
Taming Liquids for Rapidly Changing Targets

by Lin Shi and Yizhou Yu

presented by Urban Weber

- Introduction
- Feedback control forces
- Adaptive geometric potential
- Results
- Summary and Analysis
- Conclusion

Introduction

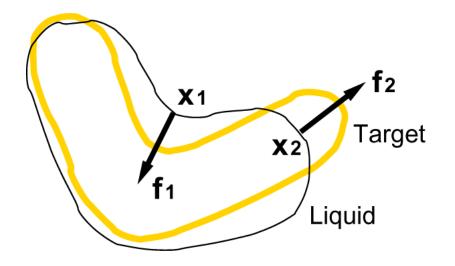
- Let the liquid follow a target shape, but preserve it's natural motion
- Challenging problem in fluid control
- Criteria:
 - Control capability
 - Ease to use
 - Fluid-like motion
 - Stability

Introduction Workflow

- Animator prepares a continuous sequence of frames ("target shape")
- Three (!) tunable parameters
- Please wait... a few hours

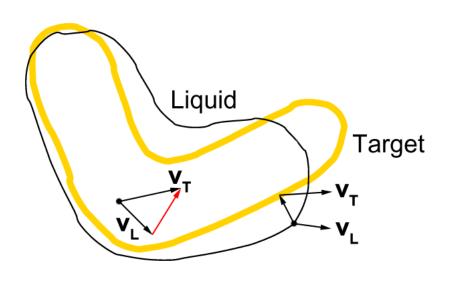
Introduction Basic concept

- Apply two external force fields:
 - A feedback force field to compensate discrepancies in both shape and velocity
 - A gradient field of a potential function defined by the target's shape and skeleton
- Solve the Navier-Stokes equations


$$\nabla \cdot u = 0$$

$$\frac{\partial u}{\partial t} = -(u \cdot \nabla)u - \frac{1}{\rho} \nabla p + v \nabla^2 u + f$$
5
(6) sides at

Feedback control forces


- Apply feedback forces for shape and velocity differences
- Complete feedback force:

$$f_{feedback} = f_{shape} + f_{velocity}$$

Feedback control forces Velocity feedback

- Force field throughout the liquid volume $f_{velocity}(x) = \beta(v_T(x) v_L(x))$
- Points outside the target shape are projected onto the target

Feedback control forces Shape feedback

- Three steps to obtain the force field:
 - 1. Initialize forces on the boundary
 - 2. Make sure the flux on the boundary is 0 (to keep the liquid volume-preserving)
 - Solve a divergence-free force field throughout the liquid (mind the projection step!)

Shape feedback **1. Force initialization**

- Look at a point x on the liquid boundary:
 - x outside the target shape: $\tilde{f}(x) = -\alpha d_T \frac{\nabla d_T}{\|\nabla d_T\|}$ - otherwise $\tilde{f}(x) = \alpha d_L \frac{\nabla d_L}{\|\nabla d_L\|}$

 $d_{T}(x,t)$, $d_{L}(x,t)$: signed distance functions

Shape feedback 2. Force optimization

Total flux must be zero:

$$\boldsymbol{\Phi}_{f} = \sum_{i=1}^{m} f_{i} \cdot \boldsymbol{n}_{i} = 0 \quad (1)$$

- Adjust initial forces by minimizing $\sum_{i=1}^{m} ||f_i \tilde{f}_i||^2$ while maintaining (1)
- Solve minimization problem by introducing Lagrange multipliers

• Suppose
$$\Phi_{\tilde{f}} = \sum_{i=1}^{m} \tilde{f}_i \cdot n_i$$
 then $f_i = \tilde{f}_i - \frac{\Phi_{\tilde{f}}}{m} n_i$

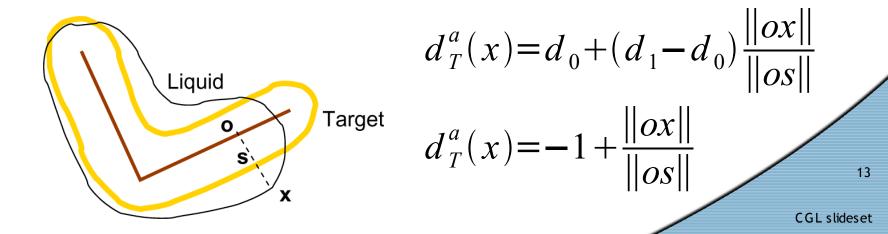
Shape feedback **3. Solve force field**

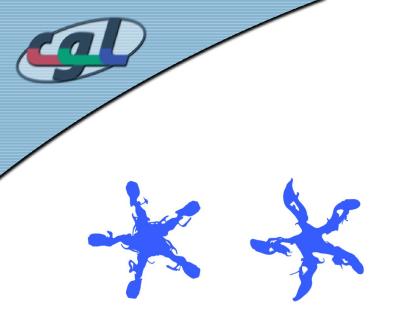
- Formulate the force field as: $f_{shape} = \nabla H$
- Ensure zero divergence: $\nabla \cdot f_{shape} = \nabla \cdot \nabla H = 0$
- Thus, we get the following Laplace equation with a boundary condition

$$\nabla^2 H = 0$$
, $\nabla H|_{\partial \Omega} = f|_{\partial \Omega}$

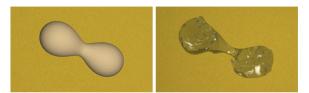
which can be efficiently solved by a conjugate gradient method

Adaptive geometric potential

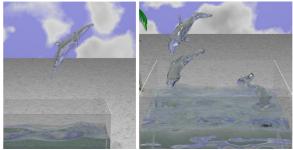

- Why another force field?
- Idea: use the (negative) gradient of a potential field as another control force
- Define the potential as an increasing function of the signed distance:


 $\Phi(x) = C sgn(d_T(x)) |d_T(x)|^{\gamma}$

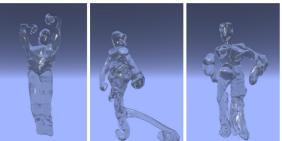
 However, thick regions can tolerate more deviation in shape than thin regions


Adaptive geometric potential (2)

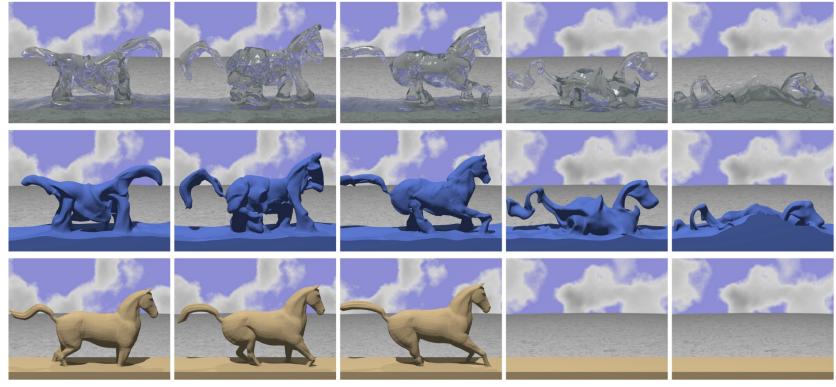
- Therefore, an adaptive signed distance function with respect to the target object's shape AND skeleton is used
- d_0 and d_1 are the skeleton's and the surface's distance values



Rotating star shape (1000², 2.5 min/frame)



Dumbbell (300³, 3.2 min/frame)



Liquid dolphin(s) (4.8, 4.2 min/frame)

Dancing sequence (300³, 7 min/frame)

Results (2)

Water horse (275x250x75, 4.4 min/frame)

Summary and Analysis

- The input is a continuous animation of a target shape, created from
 - Keyframes
 - Physics-based simulation
 - Motion capture
 - etc.
- The output is a liquid simulation that approximately follows the target

Summary and Analysis Three types of force fields

- The shape feedback control forces
 - Make the liquid follow the target shape
 - Too strong, resulting in unnatural motion
- The (gradient of the) geometric potential
 - Resembles gravity, appears natural
 - Problems when it's changing quickly from frame to frame (oscillations)
- The velocity feedback forces
 - Heavily reduces oscillations

Summary and Analysis **Performance etc.**

- Computational time is almost the same as a regular liquid simulation
- Computing the force fields costs less than 10% of total simulation time
- Grid resolution up to 300³
- The force fields are relatively insensitive to the grid resolution

Conclusion

- Not only did they achieve their goals, but also managed to do it in a reasonable time.
- No need for drastically changing the parameters for different target shapes.

19
CGL slideset