6. Direct Volume Rendering

- Directly get a 3D representation of the volume data
- The data is considered to represent a semitransparent light-emitting medium
- Also gaseous phenomena can be simulated
- Approaches are based on the laws of physics (emission, absorption, scattering)
- The volume data is used as a whole (look inside, see all interior structures)

Visualization, Summer Term 03
VIS, University of Stuttgart

6. Direct Volume Rendering

- Backward methods
- Image space, image order algorithms
- Performed pixel by pixel
- Example: Ray-Casting

6. Direct Volume Rendering

- Forward Methods
- Object space, object order algorithm
- Cell projection
- Performed voxel by voxel
- Examples: Slicing, shear-warp, splatting

Visualization, Summer Term 03
VIS, University of Stuttgart

6.1. Ray Casting

- Similar to ray tracing in surface-based computer graphics
- In volume rendering we only deal with primary rays; hence: ray-casting
- Natural image-order technique
- As opposed to surface graphics - how do we calculate the ray/surface intersection?

Visualization, Summer Term 03

6.1. Ray Casting

- Since we have no surfaces - we need to carefully step through the volume
- A ray is cast into the volume, sampling the volume at certain intervals
- Sampling intervals are usually equidistant, but don't have to be (e.g. importance sampling)
- At each sampling location, a sample is interpolated / reconstructed from the voxel grid
- Popular filters are: nearest neighbor (box), trilinear, or more sophisticated (Gaussian, cubic spline)

6.1. Ray Casting

- Volumetric ray integration:
- Tracing of rays
- Accumulation of color and opacity along ray: compositing

6.1. Ray Casting

6.1. Ray Casting

6.1. Ray Casting

volumetric compositing

6.1. Ray Casting

- How is color and opacity at each integration step determined?
- Opacity and (emissive) color in each cell according to classification
- Additional color due to external lighting: according to volumetric shading (e.g. Blinn-Phong)
- No shadowing, no secondary effects

6.1. Ray Casting

- Compositing of semi-transparent voxels
- Physical model: emissive gas with absorption
- Approximation: density-emitter-model (no scattering)
- Over operator [Porter \& Duff 1984]
- $\mathrm{C}^{\text {out }}=\mathrm{C}^{\text {in }}(1-\alpha)+\mathrm{C} \alpha=\mathrm{C}_{\sim}$ over $\mathrm{C}^{\text {in }}$ with premultiplied Color $\mathrm{C}^{\sim}=\mathrm{C} \alpha$

$$
\begin{aligned}
C_{i}^{\text {in }} & =C_{i-1}^{\text {out }} \\
C_{i}^{\text {iout }} & =C_{i}^{\text {in }}\left(1-\alpha_{i}\right)+C_{i} \alpha_{i} \\
& =\left(C_{i-1}{ }^{\text {in }}\left(1-\alpha_{i-1}\right)+C_{i-1} \alpha_{i-1}\right)\left(1-\alpha_{i}\right)+C_{i} \alpha_{i} \\
& =\sum_{i=1, n} C_{i} \alpha_{i} \Pi_{j=i+1, n}\left(1-\alpha_{j}\right)
\end{aligned}
$$

6.1. Ray Casting

- Compositing of semi-transparent voxels (cont.)
- Variation of previous approach for front-to-back strategy (FTB)
- $\mathrm{C}^{\text {out }}=\mathrm{C}^{\text {in }}+\left(1-\alpha^{\text {in }}\right) \alpha \mathrm{C}$
- $\alpha^{\text {out }}=\alpha^{\text {in }}+\left(1-\alpha^{\text {in }}\right) \alpha$
- Needs to maintain α !


```
*
```


6.1. Ray Casting

- Traversal strategies
- Front-to-back (most often used in ray casting)
- Back-to-front (e.g., in texture-based volume rendering)
- Discrete (Bresenham) or continuous (DDA) traversal of cells

6.2. Acceleration Techniques for Ray Casting

- Problem: ray casting is time consuming
- Idea:
- Neglect „irrelevant" information to accelerate the rendering process
- Exploit coherence
- Early-ray termination
- Idea: colors from faraway regions do not contribute if accumulated opacity is to high
- Stop traversal if contribution of sample becomes irrelevant
- User-set opacity level for termination
- Front-to-back compositing

6.2. Acceleration Techniques for Ray Casting

- Space leaping
- Skip empty cells
- Homogeneity-acceleration
- Approximate homogeneous regions with fewer sample points
- Approaches:
- Hierarchical spatial data structure
- Bounding boxes around objects
- Adaptive ray traversal

- Proximity clouds

6.2. Acceleration Techniques for Ray Casting

- Hierarchical spatial data structure
- Octree
- Mean value and variance stored in nodes of octree
- Flat Pyramid: store octree level in "empty" voxels

- Bounding boxes around objects
- Polygon assisted ray casting (PARC)

6.2. Acceleration Techniques for Ray Casting

- Adaptive ray traversal
- Different „velocities" for traversal
- Different distance between samples
- Based on vicinity flag
- Layer of „vicinity voxels" around nontransparent parts of the volume

Visualization, Summer Term 03

6.2. Acceleration Techniques for Ray Casting

- Proximity clouds
- Extension of vicinity voxels
- Store distance to closest „object" in voxels
- Allows large integration steps

6.2. Acceleration Techniques for Ray Casting

- Exploiting temporal coherence in volume animations
- C-buffer (Coordinates buffer)
- Store coordinates of first opaque voxel
- Removing potentially hidden voxels
- Or adding potentially visible voxels
- Criterion: change of position on image plane

(a)

6.2. Acceleration Techniques for Ray Casting

- Template-based volume viewing [Yagel 1991]
- Ray template stores traversal (steps) through volume
- Generate template by 3D DDA for parallel rays (orthographic projection)
- Starting ray templates at pixel positions leads to sampling artefacts
- Start template ray from base plane parallel to volume orientation
- Warp image on base plane to view plane

6.2. Acceleration Techniques for Ray Casting

- Adaptive screen sampling [Levoy 1990]
- Rays are emitted from a subset of pixels (on image plane)
- Missing values are interpolated
- In areas of high value gradient additional rays are traced

6.3. Texture-Based Volume Rendering

- Object-space approach
- Based on graphics hardware:
- Rasterization
- Texturing
- Blending
- Proxy geometry because there are no volumetric primitives in graphics hardware
- Slices through the volume

6.3. Texture-Based Volume Rendering

- Slice-based rendering

Visualization, Summer Term 03
VIS, University of Stuttgart

6.3. Texture-Based Volume Rendering

scene description

rasterization

rendering pipeline

6.3. Texture-Based Volume Rendering

- Proxy geometry
- Stack of texture-mapped slices
- Generate fragments
- Most often back-to-front traversal

Visualization, Summer Term 03
VIS, University of Stuttgart

6.3. Texture-Based Volume Rendering

- 2D textured slices
- Object-aligned slices
- Three stacks of 2D textures
- Bilinear interpolation

Visualization, Summer Term 03
VIS, University of Stuttgart

6.3. Texture-Based Volume Rendering

- 3D textured slices
- View-aligned slices
- Single 3D texture
- Trilinear interpolation

Visualization, Summer Term 03
VIS, University of Stuttgart

6.3. Texture-Based Volume Rendering

2D textures axis-aligned

3D texture
view-aligned

6.3. Texture-Based Volume Rendering

- Stack of 2D textures:
- Works on older graphics hardware which does not support 3D textures
- Only bilinear interpolation within slices, no trilinear interpolation
-> fast
-> problems with image quality
- Euclidean distance between slices along a light ray depends on viewing parameters
-> sampling distance depends on viewing direction
-> apparent brightness changes if opacity is not corrected
- Artifacts when stack is viewed close to 45 degrees

6.3. Texture-Based Volume Rendering

- Change of brightness in 2D texture-based rendering

6.3. Texture-Based Volume Rendering

- Artifacts when stack is viewed close to 45 degrees

6.3. Texture-Based Volume Rendering

- 3D texture:
- Needs support for 3D textures
- Trilinear interpolation within volume
-> slower
-> good image quality
- Constant Euclidean distance between slices along a light ray
- No artifacts due to inappropriate viewing angles

6.3. Texture-Based Volume Rendering

- Render components
- Data setup
- Volume data representation
- Transfer function representation
- Data download
- Volume textures
- Transfer function tables
- Per-volume setup (once per frame)
- Blending mode configuration
- Texture unit configuration (3D)
- (Fragment shader configuration)
- Per-slice setup
- Texture unit configuration (2D)
- Generate fragments
- Proxy geometry rendering

6.3. Texture-Based Volume Rendering

- Representation of volume data by textures
- Stack of 2D textures
- 3D texture
- Typical choices for texture format:
- Intensity
- Scalar data, post-classification only with special
- OpenGL extension GL_TEXTURE_COLOR_TABLE_SGI
- dependent texture lookups (pixel shader)
- Luminance and alpha
- Pre-classified (pre-shaded) gray-scale volume rendering
- Transfer function is already applied to scalar data
- Change of transfer function requires complete redefinition of texture data
- RGBA
- Pre-classified (pre-shaded) colored volume rendering
- Transfer function is already applied to scalar data

6.3. Texture-Based Volume Rendering

- Typical choices for texture format (cont.):
- Paletted texture
- Index into color and opacity table (= palette)
- Index size = byte
- Index is identical to scalar value
- Pre-classified (pre-shaded) colored volume rendering
- Transfer function applied to scalar data during runtime
- Simple and fast change of transfer functions
- OpenGL code for paletted 3D texture
glTexImage3D (GL_TEXURE_3D, 0, GL_COLOR_INDEX8_EXT, size_x, size_y, GL_COLOR_INDEX, GL_UNSIGNED_BYTE, voldata);

6.3. Texture-Based Volume Rendering

- Representation of transfer function:
- For paletted texture only
- 1D transfer function texture = lookup table
- OpenGL code

```
glColorTableEXT (GL_SHARED_TEXTURE_PALETTE_EXT,
    GL_RGBA8, 256*4, GL_RGBA,
    GL_UNSIGNED_BYTE, palette);
```

- OpenGL extensions required

6.3. Texture-Based Volume Rendering

- Compositing:
- Works on fragments
- Per-fragment operations
- After rasterization
- Blending of fragments via over operator
- OpenGL code for over operator glEnable (GL_BLEND); glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
- Generate fragments:
- Render proxy geometry
- Slice
- Simple implementation: quadrilateral
- More sophisticated: triangulated intersection surface between slice plane and boundary of the volume data set

6.3. Texture-Based Volume Rendering

- Advantages of texture-based rendering:
- Supported by consumer graphics hardware
- Fast for moderately sized data sets
- Interactive explorations
- Surface-based and volumetric representations can easily be combined -> mixture with opaque geometries
- Disadvantages:
- Limited by texture memory
-> Solution: bricking at the cost of additional texture downloads to the graphics board
- Brute force: complete volume is represented by slices
- No acceleration techniques like early-ray termination or space leaping
- Rasterization speed and memory access can be problematic

6.3. Texture-Based Volume Rendering

- Outlook on more advanced texture-based volume rendering techniques:
- Exploit quite flexible per-fragment operations on modern GPUs (nVidia GeForce 3/4 or ATI Radeon 8500)
- Post-classification (post-shading) possible
- So-called pre-integration for very high-quality rendering
- Decompression of compressed volumetric data sets on GPU to save texture memory

6.4. Shear-Warp Factorization

- Object-space method
- Slice-based technique
- Fast object-order rendering
- Accelerated volume visualization via shear-warp factorization [Lacroute \& Levoy 1994]
- Software-based implementation

6.4. Shear-Warp Factorization

- General goal: make viewing rays parallel to each other and perpendicular to the image
- This is achieved by a simple shear

- Parallel projection (orthographic camera) is assumed
- Extension for perspective projection possible

6.4. Shear-Warp Factorization

- Algorithm:
- Shear along the volume slices
- Projection and compositing to get intermediate image
- Warping transformation of intermediate image to get correct result

6.4. Shear-Warp Factorization

- For one scan line

6.4. Shear-Warp Factorization

- Mathematical description of the shear-warp factorization
- Splitting the viewing transformation into separate parts

$$
\mathbf{M}_{\text {view }}=\mathbf{P} \cdot \mathbf{S} \cdot \mathbf{M}_{\text {warp }}
$$

- $\mathbf{M}_{\text {view }} \quad=$ general viewing matrix
- $\mathbf{P} \quad=$ permutation matrix: transposes the coordinate system in order to make the z-axis the principal viewing axis
- S = transforms volume into sheared object space
- $\mathbf{M}_{\text {warp }}=$ warps sheared object coordinates into image coordinates
- Needs 3 stacks of the volume along 3 principal axes

6.4. Shear-Warp Factorization

- Shear for parallel and perspective projections
$S_{\text {par }}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ s_{x} & s_{y} & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
shear perpendicular to z-axis

6.4. Shear-Warp Factorization

- Algorithm (detailed):
- Transform volume to sheared object space by translation and resampling
- Project volume into 2D intermediate image in sheared object space - Composite resampled slices front-to-back
- Transform intermediate image to image space using 2D warping
- In a nutshell:
- Shear (3D)
- Project (3D \rightarrow 2D)
- Warp (2D)

6.4. Shear-Warp Factorization

- Three properties
- Scan lines of pixels in the intermediate image are parallel to scan lines of voxels in the volume data
- All voxels in a given voxel slice are scaled by the same factor
- Parallel projections only: Every voxel slice has the same scale factor
- Scale factor for parallel projections
- This factor can be chosen arbitrarily
- Choose a unity scale factor so that for a given voxel scan line there is a one-to-one mapping between voxels and intermediate image pixels

6.4. Shear-Warp Factorization

- Highly optimized algorithm for
- Parallel projection
and
- Fixed opacity transfer function
- Optimization of volume data (voxel scan lines)
- Run-length encoding of voxel scan lines
- Skip runs of transparent voxels
- Transparency and opaqueness determined by user-defined opacity threshold
- Optimization in intermediate image:
- Skip opaque pixels in intermediate image (analogously to early-ray termination)
- Store (in each pixel) offset to next non-opaque pixel

opaque pixel
non-opaque pixel

6.4. Shear-Warp Factorization

- Combining both ideas:
- First property (parallel scan lines for pixels and voxels): Voxel scan lines in sheared volume are aligned with pixel scan lines in intermediate
- Both can be traversed in scan line order simultaneously

6.4. Shear-Warp Factorization

- Coherence in voxel space:
- Each slice of the volume is only translated
- Fixed weights for bilinear interpolation within voxel slices
- Computation of weights only once per frame
- Final warping:
- Works on composited intermediate image
- Warp: affine image warper with bilinear filter
- Often done in hardware:
render a quadrilateral with intermediate 2D image being attached as 2D texture

6.4. Shear-Warp Factorization

- Parallel projection:
- Efficient reconstruction
- Lookup table for shading
- Lookup table for opacity correction (thickness)
- Three RLE of the actual volume (in x, y, z)
- Perspective projection:
- Similar to parallel projection
- Difference: voxels need to be scaled
- Hence more than two voxel scan lines needed for one image scan line

6.5. Splatting

- Splatting [Westover 1990]
- Object-order method
- Original method: fast, poor quality
- Many improvements since then

6.5. Splatting

- Project each sample (voxel) from the volume into the image plane

6.5. Splatting

6.5. Splatting

- Ideally we would reconstruct the continuous volume (cloud) using the interpolation kernel w (spherically symmetric):

$$
f_{r}(v)=\sum_{k} w\left(v-v_{k}\right) f\left(v_{k}\right)
$$

- Analytic integral along a ray r for intensity (emission):

$$
I(p)=\int f_{r}(p+r) d r=\int \sum_{k} w\left(p+r-v_{k}\right) f\left(v_{k}\right) d r
$$

- Rewrite:

6.5. Splatting

- Discretization via 2D splats

$$
\text { Splat }(x, y)=\int w(x, y, z) d z
$$

from the original 3D kernel

- The 3D rotationally symmetric filter kernel is integrated to produce a 2D filter kernel

3D filter kernel

Integrate along one dimension 2 D filter kernel

6.5. Splatting

- Draw each voxel as a cloud of points (footprint) that spreads the voxel contribution across multiple pixels
- Footprint: splatted (integrated) kernel
- Approximate the 3D kernel $h(x, y, z)$ extent by a sphere

6.5. Splatting

- Larger footprint increases blurring and used for high pixel-to-voxel ratio
- Footprint geometry
- Orthographic projection: footprint is independent of the view point
- Perspective projection: footprint is elliptical
- Pre-integration of footprint
- For perspective projection: additional computation of the orientation of the ellipse

6.5. Splatting

- The choice of kernel can affect the quality of the image
- Examples are cone, Gaussian, sinc, and bilinear function
- Effects of kernel function

1D integration of 3D Gaussian is a 2D Gaussian

6.5. Splatting

- Volume $=$ field of 3D interpolation kernels
- One kernel at each grid voxel
- Each kernel leaves a 2D footprint on screen
- Weighted footprints accumulate into image
voxel kernels

6.5. Splatting

- Volume $=$ field of 3D interpolation kernels
- One kernel at each grid voxel
- Each kernel leaves a 2D footprint on screen
- Weighted footprints accumulate into image
voxel kernels

6.5. Splatting

- Volume $=$ field of 3D interpolation kernels
- One kernel at each grid voxel
- Each kernel leaves a 2D footprint on screen
- Weighted footprints accumulate into image
voxel kernels

6.5. Splatting

- Voxel kernels are added within sheets
- Sheets are composited front-to-back
- Sheets = volume slices most perpendicular to the image plane (analogously to stack of slices)
volume slices

image plane at 30°
volume slices

6.5. Splatting

- Core algorithm for splatting
- Volume
- Represented by voxels
- Slicing
- Image plane:
- Sheet buffer
- Compositing buffer
volume slices

6.5. Splatting

- Add voxel kernels within first sheet
volume slices

image plane

6.5. Splatting

- Transfer to compositing buffer
volume slices

6.5. Splatting

- Add voxel kernels within second sheet
volume slices

image plane

6.5. Splatting

- Composite sheet with compositing buffer
volume slices

image plane

6.5. Splatting

- Add voxel kernels within third sheet
volume slices

image plane

6.5. Splatting

- Composite sheet with compositing buffer
volume slices

6.5. Splatting

- Inaccurate compositing
- Problems when splats overlap
- Incorrect mixture of
- Integration (3D kernel to 2D splat) and
- Compositing
problematic

6.5. Splatting

- Advantages:
- Footprints can be pre-integrated
- Quite fast: voxel interpolation is in 2D on screen
- Simple static parallel decomposition
- Acceleration approach: only relevant voxels must be projected
- Disadvantages:
- Blurry images for zoomed views
- High fill-rate for zoomed splats
- Reconstruction and integration to be performed on a per-splat basis
- Dilemma when splats overlap

6.5. Splatting

- Simple extension to volume data without grids
- Scattered data with kernels
- Example: SPH (smooth particle hydrodynamics)
- Needs sorting of sample points

6.6. Equation of Transfer for Light

- Goal: physical model for volume rendering
- Emission-absorption model
- Density-emitter model [Sabella 1988]
- More general approach:
- Linear transport theory
- Equation of transfer for radiation
- Basis for all rendering methods
- Important aspects:
- Absorption
- Emission
- Scattering
- Participating medium

6.6. Equation of Transfer for Light

- The Grand Scheme

6.6. Equation of Transfer for Light

- Assumptions:
- Based on a physical model for radiation
- Geometrical optics
- Neglect:
- Diffraction
- Interference
- Wave-character
- Polarization
- Interaction of light with matter at the macroscopic scale
- Describes the changes of specific intensity due to absorption, emission, and scattering
- Based on energy conservation
- Expressed by equation of transfer

6.6. Equation of Transfer for Light

- Basic quantity of light: radiance /
- Sometimes called specific intensity

6.6. Equation of Transfer for Light

- Contributions to radiation at a single position:
- Absorption
- Emission
- Scattering

6.6. Equation of Transfer for Light

- Absorption
- Total absorption coefficient or total extinction coefficient $\chi(\mathbf{x}, \mathbf{n}, v)$
- Loss of radiative energy through a cylindrical volume element:

$$
\delta E^{(\mathrm{ab})}=\chi(\mathbf{x}, \mathbf{n}, v) /(\mathbf{x}, \mathbf{n}, v) d s d A d \Omega d v d t
$$

- $1 / \chi$ is called mean free path

6.6. Equation of Transfer for Light

- Total absorption coefficient consists of:
- True absorption coefficient $\kappa(\mathbf{x}, \mathbf{n}, v)$
- Scattering coefficient $\sigma(\mathbf{x}, \mathbf{n}, v)$

$$
\chi=\kappa+\sigma
$$

removal of radiative energy

by true absorption (conversion to thermal energy)
scattering out of solid angle $d \Omega$

6.6. Equation of Transfer for Light

- Emission
- Emission coefficient $\eta(\mathbf{x}, \mathbf{n}, v)$
- Emission of radiative energy within a cylindrical volume element:

$$
\delta E^{(\mathrm{em})}=\eta(\mathbf{x}, \mathbf{n}, v) d s d A d \Omega d v d t
$$

- Consists of two parts:
- Thermal part or source term $q(\mathbf{x}, \mathbf{n}, v)$
- Scattering part $j(\mathbf{x}, \mathbf{n}, v)$
$\eta=q+j$

6.6. Equation of Transfer for Light

- Scattering
- Described by phase function $p\left(\mathbf{x}, \mathbf{n}, \mathbf{n}^{‘}, v, v^{\text {f }}\right)$

$$
\delta E^{(\text {scat) }}=\sigma d s d A d \Omega d v d t \cdot \frac{1}{4 \pi} p\left(\mathbf{x}, \mathbf{n}, \mathbf{n}^{\prime}, v, v^{\prime}\right) d \Omega^{\prime} d v^{\prime}
$$

- Elastic scattering:
- No change of frequency
- $p\left(\mathbf{x}, \mathbf{n}, \mathbf{n}^{`}\right)$

6.6. Equation of Transfer for Light

surface scattering

interface between materials
volume scattering

participating medium

6.6. Equation of Transfer for Light

- Conservation of energy: difference of radiative energy along light ray must be equal to difference between effects of emission and absorption

$$
\begin{aligned}
&\{I(\mathbf{x}, \mathbf{n}, v)-I(\mathbf{x}+d \mathbf{x}, \mathbf{n}, v)\} d A d \Omega d v d t \\
&=\{-\chi(\mathbf{x}, \mathbf{n}, v) I(\mathbf{x}, \mathbf{n}, v)+\eta(\mathbf{x}, \mathbf{n}, v)\} d s d A d \Omega d v d t \\
& \Rightarrow \\
& \mathbf{n} \bullet \nabla I=-\chi I+\eta
\end{aligned}
$$

6.6. Equation of Transfer for Light

- Note: scattering part contains /
- Writing out the equation of transfer:

$$
\begin{aligned}
\mathbf{n} \bullet \nabla I= & -(\kappa+\sigma) I+q \\
& +\frac{1}{4 \pi} \iint \sigma\left(\mathbf{x}, \mathbf{n}^{\prime}, v^{\prime}\right) p\left(\mathbf{x}, \mathbf{n}^{\prime}, \mathbf{n}, v^{\prime}, v\right) I\left(\mathbf{x}, \mathbf{n}^{\prime}, v^{\prime}\right) d \Omega^{\prime} d v^{\prime}
\end{aligned}
$$

- Without frequency-dependency and without inelastic scattering:

$$
\begin{aligned}
\mathbf{n} \bullet \nabla I= & -(\kappa+\sigma) I+q \\
& +\frac{1}{4 \pi} \int \sigma\left(\mathbf{x}, \mathbf{n}^{\prime}\right) p\left(\mathbf{x}, \mathbf{n}^{\prime}, \mathbf{n}\right) I\left(\mathbf{x}, \mathbf{n}^{\prime}\right) d \Omega^{\prime}
\end{aligned}
$$

integro-differential equation: time-independent equation of transfer

6.6. Equation of Transfer for Light

- Boundary conditions for equation of transfer
- Required for complete description of the problem
- Explicit boundary condition (emission of light at boundary)
- Implicit boundary condition (reflection)
- Combination of explicit and implicit boundary conditions on boundary surface:
 kernel
incoming radiation

6.6. Equation of Transfer for Light

- Rewriting the equation of transfer

$$
\mathbf{n} \bullet \nabla I(\mathbf{x}, \mathbf{n}, v)=-\chi(\mathbf{x}, \mathbf{n}, v) I(\mathbf{x}, \mathbf{n}, v)+\eta(\mathbf{x}, \mathbf{n}, v)
$$

yields

$$
\frac{\partial}{\partial s} l(\mathbf{x}, \mathbf{n}, v)=-\chi(\mathbf{x}, \mathbf{n}, v) l(\mathbf{x}, \mathbf{n}, v)+\eta(\mathbf{x}, \mathbf{n}, v)
$$

for derivative along a line $\mathbf{x}=\mathbf{p}+\mathbf{s n}$

- Arbitrary reference point \mathbf{p}

6.6. Equation of Transfer for Light

- Optical depth between 2 points $\mathbf{x}_{1}=\mathbf{p}+s_{1} \mathbf{n}$ and $\mathbf{x}_{2}=\mathbf{p}+s_{2} \mathbf{n}$ is

$$
\tau_{v}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\int_{s_{1}}^{s_{2}} \chi\left(\mathbf{p}+s^{\prime} \mathbf{n}, \mathbf{n}, v\right) d s^{\prime}
$$

- Optical depth serves as integrating factor for equation of transfer:

$$
\begin{gathered}
\frac{\partial}{\partial s}\left(I(\mathbf{x}, \mathbf{n}, v) \cdot e^{\tau_{v}\left(\mathbf{x}_{0}, \mathbf{x}\right)}\right)=\eta(\mathbf{x}, \mathbf{n}, v) \cdot \mathbf{e}^{\tau_{v}\left(\mathbf{x}_{0}, \mathbf{x}\right)} \\
\Rightarrow \quad I(\mathbf{x}, \mathbf{n}, v) \cdot e^{\tau_{v}\left(\mathbf{x}_{0}, \mathbf{x}\right)}-I\left(\mathbf{x}_{0}, \mathbf{n}, v\right)=\int_{s_{0}}^{s} \eta\left(\mathbf{x}^{\prime}, \mathbf{n}, v\right) \cdot e^{\tau_{v}\left(\mathbf{x}_{0}, \mathbf{x}^{\prime}\right)} d s^{\prime}
\end{gathered}
$$

with \mathbf{x}_{0} on the boundary surface

6.6. Equation of Transfer for Light

- Integral form of the equation of transfer

$$
I(\mathbf{x}, \mathbf{n}, v)=I\left(\mathbf{x}_{0}, \mathbf{n}, v\right) \cdot e^{-\tau_{v}\left(\mathbf{x}_{0}, \mathbf{x}\right)}+\int_{s_{0}}^{s} \eta\left(\mathbf{x}^{\prime}, \mathbf{n}, v\right) \cdot e^{-\tau_{v}\left(\mathbf{x}^{\prime}, \mathbf{x}\right)} d s^{\prime}
$$

- Integral equation because η contains I
- Interpretation: Radiation consists of
- Sum of photons emitted from all points along the line segment,
- Attenuated by the integrated absorptivity of the intervening medium, and
- Additional, attenuated contribution from radiation entering the boundary surface

6.6. Equation of Transfer for Light

- Special case: vacuum condition
- No emission, absorption, or scattering
- Except on surfaces
- Frequency-dependency is usually neglected (no inelastic effects)
- Equation of transfer (inside the volume) is greatly simplified:

$$
I(\mathbf{x}, \mathbf{n})=I\left(\mathbf{x}_{0}, \mathbf{n}\right)
$$

- Rays incident on surface at \mathbf{x} are traced back to some other surface element at \mathbf{x} ':

$$
l^{\text {(in })}\left(\mathbf{x}, \mathbf{n}^{\prime}\right)=I\left(\mathbf{x}^{\prime}, \mathbf{n}^{\prime}\right)
$$

6.6. Equation of Transfer for Light

- Special case: vacuum condition (cont.)
- Generic boundary condition

$$
I(\mathbf{x}, \mathbf{n}, v)=E(\mathbf{x}, \mathbf{n}, v)+\iint k\left(\mathbf{x}, \mathbf{n}^{\prime}, \mathbf{n}, v^{\prime}, v\right) I^{(\mathbf{n})}\left(\mathbf{x}, \mathbf{n}^{\prime}, v^{\prime}\right) d \Omega^{\prime} d v^{\prime}
$$

becomes

$$
I(\mathbf{x}, \mathbf{n})=E(\mathbf{x}, \mathbf{n})+\int k\left(\mathbf{x}, \mathbf{n}^{\prime}, \mathbf{n}\right) I\left(\mathbf{x}^{\prime}, \mathbf{n}^{\prime}\right) d \Omega^{\prime} \quad, \quad \mathbf{x} \in S
$$

- Rendering equation [Kajiya 1986]
- Standard form via BRDF (bidirectional reflection distribution function)

$$
k\left(\mathbf{x}, \mathbf{n}^{\prime}, \mathbf{n}\right)=f_{r}\left(\mathbf{x}, \mathbf{n}^{\prime}, \mathbf{n}\right) \cos \theta_{i}
$$

6.6. Equation of Transfer for Light

- Special case for most volume rendering approaches:
- Emission-absorption model
- Density-emitter model [Sabella 1988]
- Volume filled with light-emitting particles
- Particles described by density function
- Simplifications:
- No scattering
- Emission coefficient consists of source term only: $\eta=q$
- Absorption coefficient consists of true absorption only: $\chi=\kappa$
- No mixing between frequencies (no inelastic effects)

6.6. Equation of Transfer for Light

- Volume rendering equation

$$
I(s)=I\left(s_{0}\right) \cdot e^{-\tau\left(s_{0}, s\right)}+\int_{s_{0}}^{s} q\left(s^{\prime}\right) e^{-\tau\left(s^{\prime}, s\right)} d s^{\prime}
$$

with optical depth

$$
\tau\left(s_{1}, s_{2}\right)=\int_{s_{1}}^{s_{2}} \kappa\left(s^{\prime}\right) d s^{\prime}
$$

6.6. Equation of Transfer for Light

- Discretization of volume rendering equation
- Discrete steps s_{k}
- Often equidistant

$$
I\left(s_{k}\right)=I\left(s_{k-1}\right) e^{-\tau\left(s_{k-1}, s_{k}\right)}+\int_{s_{k-1}}^{s_{k}} q(s) e^{-\tau\left(s, s_{k}\right)} d s
$$

6.6. Equation of Transfer for Light

- Discretization of volume rendering equation (cont.)
- Define:
- Transparency part $\quad \theta_{k}=e^{-\tau\left(s_{k-1}, s_{k}\right)}$
- Emission part

$$
b_{k}=\int_{s_{k-1}}^{s_{k}} q(s) e^{-\tau\left(s, s_{k}\right)} d s
$$

- Discretized volume integral:

$$
\begin{aligned}
I\left(s_{n}\right) & =I\left(s_{n-1}\right) \theta_{n}+b_{n}=\sum_{k=0}^{n}\left(b_{k} \prod_{j=k+1}^{n} \theta_{j}\right) \\
& =I\left(s_{n-1}\right) \cdot\left(1-\alpha_{n}\right)+b_{n}
\end{aligned}
$$

6.7. Compositing Schemes

- Variations of composition schemes
- First
- Average
- Maximum intensity projection
- Accumulate

6.7. Compositing Schemes

6.7. Compositing Schemes

- Compositing: First
- Extracts isosurfaces

6.7. Compositing Schemes

- Compositing: Average
- Produces basically an X-ray picture

6.7. Compositing Schemes

- Maximum Intensity Projection (MIP)
- Often used for magnetic resonance angiograms
- Good to extract vessel structures

6.7. Compositing Schemes

- Compositing: Accumulate
- Emission-absorption model
- Make transparent layers visible (see volume classification)

6.8. What Else?

- Non-uniform grids:
- Resampling approaches, adaptive mesh refinement (AMR)
- Cell projection for unstructured (tetrahedral) grids
- Shirley-Tuchman [1990]

