sectional polygon (clip plane with volume bounding box)
• Render textured polygon 
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5.5. Indirect Volume Rendering

• Indirect volume rendering
• If f(x,y,z) is differentiable in every point then the level-sets f(x,y,z) = c are

isosurfaces to the isovalue c
• Techniques to determine and to reconstruct isosurfaces from volume data

• Contour tracing
• Cuberille, opaque cubes
• Marching cubes/tetrahedra 
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5.5. Indirect Volume Rendering

• Contour tracing
• Find isosurfaces from 2D contours

• Segmentation: find closed contours in 2D slices and represent them as polylines
• Labeling: identify different structures by means of the isovalue of higher order 

characteristics
• Tracing: connect contours representing the same object from adjacent slices and form 

triangles
• Rendering: display triangles 

• Choose topological or geometrical reconstruction
• Problems:

• Sometimes there are many contours in each slice or there is a high variation between 
slices

→ Tracing (assignment) becomes very difficult
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5.5. Indirect Volume Rendering

Contour tracing

2

1
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5.5. Indirect Volume Rendering

• Generic surface fitting techniques
• Choose an isovalue (arbitrarily or from segmentation)
• Detect all cells the surface is passing through by checking the vertices

• Mark vertices with respect to f(x,y,z)≥/< c (+/-)
• Consider all cells with different signs at vertices

• Place graphical primitives in each marked cell and render the surface
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5.5. Indirect Volume Rendering

• Cuberille (opaque cubes) approach  [Herman 1979]
(A) Binarization of the volume with respect  to the isovalue
(B) Find all boundary front-faces 

if the normal of each face points outward the cell, find all faces where the 
normal points towards the viewpoint (N•V>0)

(C) Render these faces as shaded polygons
• “Voxel” point of view: NO interpolation within cells

+ + + + + +

+ + + – – –

+ + – – – –

+ – – – – –
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5.5. Indirect Volume Rendering

• Cuberille approach yields blocky surfaces
• Improve results by adaptive subdivision

• Subdivide each marked cube into 8 smaller cubes
• Use trilinear interpolation in order to reconstruct data values at new cell corners
• Repeat cuberille approach for 

each new cube until pixel size
exact
solution
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5.6. Marching Cubes

• In order to get a better approximation of the „real“ isosurface the Marching-
Cubes (MC) algorithm was developed [Lorensen, Cline 1987]

• Works on the original data
• Approximates the surface by a triangle mesh
• Surface is found by linear interpolation along cell edges
• Uses gradients as the normals of the isosurface
• Efficient computation by means of lookup tables

• THE standard geometry-based isosurface extraction algorithm
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5.6. Marching Cubes

• The core MC algorithm
• Cell consists of 4(8) pixel (voxel) values:

(i+[01], j+[01], k+[01])

1. Consider a cell
2. Classify each vertex as inside or outside
3. Build an index
4. Get edge list from table[index]
5. Interpolate the edge location
6. Compute gradients
7. Consider ambiguous cases
8. Go to next cell
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5.6. Marching Cubes

• Step 1: Consider a cell defined by eight data values

(i,j,k) (i+1,j,k)

(i,j+1,k)

(i,j,k+1)

(i,j+1,k+1) (i+1,j+1,k+1)

(i+1,j+1,k)

(i+1,j,k+1)
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5.6. Marching Cubes

• Step 2: Classify each voxel according to whether it lies
• outside the surface (value > isosurface value)
• inside the surface (value <= isosurface value

8
Iso=7

8

8

55

1010

10

Iso=9

=inside
=outside
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5.6. Marching Cubes

• Step 3: Use the binary labeling of each voxel to create an index

v1 v2

v6

v3v4

v7v8

v5

inside =1
outside=0

11110100

00110000
Index:

v1 v2 v3 v4 v5 v6 v7 v8
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5.6. Marching Cubes

• Step 4: For a given index, access an array storing a list of edges
• All 256 cases can be derived from 15 base cases due to symmetries
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5.6. Marching Cubes

• Step 4 cont.: Get edge list from table
• Example for

Index = 10110001
triangle 1 = e4,e7,e11
triangle 2 = e1, e7, e4
triangle 3 = e1, e6, e7
triangle 4 = e1, e10, e6

e1
e10

e6

e7
e11

e4
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5.6. Marching Cubes

• Step 5: For each triangle edge, find the vertex location along the edge using 
linear interpolation of the voxel values

=10
=0

T=8T=5

i i+1x

[ ]
[ ] [ ]
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5.6. Marching Cubes

• Step 6: Calculate the normal at each cube vertex
• Gx = Vx+1,y,z - Vx-1,y,z

Gy = Vx,y+1,z - Vx,y-1,z
Gz = Vx,y,z+1 - Vx,y,z-1

• Normalize 
• Use linear interpolation to compute the polygon vertex normal (of the isosurface)
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5.6. Marching Cubes

• Step 7: Consider ambiguous cases
• Ambiguous cases: 3, 6, 7, 10, 12, 13
• Adjacent vertices: different states
• Diagonal vertices: same state
• Resolution: decide for one case

or

or
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5.6. Marching Cubes

• Step 7 cont.: Consider ambiguous cases
• Asymptotic Decider  [Nielson, Hamann 1991]

• Assume bilinear interpolation within a face
• Hence isosurface is a hyperbola
• Compute the point p where the asymptotes meet
• Sign of S(p) decides the connectivity

asymptotes

hyperbolas

p
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5.6. Marching Cubes

• Summary
• 256 Cases
• Reduce to 15 cases by symmetry
• Ambiguity resides in cases 

3, 6, 7, 10, 12, 13
• Causes holes if arbitrary choices are made

• Up to 5 triangles per cube
• Dataset of 5123 voxels can result in 

several million triangles (many Mbytes!!!) 
• Semi-transparent representation --> sorting
• Optimization: 

• Reuse intermediate results
• Prevent vertex replication
• Mesh simplification
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5.6. Marching Cubes

• Examples

1 Isosurface

2 Isosurfaces

3 Isosurfaces
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5.6. Marching Tetrahedra

• Marching Tetrahedra [Shirley et al. 1990]

• Primarily used for unstructured grids
• Split cells into tetrahedra

• Process each tetrahedron similarly to 
the MC-algorithm

• Two different cases:
• A) one – and three + (or vice versa)

• The surface is defined by one triangle
• B) two – and two +
• Sectional surface given by a quadrilateral –

split it into two triangles using the shorter 
diagonal 
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5.6. Marching Tetrahedra

• Properties
• Fewer cases, i.e. 3 instead of 15

• no problems with consistency between adjacent cells
• Number of generated triangles might increase considerably compared to the MC-

algorithm due to splitting into tetrahedra 
• Huge amount of geometric primitives
• But, several improvements exist:

• Hierarchical surface reconstruction
• View-dependent surface reconstruction 
• Mesh decimation
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5.7. Dividing Cubes

• Dividing cubes [Cline, Lorensen 1988]

• Uniform grids
• Basic idea

• Create “surface points" instead of triangles 
• Associate surface normal with each 

surface 
• Surface points (when rendered) are 

pixel size 
• Subdivide cells as necessary 
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5.7. Dividing Cubes

• Algorithm:
• Choose a cube
• Classify, whether an isosurface is passing through it or not
• If (surface is passing through)

• Recursively subdivide cube until pixel size
• Compute normal vectors at each corner
• Render shaded points with averaged normal
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5.7. Dividing Cubes

• Properties
• View dependent load balancing
• Better surface approximation due to interpolation within cells
• Only good for rendering, but since no surface representation is generated it does 

not allow for further computations on the surface
• Eliminates scan conversion step 
• Point cloud rendering randomly ordered points 
• No topology 
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5.8. Optimization of Fitted Surfaces

• All surface fitting techniques produce a huge amount of geometric primitives
• Several improvements exist:

• Hierarchical surface reconstruction
• View-dependent surface reconstruction 
• Mesh decimation
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5.8. Optimization of Fitted Surfaces

• Hierarchical surface reconstruction
• Generate copies of the data set at different resolutions
• Select level-of-detail based on error criterion

• Distance of coarse approximation to "original" surface

Full reconstruction (6M∆) LOD reconstruction (123K∆)
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5.8. Optimization of Fitted Surfaces

• View-dependent surface reconstruction 
• User defined level-of-detail (focus point oracle, like a lens)
• View frustum culling 

• Avoid reconstructing in regions that are outside the viewing pyramid
• Occlusion culling

• Avoid reconstruction in regions that are already occluded by the surface (implies front-
to-back traversal)

• Avoid reconstruction in cells that are below the pixel size
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5.8. Optimization of Fitted Surfaces

• View-dependent surface reconstruction

Visualization,  Summer Term 03                       VIS,  University of Stuttgart68

5.8. Optimization of Fitted Surfaces

• Mesh decimation
• Remove triangles and re-triangulate with less triangles
• Consider deviation between mesh before and after decimation
• Generate hierarchical mesh structure as a post-process and switch to 

appropriate resolution during display
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5.9. Discretized Marching Cubes

• Discretized Marching Cubes (DiscMC)   [Montani et al. 1994]

• Accelerate standard MC
• Mixture in-between:

• Cuberille approach (constant scalar value on each voxel)
• Marching Cubes (trilinear interpolation in cells)

• Approximation of MC: discrete positions for vertices of isosurface
• 13 different vertex positions
• 12 edge-midpoints + 1 centroid
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5.9. Discretized Marching Cubes

• Finite set of planes on which faces can lie

code for
plane
incidence

code for
facet shape
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5.9. Discretized Marching Cubes

• Classification of a facet by
• Plane incidence     and
• Shape

• Sign of incidence determines
orientation of facet

• Classification of isosurface
fragment (facet set)

• Indices to incidences and 
shapes
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5.9. Discretized Marching Cubes

• Lookup table
• Based on MC LUT
• Simple reorganization
• Indices as above

• Vertex positions of facet
determined by vertex configuration
of cell

• No linear interpolation needed
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5.9. Discretized Marching Cubes

• Algorithm:
• Analogously to MC: traversing the grid
• Normal vectors based on gradients (same as MC)
• Postprocessing: merging facets and edges

• Advantages:
• Simple classification of facet sets
• Many coplanar facets due to small number of plane incidences

-> significantly reduces number of triangles after merge
• No interpolation needed, i.e., only integer arithmetic
• Still quite good results
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5.10. Octree-Based Isosurface Extraction

• Acceleration of MC
• Domain search

• Octree-based approach   [Wilhelms, van Gelder 1992]
• Spatial hierarchy on grid (tree)
• Store minimum and maximum scalar

values for all children with each node
• While traversing the octree, skip 

parts of the tree which cannot contain
the specified isovalue
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5.10. Octree-Based Isosurface Extraction

• What data structure for octree?
• Advantages of full octree: 

• Simple array-like structure and organization
• No pointers needed

• Number of nodes in full octree:

-> optimal ratio is 

points data
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5.10. Octree-Based Isosurface Extraction

• Problem with memory consumption of complete octree:
• Ideal: grid size of 2n• 2n• 2n

• Normally different resolutions that are not powers of two
• Example:

• Data set: 320•320•40 
• 4M data points
• Full octree: 

1+23+43+ ... +2563 = 20M elements (nodes)
• 2 values per element: minimum and maximum values
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5.10. Octree-Based Isosurface Extraction

• Solution: Branch on Need Octree (BONO)
• Consider octree as conceptionally full
• Avoid allocating memory for empty 

subspaces
• Delay subdivision until needed
• Allocate only dimensions of powers

of two
• Aspects of a bottom-up approach

• For above example: 
approx. 585k nodes 
(opposed to 20M nodes)

• Ratio almost optimal:
• Ratio never exceeds 0.162

1428.0/ points datanodes ≈nn
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5.11. Range Query for Isosurface Extraction

• Acceleration of MC
• Data structures based on scalar values 

(not on domain decomposition)
• Store minimum and maximum values for each cell in special data structures

interval structure for min/max in span space
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5.11. Range Query for Isosurface Extraction

• Each point in span space represents one cell with respective
min/max values 

• Relevant cells lie in rectangular region in span space

• Problem:
How can all these cells
be efficiently found?
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contain value 7

5.11. Range Query for Isosurface Extraction

• “Optimal isosurface extraction from irregular volume data” 
[Cignoni et al. 1996]

• Interval tree
• h different extreme scalar values 
• Balanced tree: height log h
• Bisecting the discriminant 

scalar value
• Node contains 

• Scalar values
• Sorted intervals AL

(ascending left)
• Sorted (same) intervals DR

(descending right)
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5.11. Range Query for Isosurface Extraction

• “Optimal isosurface extraction from irregular volume data”
• Running time: O(k + log h) due to

• Traversal of interval tree: log h (height of the tree)
• k intervals in the node = number of relevant cells (i.e., output sensitive)
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5.11. Range Query for Isosurface Extraction

• Variations of the above range query based on interval trees:
• Near optimal isosurface extraction (NOISE) [Livnat et al. 1996]
• Isosurfacing in span space with utmost efficiency (ISSUE) [Shen et al. 1996]

• NOISE
• Based on span space
• Kd-tree for span space
• Worst caser running time: 

O(k + sqrt(n)) with
• k = number of relevant cells 

(with isosurface)
• n = total number of grid cells
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5.11. Range Query for Isosurface Extraction

• ISSUE: Isosurfacing in span space with utmost efficiency
• Based on span space
• Lattice subdivision on span space
• Average running time:

• L = dimension of grid in x and y
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5.11. Range Query for Isosurface Extraction

• All range-query algorithms suitable 
for structured and unstructered grids
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5.12. Contour Propagation

• Acceleration of cell traversal
• Algorithm:

• Trace isosurface starting at a seed cell
• Breadth-first traversal along adjacent faces
• Finally, cycles are removed, based on marks at already traversed cells

• Similar to 2D approach
• Same problem: 

• Find ALL disconnected isosurfaces
• Issue of optimal seed set


