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Abstract. We present a novel algorithm for the geometric extraction of
stream volume segmentation for visualization of grid-less flow simulation.
Our goal is the segmentation of different paths through a mixing tube
where the flow is represented by scattered point sets approximated with
moving least squares. The key challenges are the watertight construction
of boundary representations from separatrices. These are obtained by
integrating and intersecting stream surfaces starting at separation and
attachment lines at boundaries of flow obstacles. A major challenge is
the robust integration of stream lines at boundaries with no-slip condi-
tion such that closed volume segments are obtained. Our results show
the segmentation of volumes taking consistent paths through a mixing
tube with six partitioning blades. Slicing these volumes provides valuable
insight into the quality of the mixing process.

1 Motivation

Topological features of flow fields such as separatrices are of specific interest
in vector field visualization, since they partition the domain into connected seg-
ments with consistent limit behavior of stream lines, classifying (stationary) flow
regions based on their sources and targets. In planar vector fields, critical points
often determine these flow targets besides cycles and boundary segments [5].
In three-dimensional incompressible flow critical points are rather rare. Sinks
and sources do not exist, due to conservation of mass, and only saddles of dif-
ferent types may occur. Thus, separatrices mostly emerge from separation and
attachment lines on boundary surfaces from where they may be integrated with
sophisticated stream surface extraction.

Fig. 1. Cylindrical mixing tube with six blades.



In the present work we contribute a novel algorithm for the extraction of wa-
tertight boundary representations for stream volumes. The algorithm is used to
analyze a three-dimensional vector field describing a mixing process simulated by
the Finite Pointset Method (FPM) [13]. The underlying application is concerned
with flow of liquid glass at high temperature through a cylindrical mixing tube
(see Fig. 1). Six twisted blades located sequentially inside the tube partition the
flow into 64 different paths, each associated with a stream volume composed of
all stream lines taking the same path. Both, the granularity and the geometric
shape of these separating structures are indicators of the quality of the mixing
process, i.e. maintaining homogeneous optical properties of the glass before it is
casted into its final shape.
Our application data set describes a stationary velocity field of viscous incom-
pressible flow, represented by a finite point set with associated field attributes.
Due to the absence of a computational grid, the data needs to be approximated
with a local method like Moving Least Squares (MLS) which is also used in the
simulation code. A major challenge is the integration of stream lines along sur-
faces with no-slip boundary, since the approximated vector field may not get
exactly zero on the boundary and may even reverse its direction. To obtain a
valid segmentation, stream lines on boundaries are projected on the surface and
released on intersection with a separation line. The framework composed of such
separating boundary stream lines, separation, and attachment lines connects
the material boundaries to the complex of inner separatrices that need to be
constructed carefully by adaptive integration due to varying complexity of the
vector field.
We present a novel algorithm for the adaptive construction of watertight stream
volumes by mutual intersection of separatrices in three-dimensional flow, used
for quality analysis of mixing processes. These are the main challenges arising
during stream-volume construction:

– No neighborhood relation between data points. The vector field is
approximated by a mesh-free approximation technique called ”Moving Least
Squares”. For each evaluation, a local point set is defined using weighting
and visibility queries.

– No-slip boundary and flow obstacles. To create watertight stream vol-
umes, one needs to be capable of integrating stream lines along geometry.
Additionally, flow obstacles have an impact on the construction of stream
surfaces due to their splitting behavior.

– Intersection of separatrices. Intersected stream surfaces generated by
separation or attachment lines on flow obstacles yield parts of separatrices,
that are recombined to define boundaries of stream volumes.

In Sect. 2 we summarize fundamentals and refer to related work that has
been done in the field of vector field approximation and stream surface con-
struction. Sect. 3 describes our approaches to stream volume construction and
visualization. We provide numerical examples of stream volume visualizations in
Sect. 4, which as well contains an analysis of the test data set and an outlook
on future work.



2 Fundamentals and Related Work

2.1 Moving Least Squares Approximation

Let S be a field of scattered points xi ∈ Ω ⊆ Rn with function values fi ∈
Π ⊆ Rm. A method suitable to approximate such grid-less data is the MLS
approach [7, 8]. MLS is a weighted, local generalization of the well-known ”Least
Squares” technique, which fits a polynomial of given degree to a set of points
while minimizing the squared distance to corresponding field values.
For a large set of points, it is not feasible to find a globally defined polynomial f
that still provides a fairly small minimum overall error, as obtained by a standard
Least Squares approximation. To construct a locally supported function fx′ for
arbitrary fixed x′ ∈ Ω, the standard LS equation is altered by introducing a
compactly supported weighing function. The approximating polynomial fx′ must
then satisfy (1).
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where r is given by the simulation and defines the radius of influence or ”smooth-
ing length”. Only points whose distance to x′ does not exceed r are used for
evaluation. MLS uses (1) to construct an approximating function f by moving
x′ over the domain of S. Therefore f is not defined by a single fixed x′ ∈ Ω, but
needs to be evaluated at every x′ = x ∈ Ω separately. This construction creates
f as a composition of multiple fx′ . Let m = 1 and fx′ be a polynomial of the
general form fx′(x) = aTx′ · v(x) with ax′ an unknown vector of coefficients and
v(x) a given polynomial base vector of degree d. For n = 2, m = 1, and d = 1,
(2) needs to be solved for a to obtain an approximating polynomial.
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2.2 Line, Surface, and Volume Integration

Stream lines provide a simple way of visualizing particle traces in stationary
fields [11]. Their computational complexity depends on the method used for vec-
tor field evaluation as well as on the integration method and adaptivity scheme.
When integrating stream lines, appropriate measures have to be taken to guar-
antee a given accuracy. We use an embedded Runge-Kutta integration scheme
of 4th/5th order to generate adaptive stream lines. Hereby a comparison of the
two different results with respect to angular deviation is used to scale the step
size for a fifth order Runge-Kutta integration.
Stream surfaces represent a generalization of the uni-variate stream lines. They
are of special importance to the analysis of mixing processes as they provide the
basis for constructing three-dimensional separatrices. The introduction of stream



surfaces necessitates new concepts of adaptivity. Such a concept was presented
by Hultquist et al. [6] and has been refined in the context of grid-based data sets
by different authors such as Scheuermann et al. [10] and Garth et al. [4]. The
underlying stream surface generation algorithm used in this paper is based on
an extended version of this ribbon-based approach. Stream surfaces generated
by methods discussed in this paper represent separating structures as proposed
by Wiebel et al. [14].
Traditional approaches of stream volume generation use a closed polygon as rake
for stream surfaces and are hardly more than an adopted version of the stream
surface algorithms introduced by Hultquist. However, there are more sophisti-
cated methods based on scalar field generation [15] or tetrahedral volumes [2].
This work introduces a novel surface-based algorithm to create watertight stream
volumes from parts of separatrices, making knowledge about the starting and
ending position of the volume unnecessary.

3 Algorithm

3.1 Outline

These are the basic steps of our algorithm:

1. Compute separation and attachment lines on flow obstacles.
2. Generate three-dimensional separatrices by construction of stream surfaces

starting at separation and attachment lines (forwards and backwards, resp.).
3. Intersect separatrices and split them into multiple surface segments.
4. Compose stream volumes of parts of separatrices.

In the following sections, these steps are explained in detail.

3.2 Methods

Computation of Separation Lines. Separation and attachment lines define
locations on the two-dimensional projection of the vector field onto the boundary
object where flow separates from an object, or attaches to it. In the following
separation line will be used to denote both types.
For the given mixing simulation we assume, that all significant separation lines
are located on the triangulation of obstacles. Such triangles separate incoming
flow in one of two ways:

Points with Flow Parallel to Eigenvectors. A method proposed by Kenwright
et al. [9] finds points of separation lines on edges of triangles. This is done by
eigenvector analysis of the Jacobian of the two-dimensional projected vector
field. Points on a separation line are classified by flow parallel to the direction
of one of the Jacobian’s real eigenvectors. If this eigenvector corresponds to the
smallest real eigenvalue, the point is on an attachment line. If it corresponds to
the greatest eigenvalue, a point on a separation line was found.



Separating Edges. Convex edges between triangles of obstacles may have sepa-
rating properties. The two variables listed in the following determine, whether
a point p on the edge between two adjacent triangles ∆i and ∆j separates the
flow.

d1 = ((∆i.p1 − p)×∆i.n) · f(p)
d2 = ((∆j .p1 − p)×∆j .n) · f(p)

If d1 and d2 do have the same sign as illustrated by Fig. 2, point p has the
desired separating properties. This examination allows classification of edges by
the separating behavior of their adjacent corner vectors.

Fig. 2. Flow separation at convex edge. Regions, where d1 and d2 have matching signs
are marked in gray.

The separation lines of our test data are located near the sharp edges of the
mixing blades. These separation lines will be used as rakes for stream surfaces
representing three-dimensional separatrices. As our data set does not include
saddles, cycles and conventional sinks and sources, separatrices originate from
separation lines only.

Integration of Stream Lines. Stream line integration to construct surfaces
in grid-less flow simulations yields certain challenges:

Visibility of Data Points. In order to avoid inclusion of points during the MLS
approximation of the vector field that are not visible from the position of evalua-
tion, a visibility check needs to be implemented. Grid-based approaches to vector
field visualization generally avoid such calculations, as boundary elements are
integrated into computational meshes. Figure 3 shows the effects of visibility on
stream line integration. To check for a visibility block between points x and x′,
we find intersections of the line x-x′ with triangles of the boundary object.

Integration along Boundary Geometry. Stream lines may start on geometry or
cause intersections with it due to numerical inaccuracies of the MLS approxima-
tion. Both cases require the ability to integrate stream lines on geometry.
To guarantee watertight surface construction, stream lines that are integrated
on the boundary object are forced to stay on geometry until they meet with



Fig. 3. Impact of visibility on stream lines.

a separation line. A basic approach to stream line integration on triangulated
geometry assumes, that every position on a stream line is located on exactly one
triangle t. A new triangle is entered as soon as the stream line leaves its current
triangle i.e. the stream line crosses one of the edges of t. The appropriate neigh-
boring triangle is chosen as new plane of projection. While this simple method
works in most common cases, it however ignores some of the more complex situa-
tions illustrated in Fig. 4. Stream line integration on triangles of two-dimensional

Fig. 4. Situations a) and b) show tangential behavior at triangle edges. In situation
c), a stream line crosses one of the corners of a triangle, continuing on only one of
multiple neighboring triangles. Situation d) depicts a stream line leaving its current
triangle, being released on a convex edge. There are numerous similar situations, where
the simple approach mentioned above falls short and oscillation might occur.

linear vector fields has been presented before by Battke et al. [1] in 1997. Our
projective approach with focus on edge cases is presented in the following. Let
p be the position of a stream line on geometry, with a list T = {ti} of triangles
directly adjacent to this position. This method repeats the following steps:

1. Evaluation of the vector field. The vector field is evaluated at point p,
being located on at least one triangle. Due to the approximating properties
of MLS, impact of the no-slip condition is reduced, as the vector field does
not evaluate to zero at its boundary.

2. Projection. The resulting vector v is projected onto all triangles ti ∈ T .
3. Choice of Next Point and Determining Triangles. There are three

possible cases. Either p is located on exactly one triangle, on an edge be-
tween two triangles, or on multiple triangles. p is advanced to p+ vi for the
appropriate triangle ti or the intersection of this line with any of the edges
of ti and appended to the stream line. T is updated accordingly.



Degree reduction. If a stream line reaches a point where the number of neigh-
boring data points is not sufficient to provide a uniquely solvable LSE for the
evaluation of MLS, the polynomial degree is reduced, as lower degrees require
fewer non-coplanar data points. These situations occur especially close to bound-
aries of the data set. When integrating on or near geometry, extrapolation may
flip the vector field’s orientation, what can be avoided by decreasing the degree
of integration to zero. With geometric integration being unsteady and restricted
to a low order due to the low number of available points in the neighborhood,
this represents a valid and fast alternative to complex point-in-volume checks.

Construction of Stream Surfaces. One special case that arises, when con-
structing stream surfaces in vector fields with obstacles is the event of surface
splitting. If neighboring stream lines diverge to different sides of an obstacle,
triangulation of this stream line pair is canceled. This results in two different
fronts of the stream surface. To take advantage of caching strategies, those two
fronts are advanced separately and sequentially (see Fig. 5). If at least one of the
two affected stream lines is not integrated on the boundary object, a new stream
line is inserted on the boundary geometry to maintain a closed representation
of the stream surface.
For volume creation, stream surfaces are generated at every separation line of
the data set. Resulting separatrices are combined to stream volumes as explained
in the following.

Fig. 5. Obstacle splitting surface. Fronts are advanced separately.

Intersecting Separatrices. An overall look at the division of space is provided
by the generation of separatrices as mentioned earlier. To observe one distinct
volume at a time, these separatrices need to be split and reorganized to form
closed boundaries of stream volumes. As illustrated in Fig. 6, in directed vector
fields such as the mixing process considered in this work, intersections resulting
in the splitting of stream surfaces can be of two different types:
Intersections caused by separatrices of opposing directions are crossings of sep-



aratrices, which cannot occur between separatrices of identical direction3, as
stream surfaces are not able to cross each other if their rakes do not.
The remaining intersections are T-intersections rather than x-crossings. They
occur whenever an outer stream line of a separatrix, that is integrated along the
boundary geometry meets with the rake of a separatrix of the same direction.

Surface Crossings. If two surfaces are crossing, so do their triangulations. Hence
it is possible to operate on their triangulations when determining cuts of sur-
faces, rather than generating and inserting new stream lines into both surfaces
to represent the cut. While the former method is less accurate than the latter, in-
tersection of triangulations is computationally far less expensive than according
stream line integration and insertion into the complex structure of stream sur-
faces. In this paper, former method was chosen to create cuts between surfaces
of opposing directions. As soon as the triangle-based intersection is computed
and affected surfaces are retriangulated, they are split into multiple parts along
the trace of their cut. Surface crossings generally divide two surfaces into a total
of four parts (see Fig. 7).

T-Intersections The second type of cut is produced between two surfaces of
the same direction, where the left- or rightmost stream line souter of a surface
S1 leaves geometry at the rake of another surface S2, whose rake represents a
separation line.
This type of intersection cannot be handled by a straightforward cutting of the
two triangulations. One reason for this is that the roots of S2 do not yield a one-
to-one representation of the original separation line due to rake discretization
during the process of surface creation. As the starting points of souter and stream
lines of S2 usually differ, it is impossible to guarantee a continuous intersection.
An advantage over the crossing situation is the knowledge about the meeting
point of souter with the rake of S2. This point is identical to the position, where
souter leaves geometry. Insertion of a stream line starting at this point that
directly represents the cutting trace on S2 becomes feasible in this case. This
newly generated stream line keeps all data about the surface intersection that is
needed for retriangulation and splitting of the affected surface.

Composition of Stream Volumes. Previous work on stream volumes is not
suitable to create the volumes desired in the context of this work, as no data
about the starting or ending regions of volumes is available. Therefore a new
approach of volume composition is introduced in the following.
Surface parts that originate from a common intersection yield a certain relation.
As shown in Fig. 7, this relationship is governed by the normals of two adjacent
triangles that are part of the intersection. These normals allow classification of
the newly created surfaces (in this case four) by orientation of their normals,
resulting in a neighborhood structure. A back-back neighborhood between two
surfaces s1 and s2 with triangles ∆1 and ∆2 is for example indicated by:
3 backwards or forwards in the vector field



Fig. 6. Crossing behavior of stream surfaces (a), and t-intersection (b) between outer
stream line and red surface. Stream volume composed of parts of three separatrices
(c). Retriangulation during surface splitting guarantees a closed volume.

d1 = ∆1.n · (∆2.o−∆1.o) < 0
d2 = ∆2.n · (∆2.o−∆1.o) > 0

Where ∆1.o and ∆2.o denote triangle centers. Assembling of a stream volume
follows these steps:

1. Choose an arbitrary stream surface.
2. Choose whether the surface faces the inside or the outside of the volume

to be generated. Therefore indicating, whether the normal points into the
volume or not.

3. Save a list of all relevant intersections of this surface.
4. Add all surfaces to the volume that share any of the relevant stored intersec-

tions and face in the correct direction as defined by d1 and d2. Intersections
of the new surface are processed and added to the list of intersections.

5. Repeat steps 3-4 until no more surfaces are added.

After all five steps are completed, every surface contributing to the volume is
assigned at most two volume indices.

Fig. 7. Neighboring triangles of different surfaces (left) and composition with inter-
sected surfaces (right).



Constructing Slicing Planes. Slicing planes are traditionally used in volume
visualization of scalar data sets. Such textured planes cut through a data set and
are colored by the scalar values associated with the data. A visualization of the
volume is obtained by placing parallel, transparent planes throughout the data
set. A similar method is used in this work to avoid occlusion when visualizing
stream volumes. The boundary and surface intersections with slicing planes are
found and projected onto the plane. While the boundary object of the test data
set may produce multiple outlines on the plane, intersections between the slicing
plane and volumes consist of cuts with all surfaces of a certain stream volume,
resulting in closed area representations.
During visualization slicing planes are rendered as RGBA textured quads with
outlines and cuts mapped and plotted using Bresenham’s line algorithm [3]. This
produces a slicing plane displaying all intersections with geometry. To avoid
ambiguity, the interior area of a volume cut is colored in a distinct color.

4 Results

4.1 Application

As expected due to the number of obstacles, 26 = 64 volumes are created in our
data set. These volumes consist of a total of 264 surfaces, implying that every
separatrix was on average divided into 12 parts.
Figure 9 depicts visualizations of a single stream volume and the complete set of
64 volumes. Inspection of multiple volumes, as depicted in Fig. 8 provides more
general information on the segmentation of flow. Figure 10 displays slicing planes
through volumes of the data set. Figure 11 illustrates the use of transparent slic-
ing planes for volume visualization. All slicing planes are aligned perpendicular
to the main direction of flow.

4.2 Discussion

Stream volumes provide a general overview of the quality of a mixing process,
as their form and start/end positions contain information about sets of parti-
cle traces. Slicing planes simplify analysis by extracting local information about
stream volumes. This way multiple observations can be made using the visu-
alization techniques presented in this paper: The simulation has a symmetrical
rotating behavior, incoming groups of stream lines are rotated by at least 90◦.
The cuts in Fig. 10 reveal a shuffling or squeezing motion caused by the vector
field, resulting in volume deformations. Additionally, a comparison between cuts
through either end of the simulation suggests a mixing property, as neighboring
stream volumes describe differing paths. These results suggest, that the mixing
process is of good quality. As is seen by analysis of flow obstacles, the mixing
character is directly influenced by the number of obstacles. The desired number
of obstacles depends on the concrete application of the mixing process.

Future work in this direction may include parallelization of intersection oper-
ations, analysis of volume divergence and extension of the work to non-stationary
fields.



Fig. 8. Visualization of several stream volumes. A stretching, rotating and diverging
motion between adjacent volumes can be observed.

Fig. 9. Visualizations of a single twisted and stretched volume and all volumes of
the data set. Colors identify adjacent stream volumes. Occlusion of volumes hides
important information about the mixing process, which can be visualized by slicing.

Fig. 10. Slicing planes through five (left) and all volumes of the data set (right) at
positions t = 0.3, 0.6, 1.0, 0, 0.5, 1.0. It is clearly visible, how neighboring volumes take
different paths through the data set. Comparison between individual slices allows ob-
servation of stretching, rotational, and mixing behavior. The distribution of volume
colors indicate a good mixing process.

Fig. 11. Volume visualization of a selection of stream volumes by slicing planes (a)
and volume visualization of two stream volumes (b). This type of visualization lessens
the effect of volume occlusion by the use of transparency.
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