High-Quality Pre-Integrated Volume Rendering
Using Hardware-Accelerated Pixel Shading

Klaus Engel, Martin Kraus, Thomas Ertl *

Visualization and Interactive Systems Group, University of Stuttgart, Germany

Abstract

We introduce a novel texture-based volume rendering approach that
achieves the image quality of the best post-shading approaches with
far less slices. It is suitable for new flexible consumer graphics
hardware and provides high image quality even for low-resolution
volume data and non-linear transfer functions with high frequen-
cies, without the performance overhead caused by rendering addi-
tional interpolated slices. This is especially useful for volumetric
effects in computer games and professional scientific volume visu-
alization, which heavily depend on memory bandwidth and rasteri-
zation power.

We present an implementation of the algorithm on current pro-
grammable consumer graphics hardware using multi-textures with
advanced texture fetch and pixel shading operations. We imple-
mented direct volume rendering, volume shading, arbitrary number
of isosurfaces, and mixed mode rendering. The performance does
neither depend on the number of isosurfaces nor the definition of
the transfer functions, and is therefore suited for interactive high-
quality volume graphics.

CR Categories: 1.3.3 [Computer Graphics]: Picture/Image
Generation, 1.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling, 1.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism.

Keywords: direct volume rendering, volume graphics, volume
shading, volume visualization, multi-textures, rasterization, PC
graphics hardware, flexible graphics hardware

1 Introduction

In spite of recent progress in texture-based volume rendering al-
gorithms, volumetric effects and visualizations have not reached
the mass market. One of the reasons is the requirement for ex-
tremely high rasterization power caused by non-linear transfer func-
tions needed for convincing volume visualizations and striking vol-
umetric effects. Thus, new algorithms have to be developed that
produce high-quality images with less rasterization and therefore
higher frame rates on modern consumer graphics hardware. Tra-
ditionally, these two goals oppose each other, because high image
quality requires to render additional trilinearly interpolated slices at
the expense of rasterization power [11].

In order to overcome these limitations, we generalize in Sec-
tion 3 the cell-projective rendering algorithm published by our
group in [12]. For texture-based approaches, this method,
called pre-integrated volume rendering, allows us to avoid addi-
tional slices by integrating non-linear transfer functions in a pre-
processing step. An abstract description of this algorithm for
object- and view-aligned textured slices is presented in Section 4,

*Abteilung fur Visualisierung und Interaktive Systeme,
Breitwiesenstr. 20-22, 70565 Stuttgart, Germany,

Email: {engel , kraus, ertl }@nformatik. uni -stuttgart. de

while the technical details of an implementation on current pro-
grammable consumer graphics hardware are described in Section 5.
In particular, we discuss the use of advanced texture fetch and pixel
shading operations recently proposed by graphics hardware ven-
dors [4]. These features are exploited in order to achieve direct
volume rendering, multiple smoothly shaded isosurfaces, and vol-
ume shading. Preliminary results on a GeForce3 graphics hardware
are presented in Section 6. Finally, Section 7 sums up the paper.

2 Related Work

High accuracy in direct volume rendering is usually achieved by
very high sampling rates resulting in heavy performance losses.
However, for cell-projective techniques Max, Williams, and Stein
have proposed elaborated optical models and efficient, highly accu-
rate projective methods in [8, 14]. The latter were further improved
by Rottger, Kraus, and Ertl in [12]. Although these techniques were
initially limited to cell projection, we were able to generalize them
in order to apply these ideas to texture-based rendering approaches.

The basic idea of using object-aligned textured slices to substi-
tute trilinear by bilinear interpolation was presented by Lacroute
and Levoy [6], although the original implementation did not use
texturing hardware. For the PC platform, Brady et al. [2] have pre-
sented a technique for interactive volume navigation based on 2D
texture mapping.

The most important texture-based approach was introduced by
Cabral [3], who exploited the 3D texture mapping capabilities of
high-end graphics workstations. Westermann and Ertl [13] have
significantly expanded this approach by introducing a fast direct
multi-pass algorithm to display shaded isosurfaces. Based on their
implementation, MeiRner et al. [9] have provided a method to en-
able diffuse illumination for semi-transparent volume rendering.
However, in this case multiple passes through the rasterization hard-
ware led to a significant loss in rendering performance. Dachille et
al. [5] have proposed an approach that employs 3D texture hardware
interpolation together with software shading and classification.

One direction in PC graphics is the development of special
purpose volume rendering hardware, e.g. VolumePro [10]. In
contrast to this, consumer graphics hardware is becoming pro-
grammable. We presented techniques for using NVidia’s register
combiner OpenGL extension for fast shaded isosurfaces, interpola-
tion, speedup, and volume shading [11]. As the programming of
flexible units using OpenGL extensions of hardware manufacturers
is complex and difficult, a higher abstraction layer has been pro-
posed in the form of a real time procedural shading language sys-
tem [7], which will increase productivity and make programs more
portable.

3 Theoretical Background

This section generalizes and formalizes the rendering techniques
proposed in [12]. This theoretical framework is not required on first
reading, although several equations in this section are referenced in
following sections.

3.1 Direct Volume Rendering

Since its introduction in the late 1980s, direct volume rendering has
diverged into several more or less distinct techniques, which are
roughly classified as image-based (or backward projective), e.g.,
ray-casting, and object-based (or forward projective), e.g., cell pro-
jection, shear-warp, splatting, or texture-based algorithms. The
common theme, however, is an (approximate) evaluation of the vol-
ume rendering integral for each pixel, i.e., the integration of atten-
uated colors and extinction coefficients along each viewing ray. We
assume that the viewing ray x(A) is parametrized by the distance
A to the viewpoint, and that color densities color(x) together with
extinction densities extinction(x) may be calculated for any point
in space x. (The units of color and extinction densities are color
intensity per length and extinction strength per length, respectively.
However, we will refer to them as colors and extinction coefficients
when the precise meaning is clear from the context.) Then the vol-
ume rendering integral is

| = /OD color(x(A)) exp (— /0A extinction(x()\'))d)\'> dA

with the maximum distance D, i.e., there is no color density
color(x(A)) for A greater than D. In words, color is emitted at each
point x according to the function color(x), and attenuated by the in-
tegrated extinction coefficients extinction(x) between the viewpoint
and the point of emission.

Unfortunately, this form of the volume rendering integral is not
useful for the visualization of a continuous scalar field s(x), because
the calculation of colors and extinction coefficients is not specified.
We distinguish two steps in the calculation of these colors and ex-
tinction coefficients: the classification is the assignment of a pri-
mary color and an extinction coefficient. (The term primary color
is borrowed from OpenGL terminology in order to denote the color
before shading.) The classification is achieved by introducing trans-
fer functions for color densities &(s) and extinction densities 1(s),
which map scalar values s = s(x) to colors and extinction coeffi-
cients. (In general, € is a vector specifying a color in a color space,
while T is a scalar extinction coefficient.)

The second step is called shading and calculates the color con-
tribution of a point in space, i.e., the function color(x). The shading
depends, of course, on the primary color, but may also depend on
other parameters, e.g., the gradient of the scalar field Os(x), am-
bient and diffuse lighting parameters, etc. In the remainder of this
section we will not be concerned with shading but only with classi-
fication. (Shading will be discussed in Section 5.4.) Therefore, we
choose a trivial shading, i.e., we identify the primary color €(s(x))

assigned in the classification with color(x). Analogously, T (s(x))
is identified with extinction(x).
The volume rendering integral is then written as

| = /O DC(S(X(A))) exp (— /0 AT(S(X(?\')))d)\') A @

3.2 Pre- and Post-Classification

Direct volume rendering techniques differ considerably in the way
they evaluate Equation (1). One important and very basic difference
is the computation of ¢(s(x)) and t(s(x)). In fact, the continuous
scalar field s(x) is usually defined by a mesh with scalar values s;
defined at each vertex v; of the mesh together with an interpolation
prescription.

The order of this interpolation and the application of the
transfer functions defines the difference between pre- and post-
classification. Post-classification is characterized by the applica-
tion of the transfer functions after the interpolation of s(x) from
the scalar values at several vertices; while pre-classification is the

application of the transfer functions before the interpolation step,
i.e., colors €(sj) and extinction coefficients 1(s;) are calculated in a
pre-processing step for each vertex v; and then used to interpolate
€(s(x)) and t(s(x)) for the computation of the volume rendering
integral.

Obviously, pre- and post-classification will produce different re-
sults whenever the interpolation does not commute with the trans-
fer functions. As the interpolation is usually non-linear (e.g., tri-
linear in cartesian grids), it will only commute with the transfer
functions if the transfer functions are constant or the identity. In all
other cases, pre-classification will result in deviations from post-
classification, which is “correct” in the sense of applying the trans-
fer functions to a continuous scalar field defined by a mesh together
with an interpolation prescription. (Nonetheless, pre-classification
is useful under certain circumstances; in particular, because it may
be used as a basic segmentation technique.)

3.3 Numerical Integration

An analytic evaluation of the volume rendering integral is possible
in some cases, in particular for linear interpolation and piecewise
linear transfer functions (see [14]). However, this approach is not
feasible in general; therefore, a numerical integration is required.

The most common numerical approximation of the volume ren-
dering integral is the calculation of a Riemann sum for n equal ray
segments of length d = D/n. (See also Figure 1 and Section IV.A in
[8].) Itis straightforward to generalize the following considerations
to unequally spaced ray segments.

sx(1) A
| ®=sx+1d)
st = s(x(i d))
1 t t 1 '
i id (+1d A
g
<[® ' >
x(id) x((+21)d) X(A)

Figure 1: Scheme of the parameters determining the color and opac-
ity of the i-th ray segment.

We will approximate the factor

exp <— /())\T(S(X()\')))d)\’>

in Equation (1) by
A/d
exp (— Zbr(s(x(i d)))d) =

:ﬁexp(-T(S(X(i 0))a) =ﬁ<1—ai>,

where the opacity a; of the i-th ray segment is approximated by

a1 —exp (q(s(x(i d)))d).

This is often further approximated to a; ~ r(s(x(i d)))d. 1—aq;

will be called the transparency of the i-th ray segement. The color
Ci emitted in the i-th ray segment may be approximated by Cj ~
€(s(x(i d)))d. Thus, the approximation of the volume rendering
integral in Equation (1) is

miid il]j)(l—aj))

Therefore, a back-to-front compositing algorithm will implement
the equation

€ =C+(1—a)CLy, ®)

where Ci’ is the accumulated color in the i-th ray segment.
€(s) is often substituted by t(s)c(s) [8]. In this case, the approx-
imation

Ci &~ 1(s(x(id)))c(s(x(id)))d

will result in the more common approximation

| ~ iiGiCi ;Ij)(laj)

with the corresponding back-to-front compositing equation
Ci' =0iCi+(1—- Gi)Ci'Jrl. 4)

This compositing equation indicates that C corresponds to a pre-
multiplied color aC; which is also called opacity-weighted color
or associated color. According to Blinn in [1], associated colors
have their opacity associated with them, i.e., they are regular colors
composited on black. Blinn also notes that some intensity compu-
tations result in associated colors, although they are not explicitly
multiplied by an opacity. In this sense, the transfer function &(s) is
in fact a transfer function for an associated color density.

A coherent discretization of viewing rays into equal segments
may be interpreted as a discretization of the volume into slabs. Each
slab emits light and absorbs light from the slabs behind it. However,
the light emitted in each slab is not attenuated within the slab itself.

The discrete approximation of the volume rendering integral will
converge to the correct result for d — 0, i.e., for high sampling
rates n/D = 1/d. According to the sampling theorem, a correct
reconstruction is only possible with sampling rates larger than the
Nyquist frequency. However, non-linear features of transfer func-
tions may considerably increase the sampling rate required for a
correct evaluation of the volume rendering integral as the Nyquist
frequency of the fields (s(x)) and t(s(x)) for the sampling along
the viewing ray is approximately the product of the Nyquist fre-
quencies of the scalar field s(x) and the maximum of the Nyquist
frequencies of the two transfer functions €(s) and t(s) (or of the
product c(s)T(s)). Therefore, it is by no means sufficient to sample
a volume with the Nyquist frequency of the scalar field if non-linear
transfer functions are allowed. Artifacts resulting from this kind of
undersampling are frequently observed unless they are avoided by
very smooth transfer functions.

3.4 Pre-Integrated Classification

In order to overcome the limitations discussed above, the approx-
imation of the volume rendering integral has to be improved. In
fact, many improvements have been proposed, e.g., higher-order in-
tegration schemes, adaptive sampling, etc. However, these methods
do not explicitly address the problem of high Nyquist frequencies
of €(s(x)) and T(s(x)) resulting from non-linear transfer functions.

On the other hand, the goal of pre-integrated classification is to split
the numerical integration into two integrations: one for the continu-
ous scalar field s(x) and one for the transfer functions €(s) and 1(s)
in order to avoid the problematic product of Nyquist frequencies.
The first step is the sampling of the continuous scalar field s(x)
along a viewing ray. Note that the Nyquist frequency for this sam-
pling is not affected by the transfer functions. For the purpose
of pre-integrated classification, the sampled values define a one-
dimensional, piecewise linear scalar field. The volume rendering
integral for this piecewise linear scalar field is efficiently computed
by one table lookup for each linear segment. The three arguments
of the table lookup are the scalar value at the start (front) of the seg-
ment sg := s(x(id)), the scalar value the end (back) of the segment
Sp 1= S(x((i-+1)d)), and the length of the segment d. (See Figure
1.) More precisely spoken, the opacity a; of the i-th segment is

approximated by
(i+1)d
1—exp (f/id T(S(X(A)))dA)

1—exp (—/Olr((l—w)Sf + wsp)d dw) . (5)

Qi

Q

Thus, a; is a function of sf, sp, and d. (Or of sf and sy, if the

lengths of the segments are equal.) The (associated) colors C; are
approximated correspondingly:

1
Ci =~ /()6((l—w)sf+wsb)
x exp(f/owT((lfoo')Sf +sp)d dw’)d dw. (6)

Analogously to aj, (fi is a function of s¢, sy, and d. Thus, pre-
integrated classification will approximate the volume rendering in-
tegral by evaluating Equation (2):

I%iiéi ﬁ(l—dj)

with colors C; pre-computed according to Equation (6) and opaci-
ties a;j pre-computed according to Equation (5). For non-associated
color transfer function, i.e., when substituting €(s) by t(s)c(s), we
will also employ Equation (5) for the approximation of a; and the
following approximation of the associated color C{":

Cl o~ /OlT((l—w)Sf+&Bb)C((1—w)Sf+wa)
x exp(—/OwT((l—oo')Sf +odsp)d dw’)d dw. (7)

Note that pre-integrated classification always computes associated
colors, whether a transfer function for associated colors €(s) or for
non-associated colors c(s) is employed.

In either case, pre-integrated classification allows us to sam-
ple a continuous scalar field s(x) without the need to increase the
sampling rate for any non-linear transfer function. Therefore, pre-
integrated classification has the potential to improve the accuracy
(less undersampling) and the performance (fewer samples) of a vol-
ume renderer at the same time.

3.5 Accelerated (Approximative) Pre-Integration

The primary drawback of pre-integrated classification in general is
actually the pre-integration required to compute the lookup tables,
which map the three integration parameters (scalar value at the front
s¢, scalar value at the back sp, and length of the segment d) to

pre-integrated colors € = C(sf ,Sp,d) and opacities o = a(st,Sp,d).
As these tables depend on the transfer functions, any modification
of the transfer functions requires an update of the lookup tables.
This might be no concern for games and entertainment applica-
tions, but it strongly limits the interactivity of applications in the
domain of scientific volume visualization, which often depend on
user-specified transfer functions. Therefore, we will suggest three
methods to accelerate the pre-integration step.

Firstly, under some circumstances it is possible to reduce the di-
mensionality of the tables from three to two (only s and s) by as-
suming a constant length of the segments. Obviously, this applies to
ray-casting with equidistant samples. It also applies to 3D texture-
based volume visualization with orthographic projection and is a
good approximation for most perspective projections. It is less ap-
propriate for axes-aligned 2D texture-based volume rendering as
discussed in Section 5.5. Even if very different lengths occur, the
complicated dependency on the segment length might be approxi-
mated by a linear dependency as suggested in [12]; thus, the lookup
tables may be calculated for a single segment length.

Secondly, a local modification of the transfer functions for a par-
ticular scalar value s does not require to update the whole lookup
table. In fact, only the values C(s¢,sp,d) and a(ss,Sp,d) with
s; <s<sp0rss > s> sy have to be recomputed; i.e., in the worst
case about half of the lookup table has to be recomputed.

Finally, the pre-integration may be greatly accelerated by eval-
uating the integrals in Equations (5), (6), and (7) by employing
integral functions for 1(s), €(s), and t(s)c(s), respectively. More
specifically, Equation (5) for a; = a(s¢,Sp,d) can be rewritten as

A(st,spd) ~ 1—exp(— (T(so—T(sb))) ®

Sp — St

with the integral function T (s) := J51(s)ds, which is easily com-
puted in practice as the scalar values s are usually quantized.

Equation (6) for C; = C(st,Sp,d) may be approximated analo-
gously:

C(st,sp,d) =~

(K(sp) —K(st)) ©)

Sp — St

with the integral function K(s) := [§¢(s)ds. However, this requires
to neglect the attenuation within a ray segment. As mentioned
above, this is a common approximation for post-classified volume
rendering and well justified for small products t(s)d.

For the non-associated color transfer function c(s) we approxi-
mate Equation (7) by

C'(st,5p,d) ~

sy (KT8 KT (s0). 1)

with K¥(s) := f51(s)c(s)ds.

Thus, instead of numerically computing the integrals in Equa-
tions (5), (6), and (7) for each combination of s¢, sy, and d, we will
only once compute the integral functions T (s), K(s), or K'(s) and
employ these to evaluate colors and opacities according to Equa-
tions (8), (9), or (10) without any further integration.

3.6 Application to Volume Rendering Techniques

Pre-integrated classification is not restricted to a particular volume
rendering technique, rather it may replace the post-classification
step of various techniques. For example, in [12] Réttger et al. have
applied pre-integrated classification to cell projection employing
3D textures for the lookup of segment colors C and opacities a.
In fact, the application of pre-integrated classification is quite natu-
ral for the cell projection of tetrahedral meshes, because the linear

interpolation of the scalar field between two samples is exact if the
samples are taken at the faces of tetrahedra as in the case of cell
projection.

Of course, pre-integrated classification may also be employed
in other volume rendering techniques, e.g., software ray-casting of
structured and unstructured meshes. In the remainder of this pa-
per, however, we will focus on the implementation of pre-integrated
classification in texture-based volume rendering algorithms.

4 Texture-Based Pre-Integrated Volume
Rendering

Based on the description of pre-integrated classification in Sec-
tion 3.4, we will now present two novel texture-based algorithms
(one for 2D textures and one for 3D textures) that implement pre-
integrated classification. Both algorithms employ dependent tex-
tures, i.e., rely on the possibility to convert fragment (or pixel)
colors into texture coordinates. The technical details of this table
lookup will be discussed in Section 5.

The basic idea of texture-based volume rendering is to render
a stack of textured slices. Texture maps may either be taken from
three stacks of two-dimensional texture maps (object-aligned slices;
see [11]) or from one three-dimensional texture map (view-aligned
slices; see [3]). Pre-classification is implemented by applying the
transfer functions once for each texel and storing colors and opac-
ities in the texture map(s). On the other hand, post-classification
is performed by storing the scalar field value in the texture map(s)
and applying transfer functions during the rasterization of the slices
for each pixel. Each pixel (more precisely spoken, each fragment)
of a slice corresponds to the contribution of one ray segment to the
volume rendering integral for this pixel. Therefore, the composit-
ing Equations (3) or (4) are employed for the rasterization of the
textured slices. As each fragment of a slice corresponds to one ray
segment, the whole slice corresponds to a slab of the volume as
depicted in Figure 2.

<[/

back slice

i front slice i
Figure 2: A slab of the volume between two slices. The scalar value

on the front (back) slice for a particular viewing ray is called s (sp).

After these preliminaries, we can now describe pre-integrated
volume rendering using textured slices. The texture maps (either
three-dimensional or two-dimensional textures) contain the scalar
values of the volume, just as for post-classification. As each pair of
adjacent slices (either view-aligned or object-aligned) corresponds
to one slab of the volume (see Figure 2), the texture maps of
two adjacent slices have to be mapped onto one slice (either the
front or the back slice) by means of multiple textures (see Sec-
tion 5.1). Thus, the scalar values of both slices (front and back) are
fetched from texture maps during the rasterization of the polygon
for one slab (see Section 5.2). These two scalar values are required
for a third texture fetch operation, which performs the lookup of
pre-integrated colors and opacities from a two-dimensional texture

map. This texture fetch depends on previously fetched texels; there-
fore, this third texture map is called a dependent texture map.

The opacities of this dependent texture map are calculated ac-
cording to Equation (5), while the colors are computed according
to Equation (6) if the transfer function specifies associated colors
€(s), and Equation (7) if it specifies non-associated colors c(s). In
either case the compositing Equation (3) is used for blending as the
dependent texture map always contains associated colors.

This completes the description of the algorithms for pre-
integrated volume rendering with view-aligned slices and object-
aligned slices, respectively. Obviously, a hardware implementation
of these algorithms depends on rather complicated texture fetch op-
erations. Fortunately, the OpenGL texture shader extension recently
proposed can in fact be customized to implement these algorithms.
The details of this implementation are discussed in the following
section.

5 Implementation Details

Our current implementation is based on NVidia’s GeForce3 graph-
ics chip. NVidia introduced a flexible multi-texturing unit in their
GeForce2 graphics processor via the register combiners OpenGL
extension [4]. This unit allows the programming of per-pixel shad-
ing operations using three stages, two general and one final com-
biner stage. This register combiner extension is located behind the
texel fetch unit in the rendering pipeline. Recently NVidia extended
the register combiners in the GeForce3 graphics chip, by provid-
ing eight general and one final combiner stage with per-combiner
constants via the register combiner2 extension. Additionally, the
GeForce3 provides a programmable texture fetch unit [4] allow-
ing four texture fetch operations via 21 possible commands, among
them several dependent texture operations. This so called texture
shader OpenGL extension and the register combiners are merged
together in Microsoft’s DirectX8 API to form the pixel shader API.
Unfortunately, the pixel shader API is more restrictive than the two
OpenGL extensions. Therefore, we based our implementation on
the OpenGL API [4]. The texture shader extension refers to 2D
textures only. Although NVidia proposed an equivalent extension
for 3D texture fetches via the texture shader2 extension, 3D tex-
tures and texture shader2 are not supported in the current driver
releases.

Best results would be obtained using 3D textures. However, as
they are currently not available, we used a 2D texture-based ap-
proach. Slices are set parallel to the coordinate axes of the rectilin-
ear data grid, i.e object-aligned. This allows us to substitute trilinear
by bilinear interpolation. However, if the viewing direction changes

_.camera

camera

Figure 3: Projection of texture slice vertices onto adjacent slice
polygons for object-aligned slices (left) and view-aligned slices

(right)

by more that 90 degrees, the orientation of the slice normal must be
changed. This requires to keep three copies of the data stack in main
memory, one stack of slices for each slicing direction respectively.
The slices are rendered as planar polygons textured with the image
information obtained from a 2D texture map and blended onto the
image plane.

The pre-integrated volume rendering algorithm consists of three
basic steps: First two adjacent texture slices are projected onto one
of them, either the back slice onto the front slice or vice versa.
Thereby, two texels along each ray (one from the front and one from
the back slice) are projected onto each other. They are fetched using
the texture shader extension and then used as texture coordinates for
a dependent texture fetch containing pre-integrated values for each
combination of back and front texels. For isosurface rendering, the
dependent texture contains color, transparency, and interpolation
values, if the isovalue is in between the front and back texel value.
This results in dependent texture patterns as shown in Figure 9(left).
The gradient and voxel values are stored in RGBA textures. In the
register combiners gradients are interpolated and dot product light-
ing calculations are performed. The following sub-sections explain
all these steps in detail.

5.1 Projection

The 2D texture-based volume rendering algorithm usually blends
object-aligned texture slices of one of the three texture stacks back-
to-front into the frame buffer using the over operator. Instead of this
slice-by-slice approach, we render slab-by-slab (see Figure 2) from
back to front into the frame buffer. A single quadrilateral polygon
is rendered for each slab with the two corresponding textures as
texture maps. In order to have texels along all viewing rays pro-
jected upon each other for the texel fetch operation, either the back
slice must be projected onto the front slice or vice versa. The pro-
jection is thereby accomplished by adapting texture coordinates for
the projected texture slice and retaining the texture coordinates of
the other texture slice. Figure 3 shows the projection for the object-
and view-aligned rendering algorithms.

For direct volume rendering without lighting, textures are de-
fined in the OpenGL texture format GL_LUM NANCES. For volume
shading and shaded isosurfaces GL_RGBA textures are used, which
contain the pre-calculated volume gradient and the scalar values.

5.2 Texel Fetch

For each fragment, texels of two adjacent slices along each ray
through the volume are projected onto each other. Thus, we can
fetch the texels with their given per-fragment texture coordinates.
Then the two fetched texels are used as lookup coordinates into a
dependent 2D texture, containing pre-integrated values for each of
the possible combinations of front and back scalar values as de-
scribed in Section 3.4. NVidia’s texture shader extension provides a
texture shader operation that employs the previous texture shader’s
green and blue (or red and alpha) colors as the (s,t) coordinates for
a non-projective 2D texture lookup. Unfortunately, we cannot use
this operation as our coordinates are fetched from two separate 2D
textures. Instead, as a workaround, we use the dot product texture
shader, which computes the dot product of the stage’s (s,t,r) and a
vector derived from a previous stage’s texture lookup (see Figure 4).
The result of two of such dot product texture shader operations are
employed as coordinates for a dependent texture lookup. Here the
dot product is only required to extract the front and back volume
scalars. This is achieved by storing the volume scalars in the red
components of the textures and applying a dot product with a con-
stant vector v = (1,0, O)T. The texture shader extension allows us to
define to which previous texture fetch the dot product refers with the
GL_PREVI OQUS_TEXTURE_I NPUT_NV texture environment. The

Sa0e0 Lookup back texel
(So,to) TEXTURE_2D on to
register combiners
n,
) ’ stage 1 Lookup front texel
(S¢.t1) TEXTURE_2D
onto
register combiners
n
‘L stage 2
DOT_PRODUCT_NV Extract front scalar
(Vo) =5’y
(sotprp) = (1,0,0) = v, T
stage 3 RGBA result
DOT_PRODUCT - —
_ — . TEXTURE 2D NV onto
(s3.t5r5) =(1,0,0) = v, (Vi*mp) =5 register combiners

Extract back scalar and lookup with (s'5,t';)

Figure 4: Texture shader setup for dependent 2D texture lookup
with texture coordinates obtained from two source textures.

first dot product is set to use the fetched front texel values as pre-
vious texture stage, the second uses the back texel value 1 Inthis
approach, the second dot product performs the texture lookup into
our dependent texture via texture coordinates obtained from two
different textures.

For direct volume rendering without lighting the fetched texel
from the last dependent texture operation is routed through
the register combiners without further processing and blended
into the frame buffer with the OpenGL blending function
gl Bl endFunc(GL_ONE, GL_ONE_M NUS_SRC_ALPHA) .

5.3 Gradient Interpolation for Isosurfaces

As discussed in [12], pre-integrated volume rendering can be em-
ployed to render multiple isosurfaces. The basic idea is to color
each ray segment according to the first isosurface intersected by the
ray segment. Examples for such dependent textures are depicted in
Figure 8.

For shading calculations, RGBA textures are usually employed,
that contain the volume gradient in the RGB components and the
volume scalar in the ALPHA component. As we use dot products to
extract the front and back volume scalar and the dot product refers
only to the first three components of a vector, we store the scalar
data in the RED component. The first gradient component is stored
in the ALPHA component in return.

For lighting purposes the gradient of the front and back slice has
to be rebuilt in the RGB components (ALPHA has to be routed back
to RED) and the two gradients have to be interpolated depending on
a given isovalue (see Figure 5). The interpolation value for the back
slice is given by | P = (sijso —S¢)/(Sp — St); the interpolation value
for the front slice is 1—1 P (see also [12]). | P could be calculated
on-the-fly for each given isovalue, back and front scalar. Unfor-
tunately, this requires a division in the register combiners, which
is not available. For this reason we have to pre-calculate the in-
terpolation values for each combination of back and front scalar
and store them in the dependent texture. Ideally, this interpolation
value would be looked up using a second dependent texture. Unfor-
tunately, NVidia’s texture shader extension only allows four texture
operations, which we already spent. Hence we have to store the
interpolation value | P in the first and only dependent texture.

LIn the pixel shader 1.0 and 1.1 API of Microsoft DirectX8, a dot product
always refers to the last fetch operation before the dot products, therefore
this operation can’t be realized.

Input Registers General Combiner 0 (RGB portion only)

RGB A ExpsnnNmms\)- A H
‘?Tlﬁk‘“fl“;e‘ texture ~_ »Unsigned men@- B H
e > AB+CD
\/ ™~ »| Expand Normal C A ras st
\ portion:
ghot i —
insigned Ident H
/Y/ g back gradient
[1]o]o]1} const. color 1 \ \\ General C 1 (RGE portion only) M, M, M,
T Expand Nurma\)- AH
front slice A\
texture 1 Unsigned |den1ﬂ- BH
=" ™ AB+CD
i ™ H
S expand Nomal § C 1 a8 soon]
portion:
\ rebuilt
L »Unsigned Idenm)Jr D H| front gradient NN
0[N [Ny
General Combiner 2 (RGB portion only)
dependent
signed identity = A\ = Interpolated gradient
——3 T »Half-bias Nevmal)- BH AB+CD :;n;zu:;rnsg
i +
>
L »fsigned menmy)- CH RGB partion |
Interpolated —4>{ Scale by 2
L > Unsigned Inven)- DH| radient

Figure 5: Register Combiner setup for gradient reconstruction and
interpolation with interpolation values stored in alpha . Note that
the interpolation values are stored in the range of 0.5 to 1.0, which
requires proper input and output mappings for general combiner 2
to obtain a correct interpolation. M denotes the gradient of the back
slice, N the front slice gradient respectively.

There are two possible ways to store these interpolation values.
The first approach stores the interpolation value (I P) in the ALPHA
component of the dependent texture (R, G B, | P) . The main dis-
advantage of this method is, that the transparency, which is usu-
ally freely definable for each isosurface’s back and front face, is
now constant for all isosurfaces’ faces. In order to obtain a trans-
parency value of zero for ray segments that do not intersect the
isosurface and a constant transparency for ray segments that inter-
sect the isosurface the interpolation values are stored in the ALPHA
channel in the range 128 to 255 (7 bit). An interpolation value
of 0 is stored for ray segments that do not intersect the isosur-
face. This allows us to scale the ALPHA channel with a factor of
2, to get an ALPHA of 1.0 for ray segments intersecting the iso-
surface and an ALPHA of 0 otherwise. Afterwards, a multiplica-
tion of the result with the constant transparency can be performed.
For the interpolation the second general combiner’s input mapping
for the interpolation is set to GL_HALF_BI AS_.NORVMAL _NV and
GL_UNSI GNED_I NVENT _NV to map the the interpolation value to
the ranges 0 to 0.5 and 0.5 to 0 (see Figure 5). After the interpola-
tion the result is scaled with 2 in order to get the correct interpola-
tion result.

Our second approach stores the interpolation value | P in the
BLUE component of the dependent texture (R, G | P, A) . Now
the transparency can be freely defined for each isosurface and each
back and front face of the isosurface, but the register combiners
are used to fill the blue color channel with a constant value, that is
equal for all isosurfaces’ back and front faces. Also we can use all 8
bits of the BLUE color channel for the interpolation value. In order
to distribute the interpolation value from the BLUE color channel
on all RGB components for the interpolation, BLUE is first routed
into the ALPHA portion of a general combiner stage and then routed
back into the RGB portion (see Figure 6).

5.4 Lighting

After the per-fragment calculation of the isosurfaces’ gradient in
the first three general combiner stages, the remaining five general
combiners and the final combiner can be used for lighting compu-

Input Registers General Combiner 0 (RGB portion only)

S Y

VATV ~_ Insigned Identity} B H
el > AB+CD
= [et
nnn [Cconst.coloro]|\ - ’—‘umgned e D bacLe;a\diem
[A\
[Cconst comort || | \\\ General Combiner 1 (RGE portion only)
e e P
| \ L
J e B
N —| AB+CD
S———+{emmanoma]y C RGB portion:
dependent rebuilt
o ‘ tertre s b »finsigneatcenisH D H| front gradient :‘;.Nn -

[R]c[r]a]

o

General Combiner 2 (RGB portion only)
Signed Identity -
»Unsigned Idenmy)-

‘)-
Unsigned Invert
»| Unsig

Interpolated gradient:

A
B H
] AB+CD to additional
cl
0!

combiners
RGB portion: for shading

ot |

Figure 6: Register Combiner setup for gradient reconstruction and
interpolation with interpolation values stored in blue. Note that the
interpolation values are routed in the alpha portion and back into the
RGB portion to distribute the values onto RGB for interpolation.M
denotes the gradient of the back slice, N the front slice gradient
respectively.

tations. Diffuse and specular lighting with a maximum power of
256 is possible by utilizing the dot product of the register combin-
ers and increasing the power by multiplying the dot product with
itself. Currently we calculate | = Iy + 1gC(n-11) + 1C(n - 1),
where n denotes the interpolated normal, |1 the diffuse light source
direction, I, the specular light source direction, and C the color of
the isosurface. A visualization of a CT scan of a human head at
different thresholds is shown in Figure 8.

The same approach can also be employed for volume shading.
For lighting, the average gradient at the front and back slice is
used, thus no interpolation values have to be stored in the depen-
dent texture. The dependent texture holds pre-integrated opac-
ity and color values, latter are employed for diffuse and specular
lighting calculations. The implemented lighting model computes
I =I4C(n-11) 4+ 1sC(n-15)6, where n denotes the interpolated nor-
mal, |1 the diffuse light source direction, I the specular light source
direction and C the pre-integrated color of the ray segment.

Dynamic lighting as described above requires the employment of
RGBA textures, which consume a lot of texture memory. Alterna-
tively, static lighting is possible by storing pre-calculated dot prod-
ucts of gradient and light vectors for each voxel in the textures. The
dot products at the start and end of a ray segment are then interpo-
lated for a given isovalue in the register combiners. For this purpose
LUM NANCE_ALPHA textures can be employed, which consume
only half of the memory of RGBA textures.

The intermixing of semi-transparent volumes and isosurfaces is
performed by a multi-pass approach that first renders a slice with
a pre-integrated dependent texture and then renders the slice again
with a isosurface dependent texture. Without the need of storing
the interpolation values in the dependent texture, a single pass ap-
proach could also be implemented, which neglects isosurfaces and
semi-transparent volumes in a slab at the same time. Examples of
dependent textures for direct and isosurface volume rendering are
presented in Figures 9 and 10.

5.5 Problems

The thicknesses of the slabs are usually equal. However, this does
not necessarily imply a constant length of the ray segments. For
equidistant, view-aligned slices only perspective projections will
result in different lengths. Fortunately, these variations are often
neglectable in practice as extreme perspectives are usually avoided.
Thus, a constant length of the ray segments may be assumed in
good approximation. Therefore, the lookup tables for colors and
opacities are only two-dimensional tables depending on the scalar
value at the front and back of a ray segment.

For object-aligned 2D textured slices the lengths of the ray seg-
ments does also vary with the rotation of the volume. However, for
each rotation there is only one length—at least for orthogonal pro-
jections. The maximum factor of the variation of this length is v/3.
In order to avoid too strong errors, a set of two-dimensional lookup
tables for different lengths should be employed. For volumes with
unequal slice distances in the main axes directions, different lookup
textures must also be calculated.

Another problem that occurs when rendering semi-transparent
isosurfaces is, that some pixel are rendered twice if the surface in-
tersects the viewing ray exactly at the front slice, which results in
visible pixel errors. Once the next slab is rendered, the same pixel
is rendered again, because now the surface intersects the ray ex-
actly at the back slice. To circumvent this problem the OpenGL
stencil buffer test can be utilized. Each time a slab is rendered into
the frame buffer, the stencil buffer is cleared and the slab is also
rendered into the stencil buffer using a second dependent texture
that only selects pixels for rendering, where the isosurface inter-
sects the ray at the front slice position. If the next slab is rendered
into the frame buffer, the stencil buffer test is used and only pixels
that where not rendered into the stencil buffer in the previous step
are set. A comparison of images generated without and with stencil
buffer test enabled are shown in Figure 7. Currently this method
works only for a single semi-transparent isosurface.

Figure 7: Semi-transparent isosurface rendering of the spherical
harmonic (Legendre’s) function without (left) and with correction
(right). Note, that the annular artifacts on the left are successfully
removed on the right.

6 Results

In scientific visualization applications, which are often employed
to explore unknown data, it is quite important to be able to inter-
actively change the transfer functions. For isosurface rendering,
these updates can be performed very fast with our method, as no
integral has to be computed. For direct volume rendering, the cal-
culation of the new dependent texture from the given transfer func-
tions depends of course on the CPU performance. Our test PC is
equipped with a 650 MHz Athlon processor. For a global change
of the transfer function, the update of a 256 x 256 dependent tex-
ture, taking the self-attenuation within slabs into account, took ca
20 seconds and a maximum of ca 10 seconds for a local update.
Neglecting the self-attenuation the update required ca 0.3 seconds
for a global and a maximum of ca 0.15 seconds for a local update,

while the time required for the upload of the new dependent texture
into the texture memory is neglectable. These results show, that
an interactive update of the transfer functions is possible, when ne-
glecting the self-attenuation. As the differences in quality of both
approaches are quite small, a volume renderer could first neglect the
self-attenuation during the interaction with the transfer functions
and calculate the “correct” dependent texture in the background for
a later update.

For comparison purposes we implemented post-shading with
additional interpolated slices. The interpolation is performed in
the third and fourth texture stage and the one-dimensional texture
lookup is implemented by the dependent texture fetch operation
with an appropriate two-dimensional texture map.

Figure 9 shows a comparison of the image quality achieved with
pre-shading without additional interpolated slices (as presented in
[11]), post-shading without and with additional slices, and pre-
intergrated volume rendering using the same view parameters and
transfer functions. Obviously, pre-shading results in low image
quality with strong slicing artifacts (Fig. 9a). Post-shading provides
much better image quality (Fig. 9b). However, additional interpo-
lated slices are necessary in order to remove the slicing artifacts
(Fig. 9c). Note, that additional slices decrease the frame rate and
image accuracy because of more rasterization and blending opera-
tions. On the other hand, pre-integrated rendering achieves the full
quality without interpolated slices (Fig. 9d).

Especially direct volume rendering with few slices gains much
quality with the new approach. Figure 10 demonstrates the high
image quality achieved with a small number of textured slices and
a random transfer function with high frequencies. Although only a
small number of slices are rendered, all the details of the transfer
function are still visible. For comparison pre-shading (bottom, left)
and post-shading (top, right) results are included in Figure 10.

For performance evaluations, the test PC was equipped with
a NVidia GeForce3 graphics board with 64 MB DDR SDRAM
(3.8 ns), internal clock of 200 MHz, 460 MHz memory interface
clock and 4x AGP. The performance of the pre-integrated volume
renderer is basically limited by memory bandwidth, rasterization
power, and texel fetch operation performance, whereby the full
quality of the renderer is achieved without the interpolation and
rendering of additional slices. We require four texture fetch op-
erations, which are performed on the GeForce3 chip in two clock
cycles. All tests were performed with a 5122 viewport. For direct
volume rendering we achieved ca 90 fps for a volume with a reso-
lution of 163 voxels, ca 50 fps for 323, ca 21 fps for 643, ca 13 fps
for 1282, and ca 4 fps for 2562 voxels. For isosurface rendering we
achieved ca 70 fps for a volume with a resolution of 163 voxels, ca
40 fps for 323, ca 21 fps for 643, ca 11 fps for 1283, and ca 1 fps
for 256 voxels. The rendering algorithm and rasterization power
needed for both rendering modes are the same. They differ in the
number of employed general combiner stages and memory band-
with requirements as 8 bit textures are employed for direct and 32
bit textures for isosurface rendering. The results are independent of
the transfer functions and the number of isosurfaces.

Our results show, that interactive transfer function updates are
possible. The image quality of the pre-integrated volume render-
ing algorithm surpasses our previous approach by far. We achieve
the full rendering quality without spending rasterization power by
rendering additional interpolated slices.

7 Conclusions

We presented a novel volume rendering approach that provides
high image quality even with low-resolution volume data. Besides
direct volume rendering, the algorithm also allows us to render
double-sided isosurfaces with diffuse and specular lighting with-
out extracting a polygonal representation. An arbitrary number of

isosurfaces can be visualized without performance penalty. Fur-
thermore, volume shading and mixed rendering of isosurfaces and
semi-transparent volumes is possible. The time complexity does
neither depend on the number of isosurfaces nor the definition of
the transfer functions.

We implemented a hardware-accelerated implementation on cur-
rent consumer graphics hardware, more precisely the new GeForce3
graphics chip by NVidia. The current implementation employs 2D
textures and some other more or less elegant tricks to make the im-
plementation possible on current low-cost graphics hardware.

The ideal graphics hardware would provide dependent texture
lookups with texture coordinates obtained from two source textures,
more texture shader operations and most importantly 3D textures
support. As NVidia already proposed the necessary OpenGL exten-
sions [4], we are optimistic to achieve even better results with new
drivers on current or future graphics hardware.

8 Acknowledgments

We would like to thank Eckhart Traber of ELSA AG for provid-
ing a GeForce3-based graphics card just in time. Special thanks to
Christof Resk-Salama and Ruediger Westermann for many fruitful
discussions.

References

[1] J. Blinn. Jim blinn’s corner — compositing, part i: Theory. IEEE Computer
Graphics and Applications, 14(5):83-87, 1994.

[2] M. Brady, K. Jung, Nguyen HT, and T. Nguyen. Two-Phase Perspective Ray
Casting for Interactive Volume Navigation. In Visualization’97, 1997.

[3] B. Cabral, N. Cam, and J. Foran. Accelerated Volume Rendering and Tomo-
graphic Reconstruction Using Texture Mapping Hardware. ACM Symp. on \ol.
Vis,, 1994,

[4] NVIDIA Corporation.
http://www.nvidia.com/Developer.

[5] F. Dachille, K. Kreeger, B. Chen, I. Bitter, and A. Kaufman. High-Quality Vol-
ume Rendering Using Texture Mapping Hardware. In S GGRAPH Eurographics
Graphics Hardware Workshop, 1998.

[6] P. Lacroute and M. Levoy. Fast Volume Rendering Using a Shear-Warp Factor-
ization of the Viewing Transform . Comp. Graphics, 28(4), 1994.

NVIDIA OpenGL specifications.

[7]1 William R. Mark, Svetoslav Tzvetkov, and Pat Hanrahan. A real-time procedu-
ral shading system for programmable graphics hardware. In to appear in SG-
GRAPH 2001, 2001.

[8] N. Max. Optical models for direct volume rendering. |EEE Transactions on
Visualization and Computer Graphics, pages 99-108, 1995.

[9] M. Meilner, U. Hoffmann, and W Straer. Enabling Classification and Shading
for 3D Texture Based Volume Rendering Using OpenGL and Extensions. In
Visualization’99, 1999.

[10] H. Pfister, J. Hardenbergh, G. Knittel, H. Lauer, , and L. Seiler. The VolumePro
Real-Time Ray-Casting System. In Proceedings of of SGGRAPH 99, pages 251
—260. ACM, 1999.

[11] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl. Interactive Vol-
ume Rendering on Standard PC Graphics Hardware Using Multi-Textures and
Multi-Stage-Rasterization. In Eurographics/ S GGRAPH Workshop on Graph-
ics Hardware '00, pages 109-118,147. Addison-Wesley Publishing Company,
Inc., 2000.

[12] S. Réttger., M. Kraus, and T. Ertl. Hardware-accelerated volume and isosurface
rendering. In Proc. of Visualization ' 00, pages 109-116, 2000.

[13] R. Westermann and T. Ertl. Efficiently Using Graphics Hardware in Volume
Rendering Applications. In Proc. of SGGRAPH, Comp. Graph. Conf. Series,
1998.

[14] P. Williams, N. Max, and C. Stein. A high accuracy volume renderer for un-
structured data. |EEE Transactions on Visualization and Computer Graphics,
4(1):37-54, 1998.

Figure 8: Leftto right: Multiple colored isosurfaces of a synthetic data set with the corresponding dependent texture. Isosurfaces of a human
head CT scan (256°): skin, skull, semi-transparent skin with opaque skull and the dependent texture for the latter image.

Figure 9: Images showing a comparison of a) pre-shaded, b) post-shaded without additional slices, ¢) post-shaded with additional slices and
d) pre-integrated volume visualization of tiny structures of the inner ear (128 x 128 x 30) with 128 slices.

Red Greet Elug Apha

/"\;

Figure 10: High-quality pre-integrated direct volume rendering of a spherical harmonic (Legendre’s) function with random transfer functions
(top, left) and dependent texture (bottom, right). The resolution was 163 voxels, thus only 15 textured slices were rendered. Pre-shaded
(bottom, left) and post-shaded (top, right) results are included for comparison.

