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Using techniques to ex-
tract and visualize topo-
logical information, we
can combine the simplic-
ity of schematic depic-
tions with the
quantitative accuracy of
curves and surfaces com-
puted directly from the
data.

‘ i hen scientists introduce computer graphics to a field of study, the
first visualization techniques to emerge are the ones that most closely resem-
ble the pictures already familiar to those in the field. To the researcher, who
has seen thousands of them and has learned to interpret them, such images
may be more useful than a new representation that actually contains more
information. What x-ray images are to radiologists. and muitiple ncedle strip
charts are to seismologists. so oil streak patterns and smoke visualizations
are to fluid dynamicists. The capabilities of the first generation of numeric
flow visualization packages, such as Plot3D! reflect this approach. To visu-
alize oil film patterns on the surface of a body in a flow. scientists integrated
the tangential flow near the surface to generate curves on the body wall. To
duplicate smoke visualizations (albeit without mass and diffusion), scientists
integratcd massless particles through the flow to generate streamlines.

We have developed methods to automate the analysis and display of
vector field topology in general and flow topology in particular. The impor-
tance of topology in understanding fluid dynamics.>* combined with the
difficulty of extracting topological information with existing tools. moti-
vated our efforts.
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Figure 1. Classification criteria for critical points. R1 and R2 denote the real parts of
the eigenvalues of the Jacobian, I1 and 12 the imaginary parts.

2D vector field topology

First, let’s look at 2D vector field topology, the basis for the
examination of topology in 3D separated flows.

Topological concepts are very powerful because, given the
critical pointsin a vector field and the tangent curves or surfaces
connecting them, you can infer the shape of other tangent
curves and hence to some extent the structure of the entire
vector field.

We can think of flow topology in terms of surfaces (in 3D
domains) or curves (in 2D domains) that divide the flow into
separate regions. Two sets of surfaces or lines arc of particular
interest™:

1. Tangent surfaces that actually intersect the wall of a body
where the flow attaches to or separates from that wall.
Tangent curves on either side are deflected. moving along
the surface of the body.

2. Surfaces where tangent curves that start arbitrarily close
to each other can end up in substantially different regions.

borhood of such a point. then the first
order partial derivatives of the field (with
respect to position) determine the vector
field's behavior. Thus. for a nondegener-
ate critical point (x0, y0), we can use the
matrix of these derivatives—that is, the
Jacobian matrix—to characterize the
vector field and the behavior of nearby
tangent curves:
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The eigenvalues and eigenvectors of
this matrix are of particular interest. A
real eigenvector of the matrix defines a
direction such that if we move slightly off
the critical point in that direction, the
field is parallel to the direction we
moved. Thus. at the critical point, the
real eigenvectors are tangent to the tra-
jectories that end on the point. The sign
of the corresponding eigenvalue deter-

mines whether the trajectory is incoming (attracting) or outgo-
ing (repelling) at the point. The imaginary part of an eigenvalue
denotes circulation about the point.

Figure 1 shows how the eigenvalues classify a critical point as
an attracting node, a repelling node, an atiracting focus, a repel-
ling focus, a center, or a saddle. Among these points, the saddle
points are distinct in that there are only four tangent curves
(two for each real eigenvector) that actually end at the point
itself. At the saddle point. these curves are tangent to the two
eigenvectors of the Jacobian matrix, which are the separatrices
of the saddle point. The outgoing and incoming separatrices
arearallel to the eigenvectors with positive and negative
eigenvalues, respectively.

In addition to these 2D critical points, certain points on the
walls of objects or bodies in a fluid flow can be important. On
walls where the velocity is constrained to be zero (a no-slip
boundary in fluid dynamics). certain points might occur. We
refer to these points as attachment nodes or detachment nodes,

at which a tangent curve impinging on the surface terminates on

The first group of curvesis related to the surface topology., and
the second group is related to critical points both on walls and
inthe external flow. For example. a saddle point diverts tangent
curves that pass directly into it to very different regions.

ity.

Critical points

Critical points are points at which the magnitude of the vector
vanishes. These points can be characterized according to the
behavior of nearby tangent curves. We can use a particular set
of these curves to define a skeleton that characterizes the global
behavior of all other tangent curves in the vector field. If we
consider the Taylor series expansion of the field in the neigh-
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the surface, rather than being deflected by the tangential veloc-

The saddle points and attachment and detachment nodes dif-
fer from the other points in two regards. First, only a finite
number of tangent curves (two for saddle points and one for the
attachment/detachment nodes) end on the point itself. Second,
the curves adjacent to these particular curves diverge at the
critical point, which makes these curves significant to under-
standing the global behavior of other tangent curves. These
curves connect the various critical points into a skeleton that
represents the global topology of the 2D vector field, thus pro-
viding a very effective simplification for complex fields. (We
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Figure 2. Topology schematics for two time steps in the computed flow around a circular cylinder.

discussed the details of the analysis and generation of the rep-
resentations elsewhere.®)

Figure 2 shows the topology skeletons generated for two time
steps in a computed 2D flow around a circular cylinder,7 The
flowisincident from the left, with one instantaneous streamline
ending directly on the front of the cylinder. Points de, at, ce, and
sp denote detachment, attachment, center. and saddle points.
respectively. All instantaneous streamlines starting above that
curve are deflected over the top of the cylinder, and those
starting below are deflected beneath it. Vortex shedding occurs
behind the cylinder, as indicated by the detachment-attach-
ment “bubble™ in the first skeleton. which develops into a
paired saddle and center in the second skeleton.

2D time-dependent flows

When a 2D vector field depends on time or another parame-
ter, we can link the instantaneous topology skeletons together
to denote the time evolution of the flow. We join the adjacent
skeletons by linking their corresponding points and tangent
curves. This provides a representation of the time development
of the topologies that we can use to examine the formation of
structures and locate topological transitions.

After we have linked the instantaneous slices together, we
can display the set of stacked topological representations as a
set of surfaces, with the third dimension corresponding to time.
We create the surfaces by tesselating strips between corre-
sponding tangent curves in adjacent slices of the representa-
tion.

Figure 3 shows the surfaces in the periodic flow around a 2D
circular cylinder. Time increases from back to front along the
cylinder. The display uses several cues to aid visualization. We
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Figure 3. Topological surfaces depicting the time evolution of
the computed 2D flow past a circular cylinder.

light and shade the surfaces. then color them according to their
type. Surfaces corresponding to the incoming separatrix of a
saddle point are colored yellow. Those surfaces corresponding
to the outgoing direction are blue. Orange indicates surfaces
from attachment points, while purple indicates surfaces from
detachment points. You can see the periodic vortex shedding in
the repeated development and movement downstream of sad-
dle-center pairs.

Topology in 3D separated flows

A primary purpose of our 2D work was to develop techniques
that we could extend to the study of 3D separated flows. In
these flows some stream surfaces near the surface of a body can
abruptly move away and “separate” from the wall. The lines at
which this occurs are known as lines of separation. These lines
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Figure 4. (a) Surface particle traces in the computed flow past a
hemisphere cylinder. (b) Corresponding manually generated
schematic interpretation of surface topology. (Both from Ying,
Schiff, and Steger.”)

are the 3D extensions of the attachment and detachment nodes
usedin the 2D analysis. Namely, these are curves on a body wall
that are the terminuses for tangent surfaces. Tangent surfaces
on either side of the separation or attachment surface are de-
flected along the surface of the body.

Because we often associate separation surfaces with vortices
and recirculation zones, determining separation topologies is
important both for understanding fundamental fluid dynamics
and practical applications in aircraft and jet nozzle design. But
extracting topological information from numerical data sets
using existing visualization tools is both difficult and time con-
suming. Typically. a researcher would try to determine the to-
pology and the positions and shapes of the structures by looking
at numerically integrated streamlines constrained to the sur-
face (as in Figure 4a) and in the volume. The latter often be-
come visual spaghetti, difficult tointerpretin the neighborhood
of vortices where the tangent curves swirl about each other. By
manually selecting and refining integration starting points, the
researcher can discern structures and connections. However.
since topological structures are often complex and best por-
trayed graphically. the researcher must then draw those struc-
tures by hand (as in Figures 4b and S) to capture their form, if
not their exact shape, size. and position. Automatic methods for
producing these schematic surfaces would simplify the work.
eliminate manual errors. and. most importantly. accurately pre-
serve and convey the quantitative aspects of the structures.
We've developed one such automatic approach.

Surface topology
In general, when examining the topology of a flow, we exam-
ine the surfaces of bodies in the flow first. In experimental work.
researchers do this by examining the streaks that form in an oil
film on the surface of a body in a wind tunnel. In computer
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Figure 5. Hand-drawn surfaces depicting separation topology
for the computed flow past a hemisphere cylinder. (From Ying,
Schiff, and Steger.")

simulated flows, we can derive similar information by examin-
ing curves integrated along the surface® (as in Figure 4a) to
produce topology skeletons like the one shown in Figure 4b.

We can automatically generate the surface topology skeleton
by applying the 2D algorithm outlined above to the tangential
velocity field near the body. Grids in these data sets conform to
the shape of the body, with one of the grid planes lying on the
surface of the body. The velocity on this plane is zero. To ana-
lyze the surface topology, we create the 2D vector field that is
the projection onto the surface of the velocities in the grid plane
that are one point away from the surface. If the body is defined
by the k=0 grid plane, we compute the new 2D field
W', ), v'(i.j)) as the projection of the 3D velocity
(@, j, 1), v(i,j, 1), w(i. j, 1)) onto the plane tangent to the body
at (i, . 0).

Applying the same algorithm that generated the skeletons in
Figure 2 to this field produces the surface topology skeleton in
Figure 6. Here we have labeled the critical points according to
the sign of the normal component. Ss denotes a saddle of sepa-
ration (normal velocity positive), and Sa denotes a saddle of
attachment (normal velocity negative).

The positions and connections Ying, Schiff, and Steger® hy-
pothesized (Figure 4b) correspond well to those in this skele-
ton. The scale distortions result from the use of grid index
coordinates in Figure 6 rather than unrolled physical coordi-
nates. Figure 7 shows these curves projected onto the surface of
the hemisphere cylinder body. As indicated by the arrows,
curves moving toward saddle points are yellow; curves moving
away from those points are blue.

The one minor difference between these figures is the posi-
tion of the point rn — 1 (and it’s symmetry reflection rn — 4). We
can attribute the difference to the coarse resolution of the grid
that the flow solver used in this downstream region. The data
set contains the topology shown in Figure 6, but the physically
correct solution has the postulated topology shown in Figure 4.
The ability of this type of visualization to reveal anomalies
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otherwise difficult to detect il-
lustrates their potential value
in tuning grids and solvers.

3D separation
structures

As shown in Figure 5, the
saddles of separation on the
surface generate complex sur-
faces of separation in the ex-
ternal flow. These points,
which are saddles in the tan-
gent plane, are repelling
nodes in the plane normal to
the surface and parallel to the
outgoing separatrix (the blue
line) of the saddle point. The
stream surface generated by
this repelling node is the sur-

Figure 6. Computer-generated skeleton of surface topology corresponding to Figure 4.

Figure 7. Surface topology skeleton shown on the body surface
with a parameter space clipped stream surface.

Figure 8. Stream surfaces depicting separation topology.
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face of separation. We can see
this in the surface generated
by the saddles of separation labeled S, in Figure 5. In principal,
we can generate this entire stream surface by starting curve
integrations in this plane in the neighborhood of the critical
point. But note the manner in which the curves move away from
the surface along separation curves labeled I and III down-
stream from the saddles. The normal velocity along these lines
of separation on the body is sufficiently large that, given reason-
able grid spacings, it is impossible to start integrations close
enough to the surface so that they will remain near the surface
downstream. Thus, in practice, we cannot generate the surfaces
of separation solely from integrations in the neighborhood of
the saddles of separation.

However. from our integrations of the 2D tangential field, for
each saddle we know the corresponding separation curves on
the surface (the blue curves in Figure 7). Since analytically, as
the starting point gets arbitrarily close to the body, the inte-
grated curve should approach the separation curve, the separa-
tion curve can provide starting points for integrating curvesinto
the external flow. In Figure 8, we show the results of integrating
stream lines along two separation curves and tesselating them
with a surface.

Tangent surfaces

In both two- and three-dimensional vector fields, this work
requires us to construct representations of tangent surfaces that
are accurate as well as efficient to compute and display. We
must balance the accuracy of the surface against the time re-
quired to compute and display a higher resolution depiction. To
do this effectively. we must make the best use of a limited
number of tangent curves to define the surface. Hence, deter-
mining what surface to draw (given a number of known tangent
curves) and choosing the number and location of tangent curves
to be integrated are important.

IEEE Computer Graphics & Applications
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Figure 9. Minimal surface generation. (a) Directed graph used
in optimal surface generation. Diagonal box and arrow denote
the search order. (b) Skeleton of triangular mesh strips in a
vortex. Two strips (three curves) in a skewed mesh before
minimization (left) and after minimization (right).

Tesselation

To generate surfaces from adjacent curves, we must define a
polygonal tesselation. Since each of the surfaces including the
body typically contains 7.000 to 30,000 triangles, drawing time
is a concern. To maximize the drawing rates on our graphics
platform (a Silicon Graphics 4D/220GTX). we tile all surfaces
with triangular meshes. Because we defined our surfaces in
terms of adjacent tangent curves, this tiling appears quite
straightforward. If the number of vertices in each curve is the
same (if not, it can be reinterpolated). then we define a mesh by
going through the two curves, alternating their corresponding
vertices. This is only one of many possible tesselations.

Given two curves C; and G, defined as a series of line seg-
ments connecting the vertices C(i):0<i<n—-1 and
Co(j) : 0 <j<m -1, there are (m + n)! \ (m!n!)different triangu-
lar tesselations of the surface consistent with those line seg-
ments. The correct surface is the one that comes closest to the
surface defined by all the other intermediate curves that we did
not integrate. We can compute enough of these curves so that
their density exceeds the display resolution. but that is imprac-
tical.

A natural surface to choose is one that minimizes the surface
area (as a soap bubble does). To do this efficiently, we adapted
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Fuchs. Kedem, and Uselton’s algorithm.” a method developed
for tesselating closed contours in parallel cross sections. In their
algorithm,

1. each scgment between the curves defining the edge of a
triangle corresponds to a vertex in a directed graph, and

2. each triangle corresponds to an edge in the graph (as in
Figure 9a).

By assigning a cost to each edge in the graph, we reduce finding
an optimal tesselation to the problem of finding a least-cost
path through the graph from the vertex (0, 0) to the vertex
(n. m). We can find such a path quite simply by computing the
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Figure 10. Clipping new triangular mesh.

lowest cost path to each vertex along the diagonal i+j=C
starting with C =1 and ending with C=m + n - 2. At each of
these vertices, we must compute the cost of the triangle created
by moving from either of two vertices on the previous diagonal
(or only one previous vertex when the current vertex is on a
border of the graph) to the vertex under consideration. Finding
a path in this way requires O(mn) operations.

Figure 9b shows how the algorithm reduces the slenderness of
triangles in a mesh generated using fractional arc length param-
eterization between the original curves. We show two strips.
one purple and one orange, defined by three tangent curves. In
the resulting tesselation, the algorithm substantially reduces
the displacement between vertices on adjacent curves.

This global optimal path determination is computationally
intensive, but we haven’t found any local heuristic or faster
global tesselation method that works as well for defining ap-
roximate tangent surfaces from a limited number of tangent
curves.

Clipping

The complexity of stream surfaces. especially in regions
where the flow is “swirling™ near foci or vortices. causes much
internal structure to be hidden when we display the entire sur-
face (as in Figure 8). We frequently use clipping to reveal inte-
rior structures. In our case. two types of clipping have been
useful separately and in combination, namely physical space
and parameter space clipping.

Physical space clipping
Clipping planes in the physical coordinates of the data set lcts
us see the shape and internal structure of features close to the
surface of the body. Figure 10, for instance, shows the cross
section of the vortices.
To keep drawing times as low as possible. we draw the clipped
surfaces as triangular meshes. Generating a new mesh. storing
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Figure 11. Cross sectional view of a new triangular mesh show-
ing interior structure of vortical stream surfaces produced using
physical space clipping planes.

it in memory. and then drawing it can be inefficient when the
clipping planes change with each frame or when memory is
limited. This is an important consideration when forming ani-
mated sequences by moving the clipping planes themselves. For
these reasons, we developed a method for clipping a triangular
mesh against several clipping planes while drawing.

The algorithm for doing this clipping is similar to Maillot's,"
except that

1. we perform the clipping while drawing, rather than pro-
ducing a complete. new mesh in memory, and

2. we recursively clip each triangle against all clipping
planes: we use the stack to provide the temporary storage
for partially clipped results.

The algorithm is straightforward once we realize that we can
clip each triangle independently. While still maintaining the
proper mesh ordering, we can clip each triangle without know-
ing how the previous triangle was clipped.

In Figure 11 we show an example of the clipping of a triangu-
lar mesh against two clipping planes (A and B). We denote new
points according to intersections with clipping planes. For ex-
ample 3A1 denotes the intersection of segment 31 with clipping
plane A. Pseudocode for the algorithm appears in Figure 12.

IEEE Computer Graphics & Applications
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Seginter(v0), v1, plane): Returns intersection of segment v0 v1 with plane

ClipType(v0, v1, v2, plane): Returns 3 bits indicating the in/out status of each of
the three vertices with respect to the plane

BeginTriangles(): Starts new mesh strip, sets Drawing to TRUE
EndTriangles(): Ends current mesh strip, sets Drawing to FALSE
DrawVertex(v0): Draws vertex in mesh

SwapMesh(): Reverses mesh ordering of previous two vertices drawn

ClipTriangle(v0, v1, v2, plane)
{

local 11, 12;
plane «plane + 1;
if ( plane > nplanes ) then begin
if ( IDrawing ) then begin
BeginTriangles()
DrawVertex(v0)
DrawVertex(v1)
end;
DrawVertex(v2)
else
select ClipType(v0, v1, v2, plane) from
0: begin v0in, vlin, v2in
ClipTriangle(v0, v1, v2, plane)
end;
1: begin v0in, v1in, v2 out
ClipTriangle(v0, v1, |1 «Seginter(v0, v2, plane), plane)

SwapMesh()

ClipTriangle(l1, v1, 12 «Seginter(v1, v2, plane), plane)
end;
2: begin v0in, vl out v2in

SwapMesh()

ClipTriangle(l1 «Seglinter(v0, v1, plane), v0, 12 «Seginter(v2, v1, plane), plane)
ClipTriangle(v0, 12, v2, plane)
end;
3: begin v0in, v1 out, v2 out
ClipTriangle(v0, 11 «Seginter(v0, v1, plane), 12 «Seginter(v0, v2, plane), plane)
EndTriangles()
end;
4: begin vOout, vl in, v2in
ClipTriangle(l1 «Seginter(v1, v0, plane), v1, 12 «Seginter(v2, v0, plane), plane)
SwapMesh()
ClipTriangle(l2, v1, v2, plane)
end;
5: begin v0out, v1 in, v2 out
ClipTriangle(l1 «Seginter{v1, v0, plane), v1, 12 «Seginter(v1, v2, plane), plane)
end;
6. begin vOout, v1 out, v2in
ClipTriangle(l1 «-Seginter(v2, v0, plane), 12 «Seginter(v2, v1, plane), v2, plane)
end;
7:/* vO out, v1 out, v2 out */
endcase;
end;

}

Figure 12. The clipping pseudocode.
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Parameter space clipping

Clipping planes in a parameter space of the surface reveal a
different aspect of hidden surfaces. In our approach, the frac-
tional length down each curve and the number of curves down
a surface provide a natural pair of parameters. Figure 7 demon-
strates the application of this sort of clipping to reveal the
stream surface near a vortex core.

Refinement and stability

When determining how many tangent curve integrations to
launch from a seed curve, we choose an increment and start
integrations at intervals with that spacing along the seed curve.
However, adjacent curves started in this manner may diverge
downstream. Usually, this divergence is small. We can approx-
imate the surface between the two curves by examining the
distance between the integrated curves, then recursively refin-
ing the surface by introducing additional, intermediate starting
points until the maximum distance between the curves falls
below some specified tolerance.

As you can see in Figure 8, at several places. especially on the
surface near the nose, the starting points have widely varying
spacings. This is a consequence of the successive refinement
outlined earlier. However, the curves integrated with starting
points along the primary line of separation curl up into two
distinct vortices. Near the place where the surface “splits,” inte-
grated curves exhibit extreme sensitivity to initial conditions
(see Figure 13). In the absence of a singularity, a continuous
surface should join the two parts of the split surface. However.
the extreme sensitivity to initial conditions makes it impossible
to generate the surface by merely introducing new integration

Figure 13. Closeup of separation surfaces showing divergence
of integrated curves.

starting points along the original curve. In this case, doing so
repeatedly reduces the precision below an acceptable level and
introduces unacceptably large errors into the integration. We
need a method other than direct integration to resolve the tan-
gent surface in this region.

3D critical points

The zeros of a 2D vector field give rise to the basic set of
points shown in Figure 1. In 3D, the zeros of a vector field are

Saddle

Repelling Node

Saddie

Figure 14. A 3D saddle/saddle/repelling node depicted by tangent curves in its principal planes.
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Figure 15. Several critical points with their eigenvectors and
eigenvalues displayed as arrows and disks.

critical points that we can classify by simple generalization'' of
the 2D classification shown in Figure 1. Alternately. we can
classify the critical points by examining the invariants of the
matrix."

In the case of a 3D vector (u, v, w) field over a 3D domain
(x, y, ), the Jacobian matrix is 3 x 3:

du  du du

dx dy oz
[M} LA L @
A,y 2) |4 |9 Oy 0z

dx  dy 9z |00

Thus, three eigenvalues and three eigenvectors are possible.
The meanings of the eigenvalues are the same: A positive real
part signifies a repelling direction, a negative real part signifies
an attracting direction, and an imaginary part denotes circula-
tion.

Complex eigenvalues always occur in conjugate pairs. Two
complex eigenvalues are always paired with a real one. There-
fore, we can have foci or centers that are attracting or repelling
in the third dimension.

For critical points with all real eigenvalues, all three can have
the same sign, producing a purely repelling or purely attracting
node that appears as a 2D node in each of the three planes
spanned by pairs of eigenvectors. Alternately. two eigenvalues
can have one sign while the third has an opposite sign; this
produces a saddle/saddle/node, a point that appears in two
planes as a saddle and as a node in the third. We show one type
of saddle/saddle/node in Figure 14.

Locating and characterizing
In a numerical data set, we can locate 3D critical points by
searching for zeros of the field. We compute the matrix of the
first derivatives of the field with respect to physical space for the
point, then solve for the eigenvalues and eigenvectors.
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Display

Asshownin Figure 15, sets of arrows and disks can display the
critical points. The arrows point in the direction of the real
eigenvectors, with length proportional to the scaled eigenvalue
and color denoting the sign of the eigenvalue (yellow is nega-
tive, blue is positive). The disks are in the plane spanned by the
complex eigenvectors. The diameters of different colored disks
are proportional to the real and imaginary parts of the scaled
eigenvalue. Here, the dark blue or yellow disks represent the
real part; the light blue or red ones represent the imaginary
part.

Because the eigenvalues can range over several orders of
magnitude, we need a scaling function to display them in this
manner. We use the function f{x) = x” where a, 0 < a < 1,is spec-
ified through the graphical user interface at display time. In
Figure 14,a = 15.

Conclusions

When we process and extract the desired structural informa-
tion before visualizing it, we reduce a large volume of datato a
manageable amount containing the most relevant aspects. (In
our case, the surface representation requires about one tenth
the storage of the full data set.) By extracting before rendering,
our approach also eliminates tedious manual interpretation
and produces images that retain more quantitative information
than traditional hand-drawn ones. For vector fields in particu-
lar, graphical depictions consisting of critical points and the
curves and surfaces that connect them are an effective means of
communicating information about the topology. ]
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