
A Focus+Context Technique
Based on Hyperbolic Geometry

for
Visualizing Large Hierarchies.

John Lamping, Ramana Rao, and Peter Pirolli

Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304

�lamping, rao, pirolli�@parc.xerox.com

ABSTRACT
We present a new focus+context (fisheye) technique for vi-
sualizing and manipulating large hierarchies. Our technique
assigns more display space to a portion of the hierarchy while
still embedding it in the context of the entire hierarchy. The
essence of this scheme is to lay out the hierarchy in a uniform
way on a hyperbolic plane and map this plane onto a circular
display region. This supports a smooth blending between fo-
cus and context, as well as continuous redirection of the focus.
We have developed effective procedures for manipulating the
focus using pointer clicks as well as interactive dragging, and
for smoothly animating transitions across such manipulation.
A laboratory experiment comparing the hyperbolic browser
with a conventional hierarchy browser was conducted.

KEYWORDS: Hierarchy Display, Information Visualization,
Fisheye Display, Focus+Context Technique.

INTRODUCTION
In the last few years, Information Visualization research has
explored the application of interactive graphics and animation
technology to visualizing and making sense of larger informa-
tion sets than would otherwise be practical [11]. One recur-
ring theme has been the power of focus+context techniques,
in which detailed views of particular parts of an information
set are blended in some way with a view the of the overall
structure of the set. In this paper, we present a new technique,
called the hyperbolic browser, for visualizing and manipulat-
ing large hierarchies.

The hyperbolic browser, illustrated in Figure 1, was origi-
nally inspired by the Escher woodcut shown in Figure 2. Two
salient properties of the figures are: first that components di-
minish in size as they move outwards, and second that there
is an exponential (devilish) growth in the number of compo-
nents. These properties—“fisheye” distortion and the ability
to uniformly embed an exponentially growing structure—are
the aspects of this construction (the Poincaré mapping of the

yReprinted From: Proceedings of the ACM SIGCHI
Conference on Human Factors in Computing Systems,
Denver, May 1995, ACM

Figure 1: An organization chart.

hyperbolic plane) that originally attracted our attention.

The hyperbolic browser initially displays a tree with its root
at the center, but the display can be smoothly transformed to
bring other nodes into focus, as illustrated in Figure 3. In
all cases, the amount of space available to a node falls off
as a continuous function of its distance in the tree from the
point in the center. Thus the context always includes several
generations of parents, siblings, and children, making it easier
for the user to explore the hierarchy without getting lost.

The hyperbolic browser supports effective interaction with
much larger hierarchies than conventional hierarchy viewers
and complements the strengths of other novel tree browsers.
In a 600 pixel by 600 pixel window, a standard 2-d hierarchy
browser can typically display 100 nodes (w/ 3 character text
strings). The hyperbolic browser can display 1000 nodes of
which about the 50 nearest the focus can show from 3 to

1



Figure 3: Changing the focus.

Figure 2: Original inspiration for the hyperbolic tree
browser. Circle Limit IV (Heaven and Hell), 1960, (c)
1994 M.C. Escher / Cordon Art – Baarn – Holland. All
rights reserved. Printed with permission.

dozens of characters of text. Thus the hyperbolic browser
can display up to 10 times as many nodes while providing
more effective navigation around the hierarchy. The scale
advantage is obtained by the dynamic distortion of the tree
display according to the varying interest levels of its parts.

Our approach exploits hyperbolic geometry [2, 9]. The essence
of the approach is to lay out the hierarchy on the hyperbolic
plane and map this plane onto a circular display region. The
hyperbolic plane is a non-Euclidean geometry in which par-
allel lines diverge away from each other. This leads to the
convenient property that the circumference of a circle on the
hyperbolic plane grows exponentially with its radius, which
means that exponentially more space is available with in-
creasing distance. Thus hierarchies—which tend to expand
exponentially with depth—can be laid out in hyperbolic space
in a uniform way, so that the distance (as measured in the hy-
perbolic geometry) between parents, children, and siblings is
approximately the same everywhere in the hierarchy.

While the hyperbolic plane is a mathematical object, it can be

mapped in a natural way onto the unit disk, which provides
a means for displaying it on an ordinary (Euclidean) display.
This mapping displays portions of the plane near the origin
using more space than other portions of the plane. Very re-
mote parts of the hyperbolic plane get miniscule amounts of
space near the edge of the disk. Translating the hierarchy
on the hyperbolic plane provides a mechanism for controlling
which portion of the structure receives the most space without
compromising the illusion of viewing the entire hyperbolic
plane. We have developed effective procedures for manip-
ulating the focus using pointer dragging and for smoothly
animating transitions across such manipulation.

We have implemented versions of the hyperbolic browser that
run on Unix/X and on Macintoshes. We conducted an exper-
iment with 4 subjects to compare the hyperbolic tree browser
with a conventional browser on a node location task. Though
no statistically significant performance difference was identi-
fied, a strong preference for the hyperbolic tree browser was
established and a number of design insights were gained.

PROBLEM AND RELATED WORK
Many hierarchies, such as organization charts or directory
structures, are too large to display in their entirety on a com-
puter screen. The conventional display approach maps all the
hierarchy into a region that is larger than the display and then
uses scrolling to move around the region. This approach has
the problem that the user can’t see the relationship of the visi-
ble portion of the tree to the entire structure (without auxiliary
views). It would be useful to be able to see the entire hierarchy
while focusing on any particular part so that the relationship
of parts to the whole can be seen and so that focus can be
moved to other parts in a smooth and continuous way.

A number of focus+context display techniques have been in-
troduced in the last fifteen years to address the needs of many
types of information structures [7, 15]. Many of these fo-
cus+context techniques, including the document lens [13],
the perspective wall [8], and the work of Sarkar et al [14, 16],
could be applied to browsing trees laid out using conventional
2-d layout techniques. The problem is that there is no satis-
factory conventional 2-d layout of a large tree, because of its
exponential growth. If leaf nodes are to be given adequate
spacing, then nodes near the root must be placed very far
apart, obscuring the high level tree structure, and leaving no
nice way to display the context of the entire tree.

2



The Cone Tree[12] modifies the above approach by embed-
ding the tree in a three dimensional space. This embedding
of the tree has joints that can be rotated to bring different
parts of the tree into focus. This requires currently expen-
sive 3D animation support. Furthermore, trees with more
than approximately 1000 nodes are difficult to manipulate.
The hyperbolic browser is two dimensional and has relatively
modest computational needs, making it potentially useful on
a broad variety of platforms.

Another novel tree browsing technique is treemaps [5] which
allocates the entire space of a display area to the nodes of
the tree by dividing the space of a node among itself and its
descendants according to properties of the node. The space
allocated to each node is then filled according to the same or
other properties of the node. This technique utilizes space
efficiently and can be used to look for values and patterns
amongst a large collection of values which agglomerate hier-
archically, however it tends to obscure the hierarchical struc-
ture of the values and provides no way of focusing on one part
of a hierarchy without losing the context.

Some conventional hierarchy browsers prune or filter the tree
to allow selective display of portions of the tree that the user
has indicated. This still has the problem that the context of
the interesting portion of the tree is not displayed. Furnas [3]
introduced a technique whereby nodes in the tree are assigned
an interest level based on distance from a focus node (or its
ancestors). Degree of interest can then be used to selectively
display the nodes of interest and their local context. Though
this technique is quite powerful, it still does not provide a so-
lution to the problem of displaying the entire tree. In contrast,
the hyperbolic browser is based on an underlying geometry
that allows for smooth blending of focus and context and
continuous repositioning of the focus.

Bertin[1] illustrates that a radial layout of the tree could be
uniform by shrinking the size of the nodes with their distance
from the root. The use of hyperbolic geometry provides an
elegant way of doing this while addressing the problems of
navigation. The fractal approach of Koike and Yoshihara [6]
offers a similar technique for laying out trees. In particular,
they have explored an implementation that combines fractal
layout with Cone Tree-like technique. The hyperbolic browser
has the benefit that focusing on a node shows more of the
node’s context in all directions (i.e. ancestors, siblings, and
descendants). The fractal view has a more rigid layout (as with
other multiscale interfaces) in which much of this context is
lost as the viewpoint is moved to lower levels of the tree.

There have been a number of projects to visualize hyperbolic
geometry, including an animated video of moving through
hyperbolic space [4]. The emphasis of the hyperbolic browser
is a particular exploitation of hyperbolic space for information
visualization. We don’t expect the user to know or care about
hyperbolic geometry.

HYPERBOLIC BROWSER BASICS
The hyperbolic browser replaces the conventional approach
of laying a tree out on a Euclidean plane by doing layout
on the hyperbolic plane and then mapping to the unit disk
(which is straightforwardly mapped to the display). Change

Figure 4: A uniform tree of depth 5 and branching factor
3 (364 nodes).

of focus is handled by performing a rigid transformation of the
hyperbolicplane, moving the laid out tree in the process. Thus
layout is only performed once. Space for displaying node
information is also computed during layout and automatically
transformed with each change of focus.

The implementation of points and transformations on the hy-
perbolic plane is briefly discussed in the appendix. The rest
of this section presumes an implementation of the hyperbolic
plane and discusses higher level issues.

Layout
Laying a tree out in the hyperbolic plane is an easy problem,
because the circumference and area of a circle grow expo-
nentially with its radius. There is lots of room. We use a
recursive algorithm that lays out each node based on local
information. A node is allocated a wedge of the hyperbolic
plane, angling out from itself, to put its descendants in. It
places all its children along an arc in that wedge, at an equal
distance from itself, and far enough out so that the children are
some minimum distance apart from each other. Each of the
children then gets a sub-wedge for its descendants. Because
of the way parallel lines diverge in hyperbolic geometry, each
child will typically get a wedge that spans about as big an
angle as does its parent’s wedge, yet none of the children’s
wedges will overlap.

The layout routine navigates through the hyperbolic plane in
terms of operations, like moving some distance or turning
through some angle, which are provided by the hyperbolic
plane implementation.

Figure 4 shows what the layout of a uniform tree looks like.
Notice how the children of each node span about the same an-
gle, except near the root, where a larger wedge was available
initially. To get a more compact layout for non-uniform trees,
we modify this simple algorithm slightly, so that siblings that

3



Figure 5: The initial layout of a tree with 1004 nodes
using a Poisson distribution for number of children. The
origin of the tree is in the center.

themselves have lots of children get a larger wedge than sib-
lings that don’t (the wedge size grows logarithmically). This
effect can be seen in Figure 5, where, for example, the five
children of the root get different amounts of space. This tends
to decrease the variation of the distances between grandchil-
dren and their grandparent.

Another option in layout (in contrast to all examples so far
illustrated) is to use less than the entire 360 degree circle for
spreading out the children of the root node. With this option,
children of the root could all be put in one direction, for
example to the right or below, as in conventional layouts. An
example of this option, discussed below, appears in Figure 8.

Mapping and Representation
Once the tree has been laid out on the hyperbolic plane, it
must be mapped in some way to a 2-d plane for display. (We
can barely imagine the hyperbolic plane, not to mention see
it.) There are two canonical ways of mapping the hyperbolic
plane to the unit disk. In both of them, one vicinity in the
hyperbolic plane is in focus at the center of the disk while
the rest of the hyperbolic plane fades off in a perspective-like
fashion toward the edge of the disk, as we desire. We use
the conformal mapping, or Poincaré model, which preserves
angles but distorts lines in the hyperbolic space into arcs on the
unit disk, as can be seen in the figures. The other possibility,
the projective mapping, or Klein model, takes lines in the
hyperbolic plane to lines in the unit disk, but distorts angles.
You can’t have it both ways.

We tried the Klein model. But points that are mapped to near
the edge by the Poincaré model get mapped almost right on
the edge by the Klein model. As a result, nodes more than
a link or two from the node in focus get almost no screen
real-estate, making it very hard to perceive the context.

Figure 6: A new focus.

Change of Focus
The user can change focus either by clicking on any visible
point to bring it into focus at the center, or by dragging any
visible point interactively to any other position. In either
case, the rest of the display transforms appropriately. Regions
that approach the center become magnified, while regions that
were in the center shrink as they are moved toward the edge.
Figure 6 shows the same tree as Figure 5 with a different
focus. The root has been shifted to the right, putting more
focus on the nodes that were toward the left.

Changes of focus are implemented as rigid transformations of
the hyperbolic plane that will have the desired effect when the
plane is mapped to the display; there is never a need to repeat
the layout process. A change of focus to a new node, for
example, is implemented by a translation in the hyperbolic
plane that moves the selected node to the location that is
mapped to the center of the disk.

To avoid loss of floating point precision across multiple trans-
formations, we compose successive transformations into a
single cumulative transformation, which we then apply to the
positions determined in the original layout. Further, since
we only need the mapped positions of the nodes that will be
displayed, the transformation only needs to be computed for
nodes whose display size will be at least a screen pixel. This
yields a constant bound on redisplay computation, no matter
how many nodes are in the tree. And, the implementation of
translation can be fairly efficient; we require about 20 floating
point operations to translate a point, comparable to the cost of
rendering a node on the screen.

Node Information
Another property of the Poincaré projection is that circles on
the hyperbolic plane are mapped into circles on the Euclidean
disk, though they will shrink in size the further they are from
the origin. We exploit this property by calculating a circle

4



Figure 7: The display regions of nodes.

in the hyperbolic plane around each node that is guaranteed
not to intersect the circle of any other node. When those
circles are mapped onto the unit disk they provide a circular
display region for each node of the tree in which to display
a represenation of the node. This can be combined with a
facility that uses different representations for nodes depending
on the amount of real space they receive. Figure 7 shows the
same tree as Figure 1, with the display region of each node
indicated.

PRESERVING ORIENTATION
Orientation presents an interesting issue for the hyperbolic
browser, because things tend to get rotated. For example,
most nodes rotate on the display during a pure translation.
There is a line that doesn’t rotate, but the farther nodes are
on the display from that line, the more they rotate. This can
be seen in the series of frames in Figure 3. The node labeled
“Lowe”, for example, whose children fan out to the upper
right in the top frame ends up with its children fanning out to
the right in the bottom frame. These rotations are reasonably
intuitive for translations to or from the origin. But if drags near
the edge of the disk are interpreted as translations between the
the source and the destination of the drag, the display will do
a counter-intuitive pirouette about the point being dragged.

There is a fundamental property of hyperbolicgeometry that is
behind this and that also causes another problem. In the usual
Euclidean plane, if some graphical object is dragged around,
but not rotated, then is always keeps its original orientation—
not rotated. But this is not true in the hyperbolic plane. A
series of translations forming a closed loop, each preserving
the orientation along the line of translation, will, in general,
cause a rotation. (In fact the amount of rotation is proportional
to the area of the closed loop and is in the opposite direction
to the direction the loop was traversed.) This leads to the
counter-intuitive behavior that a user who browses around the
hierarchy can experience a different orientationeach time they

Figure 8: Putting children toward the right.

revisit some node, even though all they did was translations.

We address both of these problems by interpreting the user’s
manipulations as a combination of both the most direct trans-
lation between the points the user specifies and an additional
rotation around the point moved, so that the manipulations
and their cumulative effects are more intuitive. From the
user’s perspective, drags and clicks move the point that the
user is manipulating where they expect. The additional rota-
tion also appears natural, as it is designed to preserve some
other property that the user expects. The user need not even
be particularly aware that rotation is being added.

We have found two promising principles for adding rotations.
In one approach, rotations are added so that the original root
node always keeps its original orientation on the display. In
particular, the edges leaving it always leave in their original
directions. Preserving the orientation of the root node also
means that the node currently in focus also has the orienta-
tion it had in the original image. The transformations in the
examples presented so far all worked this way. It seems to
give an intuitive behavior both for individual drags and for the
cumulative effect of drags.

The other approach we have taken is to explicitly not preserve
orientation. Instead, when a node is clicked on to bring it to
focus, the display is rotated to have its children fan out in a
canonical direction, such as to the right. This is illustrated in
Figure 8 and also in the animation sequence in Figure 9. This
approach is aided when the children of the root node are all
laid out on one side of that node, as also illustrated in the two
figures, so that the children of the root node can also fan out
in the canonical direction when it is in focus.

ANIMATED TRANSITIONS
As demonstrated by recent work on information visualiza-
tions, animated transitions between different views of a struc-
ture can maintain object constancy and help the user assimilate

5



Figure 9: Animation with compromised rendering.

the changes across views. The smooth continuous nature of
the hyperbolic plane allows for performing smooth transitions
of focus by rendering appropriate intermediate views.

Animation sequences are generated using the so-called “nth-
root” of a transition transformation, i.e. the rigid transfor-
mation that applied n times will have the same effect as the
original. Successive applications of the “nth-root” generate
the intermediate frames. The sequences in Figure 3 and Fig-
ure 9 were generated this way.

Responsive display performance is crucial for animation and
interactive dragging. This can be a problem for large hier-
archies on standard hardware. We achieve quick redisplay
by compromising on display quality during motion. These
compromises provide options for use in a system that auto-
matically adjusts rendering quality during animation, e.g. the
Information Visualizer governor [10] or Pacers [17]. Fortu-
nately, there are compromises that don’t significantly affect
the sense of motion. Figure 9 shows an animation sequence
with the compromises active in the intermediate frames. Un-
less specifically looked for, the compromises typically go un-
noticed during motion.

One compromise is to draw less of the fringe. Even the full
quality display routine stops drawing the fringe once it gets
below one pixel resolution. For animation, the pruning can
be strengthened, so that descendants of nodes within some
small border inside the edge of the disk are not drawn. This
tremendously increases display performance, since the vast
majority of nodes are very close to the edge. But it doesn’t
significantly degrade perceptual quality for a moving display,
since those nodes occupy only a small fraction of the display,
and not a part that the user is typically focusing on.

The other compromise is to draw lines, rather than arcs, which
are expensive in the display environments we have been using.
While arcs give a more pleasing and intuitive static display,
they aren’t as important during animation. This appears to
be the case both because the difference between arcs and
lines isn’t as apparent in the presence of motion, and because
the user’s attention during motion tends to be focused near
the center of the display, where the arcs are already almost
straight.

One other possible compromise is to drop text during anima-
tion. We found this to be a significant distraction, however.

And text display has not been a performance bottleneck.

EVALUATION AND FUTURE WORK
A laboratory experiment was conducted to contrast the hy-
perbolic browser against a conventional 2-d scrolling browser
with a horizontal tree layout. Our subjects preferred the hy-
perbolic browser in a post-experimental survey, but there was
no significant difference between the browsers in performance
times for the given task, which involved finding specific node
locations. The study has fueled our iterative design process
as well as highlighted areas for further work and evaluation.

The two browsers in the study support mostly the same user
operations. “Pointing” provided feedback on the node un-
der the cursor in a feedback area at the bottom of window.
“Clicking” moved a point to the center. “Grabbing” any vis-
ible point allowed interactive dragging of the tree within the
window. The 2-d scrolling browser provides conventional
scrollbars as well.

The experiment was based on the task of locating and “double-
clicking” on particular nodes in four World-Wide-Web hier-
archies identified by their URLs (the application intent being
that a Web browser would jump to that node). Though this
particular task and application were adequate for a rough base-
line evaluation, there are problematic aspects. Typically, this
task would better be supported by query-by-name or even an
alphabetical listing of the nodes. Furthermore the WWW hi-
erarchy (based on breadth-first flattening of the network) con-
tained many similarly-named nodes and the hierarchy wasn’t
strongly related to a semantic nesting.

After pilot trials, we added to both browsers a feature to
rotate the names of children of a pointed-to node through
the feedback area and then jump to the current child. We
also added a toggleable “long text” mode in which all nodes
beyond an allocated space threshold disregard their boundaries
and display up to 25 characters. Despite the overlapping of
the text, this leads to more text being visible and discernible
on the screen at once (see Figure 10).

The experiment used a within-subject design with four sub-
jects, and tested for the effects of practice. We found no
significant difference in time or number of user actions in per-
forming the tasks across the browsers. There was a significant
practice effect in which practice produced a decrease in the
number of user actions required to perform the task for both

6



Figure 10: Hyperbolic browser in long text mode in World Wide Web hierarchy utilized in laboratory experiment.

browsers, but there was no practice effect on task completion
time for either browser. These practice effects did not differ
significantly between the browsers.

Our post-experimental survey showed that all four subjects
preferred the hyperbolic browser for “getting a sense of the
overall tree structure” and “finding specific nodes by their
titles,” as well as “overall.” In addition, specific survey ques-
tions and our observations identified relative strengths and
weaknesses of the hyperbolic browser. Three of the subjects
liked the ability to see more of the nodes at once and two
mentioned the ability to see various structural properties and
a better use of the space.

The amount of text that the hyperbolic browser displays was a
problem. The experimental task was particularly sensitive to
this problem because of the length and overlap of URLs, and
the ill-structured nature of the WWW hierarchy. Though the
long text mode was introduced before the study, none of the
subjects used this feature during the study, preferring to point
at the parent and then rapidly rotate the children through the
much larger feedback area.

Problem areas mentioned by one subject were that the hyper-
bolic browser provide a weaker sense of directionalityof links
and also of location of a node in the overall space (because
shapes changed). Layout in a canonical direction as shown in
Figure 8 addresses the first of these problems, but may worsen
the second. In particular, for applications in which access to
ancestors or to the root node is particularly important, this

layout makes it easy to find and navigate toward these nodes.

A number of refinements may increase the value of the browser
for navigating and learning hierarchies. For example, land-
marks can be created in the space by utilizing color and other
graphical elements (e.g. we painted http, gopher, and ftp links
using different colors). Other possibilities are providing a
visual indication of where there are nodes that are invisible
because of the resolution limit, using a ladder of multiscale
graphical representations in node display regions, and sup-
porting user control of trade-off between node display region
size and number of visible nodes (i.e. packing). The effec-
tive use of these variations are likely to be application or task
dependent and so best explored in such a design context.

CONCLUSION

Hyperbolic geometry provides an elegant solution to the prob-
lem of providinga focus+context display for large hierarchies.
The hyperbolic plane has the room to lay out large hierar-
chies, and the Poincaré map provides a natural, continuously
graded, focus+context mapping from the hyperbolic plane to
a display. The hyperbolic browser can handle arbitrarily large
hierarchies, with a context that includes as many nodes as are
included by 3d approaches and with modest computational
requirements. Our evaluation study suggested this technique
could be valuable, and has identified issues for further work.
We believe that the hyperbolicbrowser offers a promising new
addition to the suite of available focus+context techniques.

7



ACKNOWLEDGEMENTS
We would like to thank the reviewers, our four subjects, and
the colleagues who made suggestions for the prototype. Xe-
rox Corporation is seeking patent protection for technology
described in this paper.

REFERENCES
1. J Bertin. Semiology of Graphics. University of Wiscon-

sin Press, 1983.

2. H. S. M. Coxeter. Non-Euclidean Geometry. University
of Toronto Press, 1965.

3. George W. Furnas. Generalized fisheye views. In Pro-
ceedings of the ACM SIGCHI Conference on Human
Factors in Computing Systems, pages 16–23. ACM,
April 1986.

4. C. Gunn. Visualizing hyperbolic space. In Computer
Graphics and Mathematics, pages 299–311. Springer-
Verlag, October 1991.

5. B. Johnson and B. Shnedierman. Tree-maps: A space-
filling approach to the visualization of hierarchical in-
formation. In Visualization1991, pages 284–291. IEEE,
1991.

6. Hideki Koike and Hirotaka Yoshihara. Fractal ap-
proaches for visualizing huge hierarchies. In Proceed-
ings of the 1993 IEEE Symposium on Visual Languages.
IEEE, 1993.

7. Y.K. Leung and M.D.Apperley. A review and tax-
onomy of distortion-oriented presentation techniques.
ACM Transactions on Computer-Human Interaction,
1(2):126–160, June 1994.

8. J. D. Mackinlay, G. G. Robertson, and S. K. Card.
The perspective wall: Detail and context smoothly inte-
grated. In Proceedings of the ACM SIGCHI Conference
on Human Factors in Computing Systems, pages 173–
179. ACM, April 1991.

9. E. E. Moise. Elementary Geometry from an Advanced
Standpoint. Addison-Wesley, 1974.

10. G. G. Robertson, S. K. Card, and J. D. Mackinlay. The
cognitive coprocessor architecture for interactive user in-
terfaces. In Proceedings of the ACM SIGGRAPH Sympo-
sium on User Interface Software and Technology, pages
10–18. ACM Press, Nov 1989.

11. G. G. Robertson, S. K. Card, and J. D. Mackinlay. In-
formation visualization using 3d interactive animation.
Communications of the ACM, 36(4), 1993.

12. G. G. Robertson, J. D. Mackinlay, and S. K. Card. Cone
trees: Animated 3d visualizations of hierarchical infor-
mation. In Proceedings of the ACM SIGCHI Conference
on Human Factors in Computing Systems, pages 189–
194. ACM, April 1991.

13. George G. Robertson and J. D. Mackinlay. The docu-
ment lens. In Proceedings of the ACM Symposium on
User Interface Software and Technology. ACM Press,
Nov 1993.

14. Manojit Sarkar and Marc H. Brown. Graphical fisheye
views of graphs. In Proceedings of the ACM SIGCHI
Conference on Human Factors in Computing Systems,
pages 83–91. ACM, April 1992.

15. Manojit Sarkar and Marc H. Brown. Graphical fish-
eye views. Communications of the ACM, 37(12):73–84,
December 1994.

16. Manojit Sarkar, Scott Snibbe, and Steven Reiss. Stretch-
ing the rubber sheet: A metaphor for visualizing large
structure on small screen. In Proceedings of the ACM
Symposium on User Interface Software and Technology.
ACM Press, Nov 1993.

17. Steven H. Tang and Mark A. Linton. Pacers: Time-
elastic objects. In Proceedings of the ACM Symposium
on User Interface Software and Technology. ACM Press,
Nov 1993.

APPENDIX: IMPLEMENTING HYPERBOLIC GEOMETRY
We use the Poincaré model for our underlying implementa-
tion of the hyperbolic plane, because that makes translation
between the underlying representation and screen coordinates
trivial. We represent a point in hyperbolic space by the cor-
responding point in the unit disk, which is represented by
a floating point complex number of magnitude less than 1.
Rigid transformations of the hyperbolic plane become circle
preserving transformations of the unit disk.

Any such transformation can be expressed as a complex func-
tion of z of the form

zt �
�z � P

1 � Pz

Where P and � are complex numbers, jP j � 1 and j�j � 1,
and P is the complex conjugate of P . This transformation
indicates a rotation by � around the origin followed by moving
the origin to P (and �P to the origin).

The composition of two transformations can be computed by:

P �
�2P1 � P2

�2P1P2 � 1
� �

�1�2 � �1P1P2

�2P1P2 � 1

Due to round-off error, the magnitude of the new � may not
be exactly 1. Accumulated errors in the magnitude of � can
lead to large errors when transforming points near the edge,
so we always normalize the new � to a magnitude of 1.

As an aside, on graphics hardware that has fast support for
3� 3 matrix multiplication, it might be faster to use the Klein
model, as done in [4], because rigid transformations can then
be expressed in terms of linear operations on homogeneous
coordinates. Display then requires computing the Poincaré
mapping of points represented in the Klein model, which
is just a matter of recomputing the distance from the origin

according to rp � rk��1 �
q

1� r2
k�.

8


