Seminar in Visual Computing Advanced Topics in Computer Graphics

Fall Semester 2007

Prof. Dr. Markus Gross

Prof. Dr. Mark Pauly

Swiss Federal Institute of Technology Zurich

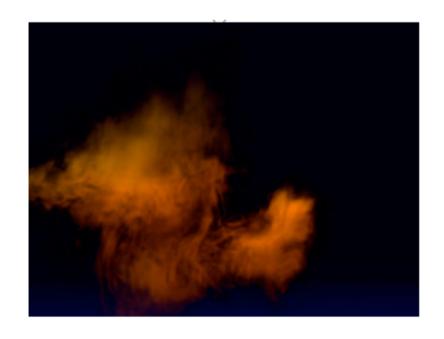
Goals of the Seminar

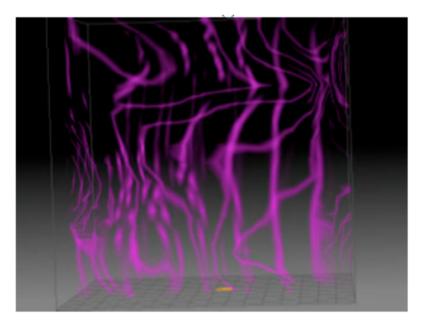
- Get you acquainted with research in computer graphics
- Improve your ability to critically read and analyze scientific papers
- Strengthen your presentation skills
- Stimulate active learning through group discussions, improve argumentation skills

What you have to do

- Present one paper in class
 - read the paper and necessary background material
 - prepare slides and give the presentation
 - lead the discussion in class
- Read the other papers before class
- Participate in the discussion
- Grading:
 - 75% presentation
 - 25% group discussion

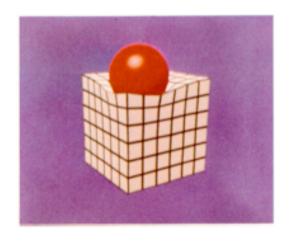
Topics


- Physics-based Modeling and Animation
- Character Animation
- Shape Deformation
- Rendering



Stam Stable Fluids

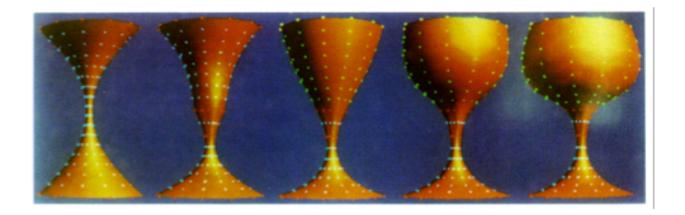
SIGGRAPH 2001



Terzopoulous, Platt, Barr, Fleischer

Elastically Deformable Models

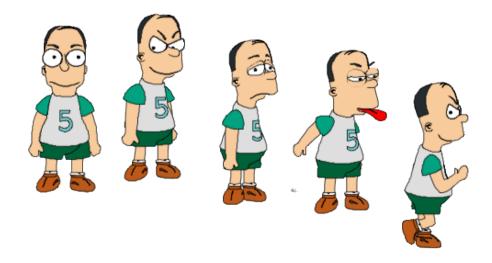
SIGGRAPH 1987



Celniker, Gossard

SIGGRAPH 1991

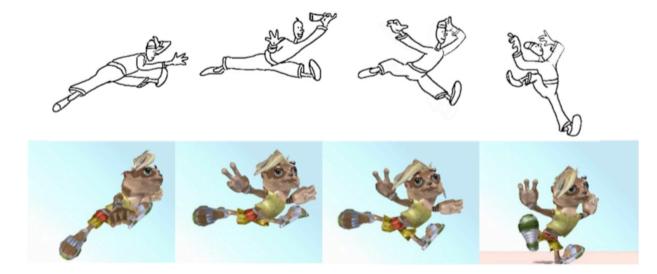
Deformable curve and surface finiteelements for free-form shape design



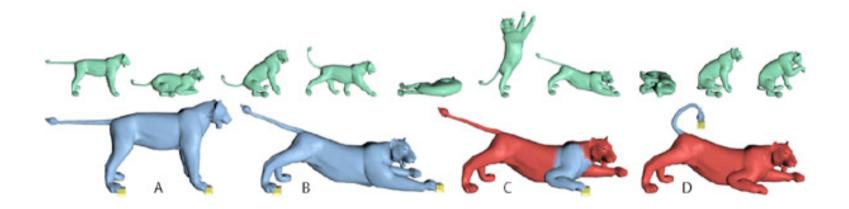
Ngo, Cutrell, Dana, Donald, Loeb, Zhu

Accessible Animation and Customizable Graphics via Simplicial Configuration Modeling

SIGGRAPH 2000



Bregler, Loeb, Chuang, Deshpande


Turning to the master: motion capturing cartoons

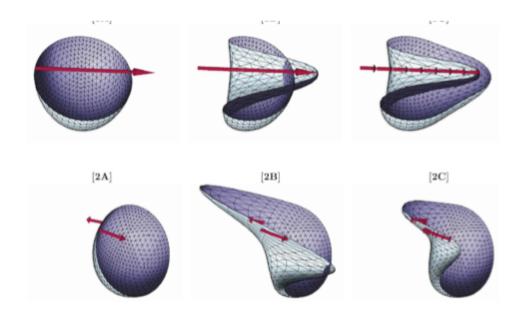
SIGGRAPH 2002

Sumner, Zwicker, Gotsman, Popovic Mesh-Based Inverse Kinematics SIGGRAPH 2005

Barr

Global and local deformations of solid primitives

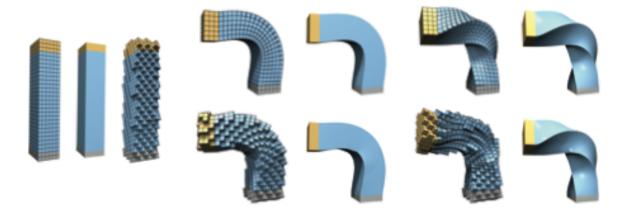
SIGGRAPH 1984



Gain, Dodgson

Preventing Self-Intersection under Free-Form Deformation

IEEE TVCG 2001



Botsch, Pauly, Wicke, Gross

Adaptive Space Deformations Based on Rigid Cells

Eurographics 2007

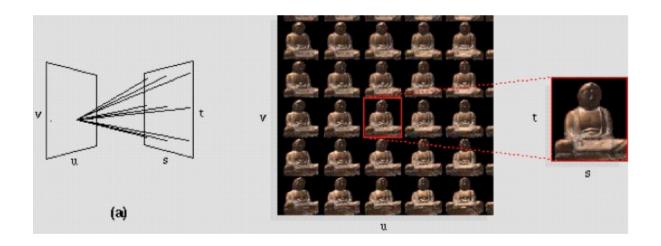
4. December

Weyrich, Flaig, Heinzle, Mall, Aila, Rohrer, Fasnacht, Felber, Oetiker, Kaeslin, Botsch, Gross

A hardware architecture for surface splatting SIGGRAPH 2007

11. December

Kajiya
The Rendering Equation
SIGGRAPH 1986



18. December

Levoy, Hanrahan

Light Field Rendering

SIGGRAPH 1996

Some Remarks

- Goal of your presentation:
 - Impart knowledge to the audience (not show off that you understood the paper)

Preparation

- Read the paper and background material
- Make sure you understand the subject
 - talk to assistant or contact authors if questions remain
- Think about potential visual aids, e.g., demos, videos, etc.
- Consider other material, e.g., handouts

Structure your talk

- Introduction
 - general context, motivation, problem statement
- Contents of the paper
 - core points of the paper, key contributions, relevant results, relation to other work
- Discussion
 - evaluate the paper from your own perspective
 - discuss pros and cons, talk about your own ideas for future work

Get your message across

- Stress the important points
 - "Tell'em what you are going to tell'em. Tell'em. Then tell'em what you told'em."
- Consider your audience
 - what prior knowledge can you expect?
 - how can you make sure people will be able to follow your presentation?

The Talk

- Practice your talk!
 - get feedback from others or use video camera
 - check the timing
- Talk to the audience not to the screen
- Talk clearly, not too slow or too hasty
- Give the audience time to understand what you tell them

Things to avoid

- Exceed the time limit
- Never practice the talk
- Lose yourself in detailed, confusing explanations
- Too many slides, equations, too many bullets
- Fonts too small, too much text
- Discontinuous speech
- Ignore the audience

 "Before I speak, have something important to say." -Groucho Marx

see:http://www.erp.wisc.edu/profdev/Scientifically speaking.pdf

 "A speech is a solemn responsibility. The man who makes a bad speech to two hundred people wastes only half an hour of his own time. But he wastes one hundred hours of the audience's time-more than four days-which should be a hanging offense" - Jenkin Lloyd Jones

see:http://www.erp.wisc.edu/profdev/Scientifically_speaking.pdf

 "I'm rather like a mosquito in a nudist camp: I know what I ought to do, but don't know where to begin." -Stephen Bayne

see:http://www.erp.wisc.edu/profdev/Scientifically_speaking.pdf

"Be sincere; be brief; be seated." - Franklin D.
 Roosevelt

see:http://www.erp.wisc.edu/profdev/Scientifically speaking.pdf

 "Many attempts to communicate are nullified by saying too much." – Robert Greenleaf

see:http://www.erp.wisc.edu/profdev/Scientifically_speaking.pdf

 "The human brain starts working the moment you are born and never stops until you stand up to speak in public." - George Jessel

see:http://www.erp.wisc.edu/profdev/Scientifically_speaking.pdf

 "In science as in love, too much concentration on technique can often lead to impotence." -P.L.
 Berger, Sociologist and author

