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Abstract

We study the topology of symmetric, second-order tensor
�elds. The goal is to represent their complex structure by
a simple set of carefully chosen points and lines analogous
to vector �eld topology. We extract topological skeletons
of the eigenvector �elds, and we track their evolution over
time. We study tensor topological transitions and correlate
tensor and vector data.

The basic constituents of tensor topology are the degen-
erate points, or points where eigenvalues are equal to each
other. Degenerate points play a similar role as critical points
in vector �elds. We identify two kinds of elementary degen-
erate points, which we call wedges and trisectors. They can
combine to form more familiar singularities|such as sad-
dles, nodes, centers, or foci. However, these are generally
unstable structures in tensor �elds.

Finally, we show a topological rule that puts a constraint

on the topology of tensor �elds de�ned across surfaces, ex-

tending to tensor �elds the Poincar�e-Hopf theorem for vector

�elds.

1 Introduction

Many physical phenomena are described in terms
of continuous vector and tensor data. In 
uid 
ows,
for example, velocity, vorticity, and temperature gradi-
ents are vector �elds. Stresses, viscous stresses, rate-
of-strain, and momentum 
ux density are symmetric
tensor �elds.

Both vector and tensor �elds are multivariate; they
involve more than one piece of information at every
point of space. In fact, vector and symmetric tensor
�elds in N dimensional space embody as much infor-
mation as N and 1

2N (N + 1) independent scalar �elds,
respectively! Visualizing such data is a di�cult chal-
lenge, mainly because of the necessity of rendering the
underlying continuity while avoiding problems of visual
clutter. (See for example Reference [1] for a uni�ed
expos�e of vector and tensor visualization techniques.)

Representing vector �elds by their topology is pow-
erful at ful�lling this requirement. The topology is ob-
tained by locating critical points|i.e., points where the

magnitude of the vector �eld vanishes|and by display-
ing the set of their connecting streamlines [2, 3]. From
this simple and austere depiction, an observer can infer
the structure of the whole vector �eld.

In this article we discuss topological representations
of 2-D symmetric, second-order tensor �elds (referred to
here simply as \tensor �elds"). That is, we investigate
data of the type

T(x) =

�
T11(x; y) T12(x; y)
T12(x; y) T22(x; y)

�
(1)

T(x) is fully equivalent to two orthogonal eigenvectors

vi(x) = �i(x)ei(x) (2)

where i = 1; 2 (Figure 1). �i(x) are the eigenvalues of
T(x) and ei(x) the unit eigenvectors. (The reader un-
acquainted with these concepts will �nd Reference [4]
especially useful.) The eigenvectors vi(x) represent all
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Figure 1: The two orthogonal eigenvectors vi repre-
sented as bidirectional arrows.

the amplitude information (�i(x)) and all the directional
information (ei(x)) represented in matrix notation by
the components Tij(x). In a stress-tensor �eld, for ex-
ample, the vectors vi(x) describe the magnitude and
direction of the principal stresses. We represent v1 and
v2 in Figure 1 as bidirectional arrows because their sign
is not determined.

To obtain continuous representations of tensor �elds,
we integrate a series of curves along one of the eigenvec-
tors v1(x) or v2(x). We refer to these curves as \tensor



�eld lines" [5] or as \hyperstreamline trajectories" for
consistency with our earlier work [6].

The topology of a tensor �eld T(x) is the topology
of its eigenvector �elds vi(x). As with regular vector
�elds, we seek topological skeletons that provide sim-
ple depictions of the structure of the eigenvector �elds.
We obtain these skeletons by locating degenerate points
(Section 2) and integrating the set of their connecting
hyperstreamline trajectories (Section 3). Due to their
sign indeterminacy, eigenvectors have a di�erent struc-
ture from regular, signed vector �elds. For example, we
show a tensor topological rule constraining the struc-
ture of tensor �elds de�ned across surfaces (Section 4).
Finally, we discuss succinct extensions of our theory to
3-D and to unsymmetric tensor data (Section 5).

2 Degenerate Points

We build a topological analysis of tensor �elds from
the concept of degenerate points, which play the role of
critical points in vector �elds.

Streamlines in vector �elds never cross each other
except at critical points and, as we show below, hy-
perstreamlines in tensor �elds meet each other only at
degenerate points. Similar to critical points, degenerate
points are the basic singularities underlying the topol-
ogy of tensor �elds. We de�ne them mathematically as
follows.

De�nition 1 (Degenerate point) A point x0 is a

degenerate point of the tensor �eld T(x) i� the two

eigenvalues of T(x) are equal to each other at x0|i.e.,

i� �1(x0) = �2(x0).

Let us denote by � the common eigenvalue at the degen-
erate point x0. At x0, the tensor �eld is proportional
to the identity matrix:

T(x0) =

�
� 0
0 �

�

which implies that T(x0)e = �e for every vector e. At
most points, there is only one eigenvector associated
with each eigenvalue but, at degenerate points, there
are an in�nity of such eigenvectors. So hyperstreamlines
cross each other at degenerate points.

Degenerate points satisfy the following conditions:1�
T11(xo)� T22(xo) = 0
T12(xo) = 0

(3)

which we use to locate them. When the data are de�ned
on a discrete grid, we use bilinear interpolation of the
tensor components between vertices.

1Valid in any coordinate system.

2.1 Index, sectors, and separatrices

In vector �elds there are various types of criti-
cal points|such as nodes, foci, centers, and saddle
points|that correspond to di�erent local patterns of
the neighboring streamlines. These patterns are char-
acterized by the vector gradients at the positions of the
critical points [2].

Likewise in tensor �elds, di�erent types of degenerate
points occur that correspond to di�erent local patterns
of the neighboring hyperstreamlines. These patterns
are determined by the tensor gradients at the positions
of the degenerate points.

Consider the partial derivatives

a = 1
2
@(T11�T22)

@x
b = 1

2
@(T11�T22)

@y

c = @T12
@x

d = @T12
@y

(4)

evaluated at the degenerate point x0. In the vicinity of
x0, we can expand tensor components to �rst-order as

�
T11�T22

2 � a�x+ b�y

T12 � c�x+ d�y
(5)

where (�x;�y) are small displacements from x0. An
important quantity for the characterization of degener-
ate points is

� = ad� bc (6)

The appeal of � arises from its being invariant under
rotation. That is, if you rotate the coordinate sys-
tem, both tensor components Tij and partial derivatives
fa; b; c; dg change, but � remains constant [7].

To proceed further we de�ne the concept of an index

at a degenerate point. This extends from vector �elds to
tensor �elds the classical notion of an index at a critical
point [8].

De�nition 2 (Tensor index) The index at the de-

generate point x0 of a tensor �eld is the number of

counter-clockwise revolutions made by the eigenvectors

when traveling once in a counter-clockwise direction

along a closed path encompassing x0. The path is cho-

sen close enough to x0 so that it does not encompass

any other degenerate points.

While indices at critical points of continuous vector
�elds must be integer quantities (1 for a node, -1 for
a saddle, etc.), indices at degenerate points of continu-
ous tensor �elds are half-integers. This arises from the
sign ambiguity of the eigenvectors. In fact, we show in
Reference [7] that, if � 6= 0, the index I at x0 is given

by
I =

1

2
sign(�) = �

1

2
(7)
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Figure 2: Hyperbolic (�i) and parabolic (�j) sectors at
a degenerate point.

The index at the degenerate point x0 characterizes
the pattern of neighboring hyperstreamlines. When
traveling along a closed path encompassing x0, we en-
counter two types of angular sectors (Figure 2):

1 hyperbolic sectors �i, where trajectories sweep
past the degenerate point, and

2 parabolic sectors �j , where trajectories lead
away or towards the degenerate point.2

For example, the singularity in Figure 2 has three hy-
perbolic and three parabolic sectors. By analogy with
vector �elds, we call \separatrices" the dividing hyper-
streamlines that separate one sector from the next, such
as s1 to s6 in Figure 2. Let �k be the angle between the
separatrix sk and the x-axis. We show in Reference [7]
that xk = tan �k must be a root of the cubic equation

dx3 + (c+ 2b)x2 + (2a� d)x� c = 0 (8)

Thus, there are at maximum three separatrices (real
roots xk) and degenerate points have no more than three

sectors.

Consider a hypothetical singularity with np parabolic
and nh hyperbolic sectors (np+nh � 3). The parabolic
sectors span angles �j (j = 1; : : : ; np) and the hyper-
bolic sectors span angles �i (i = 1; : : : ; nh). The eigen-
vectors rotate an angle �j within a parabolic sector and
�i � � within a hyperbolic sector (Figure 2). Thus,
during one counter-clockwise revolution around the de-
generate point, the eigenvectors rotate an angle 2�I =Pnp

j=1 �j+
Pnh

i=1(�i��). Since
Pnp

j=1 �j+
Pnh

i=1 �i = 2�,

2The reader familiar with sectors at critical points in vector
�elds may remember the existence of another type of sector called
\elliptic" [8]. In the case of unsigned eigenvector �elds, elliptic
and parabolic sectors are indistinguishable and we group them in
a unique parabolic class.
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Figure 3: Trisector (� < 0) and wedge (� > 0) points.
� = ad� bc and I = index.

the index at the degenerate point is given by

I = 1�
nh

2

It follows from Equation 7 that the number of hyper-
bolic sectors at a degenerate point is

nh = 2� sign(�)

2.2 Trisector and wedge points

When � < 0, nh = 3; the degenerate point has three
hyperbolic sectors and, since np + nh � 3, there is no
parabolic sector. The pattern of hyperstreamlines cor-
responds to the trisector point shown by the texture3 in
Figure 6. See Figure 3 for a schematic depiction. We
show in Reference [7] that each hyperbolic sector at a
trisector point is less than 180o wide.

When � > 0, nh = 1; the degenerate point has one
hyperbolic sector. The local pattern corresponds to the
wedge point represented in Figures 6 and 3. We show in
Reference [7] that the hyperbolic sector at a wedge point
is always wider than 180o. There are np � 2 parabolic
sectors. When np = 2, the two parabolic sectors are
contiguous and we combine them into a unique sector.
Hence the pattern in Figure 3 where np � 1. (If np = 0,
separatrices s1 and s2 are identical; the parabolic sector
reduces to a single line.)

To summarize, the most elementary singularities in

tensor �elds are trisector and wedge points. The invari-

ant � at the location of a degenerate point characterizes

the nature of this point. � < 0 corresponds to a trisector

point (I = �1
2
) and � > 0 corresponds to a wedge point

(I = 1
2). The crossing of the boundary � = 0 denotes a

topological transition which we study in the next sec-
tion. We defer until Section 3 a discussion of the global
implications of the patterns delineated in Figure 3.

3We create the textures in this article and in the accompanying
video by a technique discussed in References [7, 9].



 Node
Center
 δ = 0
 I = 1

Focus
δ = 0
 I = 1

+ = +=

= +=+

Saddle
δ = 0
I = −1

+ = +=

Figure 4: Merging degenerate points. � = invariant given by Equation 6, I = index.

2.3 Merging degenerate points

Wedges and trisectors are stable structures in con-
tinuous tensor �elds; they can not be broken into more
elementary singularities with smaller index. In time-
dependent 
ows, however, they move and can merge
with each other, creating combined singularities of
higher index.

A combination of degenerate points looks in the far
�eld as a singularity whose index is the sum of the in-
dices of its constituent parts. The following pattern,
for example, is made up of 4 wedges and 2 trisec-
tors. Its total index is 4 � 1

2 � 2 � 1
2 = 1 and the

structure looks indeed like a center (I = 1) in the far

�eld. Figure 4 shows how merging trisectors create
saddle points (I = �1

2 �
1
2 = �1) and how merging

wedges create nodes, centers, or foci (I = 1
2 +

1
2 = 1).

Trisectors and wedges cancel each other by merging
(I = �1

2 +
1
2 = 0)|i.e., the singularity vanishes. Con-

versely, wedge-trisector pairs can be created from reg-
ular points. Pair creation is topologically consistent
since it conserves the local index. (We show examples
in Section 3.)

The merging of wedges and trisectors corresponds to
� = 0. A more quantitative study of the patterns in
Figure 4 is di�cult since it requires developing tensor
components at least to second order in Equations 5.

As opposed to critical points in vector �elds, degen-
erate points with integral indices are usually unstable.
They split into elementary wedges or trisectors soon af-
ter their creation by merging. They are nevertheless
important for the study of instantaneous topologies.

3 Tensor Field Topology

We build on the theory of degenerate points to ex-
tract the topology of tensor �elds and to study topo-
logical transitions.

The technique is similar to vector �eld topology with
degenerate points playing the role of critical points. We
represent each eigenvector �eld by a topological skeleton
obtained by locating degenerate points and integrating
the set of their connecting separatrices. We illustrate
these concepts by visualizing the topology of the stress
tensor in a 2-D periodic 
ow past a cylinder.

Fluid elements undergo compressive stresses while
moving with the 
ow. Stresses are described mathe-
matically by the stress tensor, which combines isotropic
pressure and anisotropic viscous stresses. Both eigen-
values of the stress tensor are negative, and the two
orthogonal eigenvectors, v1 and v2 (Equation 2), are
along the least and the most compressive directions, re-
spectively. At a degenerate point, the viscous stresses
vanish and both eigenvalues are equal to the pressure;
degenerate points are points of pure pressure.

The texture in Figure 7 shows the 
ow (velocity �eld)
at one representative time step. The 
ow consists in the
periodic detachment of a separation bubble. Overlaid
are the degenerate points of the stress tensor.
2 Video Clip 1 | The moving texture shows the 
ow

evolving over time. Color encodes velocity magnitude from

fast (red) to slow (blue).

3.1 Tracking degenerate points

The instantaneous representation in Figure 7 con-
tains valuable information but we can learn more about
the spatiotemporal structure of the tensor �eld by
tracking the motion of degenerate points over time.

Figure 8 shows the trajectories followed by degener-
ate points in 3-D space. The third dimension is time,



increasing from front to back. The �gure represents one
period of the evolution of the 
ow. Red dots are wedge
points and green dots are trisectors. C-events are cre-
ations of wedge-trisector pairs from regular 
ow, and
M-events correspond to pair cancellation by merging.

In some instances, pair creations a�ect only the lo-
cal 
ow; the two newly created points move together
and eventually disappear by merging. Two C-events,
however, are di�erent; the newly created points move
far away from each other, inducing a topological tran-
sition in the tensor �eld. These new wedge-trisector
pairs are created periodically in a location alternatively
above then below the cylinder symmetry axis. New
wedge points are quickly dragged into the wake about
the cylinder axis while new trisectors move downstream
away from the axis.
2 Video Clips 2 and 3 | We visualize the motion of

degenerate points of the stress-tensor �eld. The colored

background encodes the magnitude �2 of the most compres-

sive force, from very compressive (red) to mildly compres-

sive (orange, yellow, green) to little compressive (blue). We

show wedge points as black dots and trisectors as white dots.

Video Clip 2 represents the overall structure of the motion

and Video Clip 3 focuses on the region closer to the body.

The pair-creation events are clearly tight to each region of

low compressive stresses (blue color).

3.2 Correlating vector and tensor data

Tensor data are highly multivariate and rich in in-
formation content but they are complex and poorly un-
derstood. Vector data are simpler and more familiar to
scientists. It is useful to correlate visually tensor and
vector �elds, not only for our basic understanding of
tensor data but also for gleaning new physical insights
into vector �elds.
2 Video Clip 4 | The moving texture encodes the di-

rection of the velocity �eld. Color encodes the magnitude

of the most compressive eigenvalue �2. Overlaid are the de-

generate points of the stress tensor.

Figure 7 represents one frame from this clip. Tex-
ture and color indicate clearly that detachment bubbles
(saddle-center pairs of the velocity �eld) are regions of
low compressive stresses. Red and white dots are wedge
and trisector points of the stress tensor, respectively.
The motion of the degenerate points is interesting. The
wedge point A, which originated by pair creation, fol-
lows the detachment bubble in its motion downstream.
In fact, a new pair is created with each new bubble.
The oscillating pair B is closely associated to the recir-
culation regions close to the body surface. The wedge
C follows a stable orbit shaped as an 8. It rolls back
and forth between two consecutive bubbles without ever

venturing inside.

3.3 Topological skeletons

We obtain topological skeletons by detecting degen-
erate points and integrating the set of their connecting
separatrices.

Trisector points in tensor �elds play the topologi-
cal role of saddle points in vector �elds. As shown in
Figures 3 and 6, they de
ect adjacent trajectories in
any one of their three hyperbolic sectors toward topo-
logically distinct regions of the domain. Wedge points
possess both a hyperbolic and a parabolic sector. They
de
ect trajectories adjacent in their hyperbolic sector
and terminate trajectories impinging on their parabolic
sector.

Here follows an algorithm to extract the topology of a
tensor �eld. This simpli�ed version assumes that there
are no merged degenerate points with integral index:

1 locate degenerate points by searching in every grid
cell for solutions to Equations 3;

2 classify each degenerate point as a trisector (� < 0)
or a wedge (� > 0) by evaluating a; b; c; d using
Equations 4 and computing � as in Equation 6;

3 select an eigenvector �eld;

4 use Equation 8 to �nd the three separatrices
fs1; s2; s3g at each trisector point and the two sep-
aratrices fs1; s2g at each wedge point (Figure 3);
integrate hyperstreamlines along the separatrices;
terminate the trajectories wherever they leave the
domain or impinge on the parabolic sector of a
wedge point.

Figure 9 shows an example. The texture represents the
most compressive eigenvector of the stress tensor (v2).
Color encodes as before the magnitude of the compres-
sive force (�2), from most compressive (red) to least
compressive (blue). We emphasize the structure of the
tensor �eld by superimposing the topological skeleton of
v2. The structure of these time-dependent data is very
complex and we simplify the topology (in Figure 9 as in
the remaining of this article) by computing only those
separatrices that originate from trisector points, leav-
ing on the side separatrices that emanate from wedge
points.

We can mentally infer the orientation of the eigen-
vector at any point in the plane from the topological
skeleton. Hyperstreamline trajectories curve so as to
follow the shape of the separatrices, bending around
wedge points.

With time, the repeated creation of new wedge-
trisector pairs induces periodic topological transitions,
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Figure 5: Two consecutive frames showing a topological transition of the stress-tensor �eld.

M �(M)
sphere 2
torus 0

2-holed torus -2
n-holed torus 2 - 2 n

Table 1: Euler characteristic of generic surfaces.

which we illustrate in Figure 5. The newly created pair
fT3;W6g changes the topological structure of the tensor
�eld.

As with vector �eld topology, the power of the rep-
resentation comes from its simplicity; a few points and
lines su�ce to reveal the directional information other-
wise buried within abundant multivariate data.
2 Video Clips 5 and 6 | The two clips show the evolu-

tion with time of the topological skeleton in Figure 9, with

and without the textured background. Black dots represent

wedge points and white dots are trisectors.

3.4 Trivariate data visualization

By using textures or topological skeletons, we render
tensor information only partially. Indeed, we see from
Equation 1 that 2D tensor data are truly trivariate. If
the goal is to correlate full tensor information within
a single display, one must visualize simultaneously two
eigenvalues and the orientation of the eigenvectors.

In Figure 10, we use texture, color, and elevation as
channels to encode eigenvector direction, longitudinal
eigenvalue, and transverse eigenvalue, respectively.4 In

4The vertical stretching creates an unwanted distortion of the
texturewhich can be compensated for by techniques such as those
described in Reference [10].

addition to topological information the display reveals a
strong correlation between the two eigenvalues|a fact
that was previously overlooked in representations such
as Figures 5 and 9.

4 Tensor Topological Rule

When a tensor �eld is de�ned across a surface M,
the topology ofM puts a constraint on the number and
nature of degenerate points, limiting considerably the
variety of possible tensor patterns. We investigate this
constraint in this section.

The topology of any surface M is unambiguously
characterized by a single number �(M) called the sur-
face's Euler characteristic [8]. All orientable5 home-
omorphic surfaces|i.e., the set of orientable surfaces
that can be distorted to look identical by continuous
bending, stretching, or squashing, but without tear-
ing or gluing|have the same value of �(M). For ex-
ample, a sphere and a cube are homeomorphic with
�(M) = 2. A torus and a co�ee mug are homeomor-
phic with �(M) = 0. Table 1 lists �(M) for a few
generic surfaces.

A classical theorem of surface topology, known as the
Poincar�e-Hopf theorem [11], stipulates that the sum of
the indices at the critical points of a vector �eld de�ned
across a surface M is equal to �(M). Thus, if such
a vector �eld has N nodes, C centers, F foci, and S
saddles, the total index is N +C+F �S = �(M). This
important result shows how the topology of the surface
M|i.e., �(M)|a�ects the structure of any vector �eld

5See Reference [8] for a precise de�nition of surface orientabil-
ity. Most of the surfaces in every day life are orientable. Notable
exceptions include M�obius bands and Klein bottles.



de�ned across M|i.e., N + C + F � S.
In order to extend the Poincar�e-Hopf theorem from

vector �elds to tensor �elds, we make the assumption
that the sum of the indices at the degenerate points of a
tensor �eld T(x) de�ned across the surface M depends
only on the topology ofM and not on the particular ten-
sor �eld T(x). The following topological rule results:

Tensor topological rule | Let T(x) be a tensor

�eld de�ned across an orientable surface M having Eu-

ler characteristic �(M). If T(x) has only isolated de-

generate points consisting exclusively of W wedges, T
trisectors, N nodes, C centers, F foci, and S saddles,

then the sum of the indices at the degenerate points of

T(x) is equal to �(M). Hence the topological rule:

1

2
(W � T ) +N + C + F � S = �(M) (9)

We refer the reader to Reference [7] for a proof. As with
vector �elds, this rule establishes a connection between
the topology of the surface M|i.e., �(M)|and the
structure of any tensor �eld de�ned across M|i.e., the
sum of indices.

Equation 9 restricts considerably the number of pos-
sible surface tensor patterns. For example, Figure 11
shows two complex tensor �elds|one de�ned across a
torus and another one across a sphere. A topological
analysis reveals N = C = F = S = 0, W = T = 18
for the torus, and N = C = 1, F = 0, W = T = 3 for
the sphere. Both sets of values satisfy Equation 9 with
�(torus) = 0 and �(sphere) = 2, respectively.

5 Extensions and Conclusions

We can extend the theory of degenerate points to 3-D
symmetric tensor �elds, which have three real eigenval-
ues and three orthogonal eigenvectors. At a degener-
ate point where two eigenvalues are identical, locally
two-dimensional patterns such as wedges and trisec-
tors (Figure 3) occur in the plane orthogonal to the
third eigenvector. However, it remains to characterize
the fully three-dimensional patterns that exist in the
vicinity of degenerate points where three eigenvalues
are identical.

The results presented above are also useful for un-
symmetric tensor �elds. We show in Reference [6] that
it is always possible to extract a symmetric tensor com-
ponent from unsymmetric data. We can then apply
the topological analysis to the symmetric component
for unveiling, at least partially, the structure of the ten-
sor �eld.

In conclusion, visualization allowed us to elucidate
the structure of symmetric tensor �elds, demonstrating
the tremendous potential of the �eld for building new
knowledge beyond the usual goal of inspecting results
from experiments and computations.

Acknowledgements

We are most indebted to Dan Asimov from NASA Ames

for a useful discussion on topology, and to Mark Peercy

from Stanford University for his critical comments and some

of his software. The authors are supported by NASA un-

der contract NAG 2-911 which includes support from the

NASA Ames Numerical Aerodynamics Simulation Program

and the NASA Ames Fluid Dynamics Division, and also by

NSF under grant ECS9215145.

References

[1] T. Delmarcelle and L. Hesselink, \A uni�ed frame-
work for 
ow visualization," in Computer Visualization
(R. Gallagher, ed.), ch. 5, CRC Press, 1994.

[2] J. L. Helman and L. Hesselink, \Visualization of vector
�eld topology in 
uid 
ows," IEEE Computer Graphics
and Applications, vol. 11, no. 3, pp. 36{46, 1991.

[3] A. Globus, C. Levit, and T. Lasinski, \A tool for visu-
alizing the topology of three-dimensional vector �elds,"
in Proc. IEEE Visualization '91, pp. 33{40, 1991.

[4] A. I. Borisenko and I. E. Tarapov, Vector and Tensor
Analysis with Applications. Dover Publications, New
York, 1979.

[5] R. R. Dickinson, \A uni�ed approach to the design
of visualization software for the analysis of �eld prob-
lems," in Proc. SPIE, vol. 1083, pp. 173{180, SPIE,
Bellingham, WA., 1989.

[6] T. Delmarcelle and L. Hesselink, \Visualizing second-
order tensor �elds with hyperstreamlines," IEEE Com-
puter Graphics and Applications, vol. 13, no. 4, pp. 25{
33, 1993.

[7] T. Delmarcelle, The Visualization of Second-Order
Tensor Fields. PhD thesis, Stanford University, 1994.
To be published.

[8] P. A. Firby and C. F. Gardiner, Surface Topology. Ellis
Horwood series in Mathematics and its Applications,
John Willey & Sons, New York, 1982.

[9] B. Cabral and L. C. Leedom, \Imaging vector �elds
using line integral convolution," Computer Graphics
(SIGGRAPH'93 Proc.), pp. 263{272, 1993.

[10] J. Maillot, H. Yahia, and A. Verroust, \Interactive tex-
ture mapping," Computer Graphics (SIGGRAPH'93
Proceedings), vol. 27, pp. 27{34, 1993.

[11] J. W. Milnor, Topology from the Di�erentiable View-
point. The University Press of Virginia, Charlottesville,
1965.



Figure 6: Textures representing the two eigenvector �elds in the vicinity of a trisector point (top) and a wedge
point (bottom). Color encodes the di�erence between the two eigenvalues.



Figure 7: A frame of Video Clip 4 showing the correlation between the velocity �eld (moving texture) and the
degenerate points of the stress tensor. Color encodes the most compressive stress. Red dots = wedges, white dots
= trisectors. (See the video tape accompanying the Visualization '94 proceedings.)



Figure 8: Spatiotemporal trajectories of degenerate points in the stress-tensor �eld. Time increases from front to
back. Red spheres = wedges, green spheres = trisectors. M and C indicate merging and creation of wedge-trisector
pairs, respectively. (See the video tape accompanying the Visualization '94 proceedings.)



Figure 9: A frame of Video Clip 5 showing the instantaneous topology of the most compressive eigenvector
v2. Color encodes �2. W = wedge, T = trisector. (See the video tape accompanying the Visualization '94
proceedings.)



Figure 10: Trivariate data visualization to fully represent the stress-tensor �eld.



Figure 11: Illustration of the tensor topological rule for a torus and a sphere.


