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Abstract

A method for computing isovalue or contour
surfaces of a trivariate function is discussed. The
input data are values of the trivariate function, F ijko at
the cuberille grid points (x;, Yj. 2k) and the output is a
collection of triangles representing the surface
consisting of all points where F(x, y, z) is a constant
value. The method described here is a modification
that is intended to correct a problem with a previous
method.

1.0 Introduction

The purpose of this paper is to describe a method
for computing contour or isovalue surfaces of a
trivariate function F(x, y, z). It is assumed that the
function is continuous and that samples over a
cuberille grid (see Figure 1 ) are available. These
values are denoted by Fjjx = F(x;, Vi 2k i=1, ...,
Nx,j=1,..,Ny, k=1, .., Nz The problem is to
compute the isovalue or contour surface

Sa={(xy,2):Fxy,2)=a}.
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Figure 1. Cuberille Grid Data

The "marching cubes" method (hereafter referred
to as mc method) produces a surface consisting of
triangles whose vertices are on the edges of the voxels
of the cuberille grid. The method processes one voxel
at a time. The values, Fjjk, and linear interpolation
are used to determine where the isovalue surface
intersects an edge. How the intersection points are
assembled into triangles depends upon the number and
configuration of the grid points with values above or
below the isovalue, a. The various configurations
are shown in Figure 2, where a grid point that is
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marked indicates Fjjx > o. While there are 28 = 256
possible configurations, there are only 15 shown in
Figure 2. This is because some configurations are
equivalent with respect to certain operations. First
off, the number can be reduced to 128 by assuming
two configurations are equivalent if marked grid
points and unmarked grid points are switched. This
means that we only have to consider cases where there
are four or fewer marked grid points. Further
reduction to the 15 cases shown is possible by
equivalence due to rotations.
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Figure 2. Configurations.
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Without modification, the mc method can
produce some erroneous results consisting of
isosurfaces with "holes". Such a possibility is
shown in Figure 3 where a voxel with configuration
6 shares a face with the complement of configuration
3. Since the line joining the upper-left-rear grid point
of configuration 6 and the lower-right-front grid point
of the complement of configuration 3 has one
endpoint marked and the other unmarked, this line
should pass through the isovalue surface. Diirst[4]
points out this problem and states that the two
triangles making up the quadrilateral (the 4
intersection points along the edges) on the common
face should be part of the isovalue surface. We do not
agree since this could lead to more than two triangles
sharing a common edge. The approach presented here
corrects this problem, but not in this manner.
Rather, different triangulations are used. For the case
at hand, there are two ways to correct the problem and
both are shown in Figure 4. What distinguishes
these two possibilities is the choice of the pairwise
connection of the four vertices on the common face.
We call such a face containing four vertices of the
isovalue surface an ambiguous face. It is this
ambiguity which is the root of the problem for the
mc method. The connection of the isosurface points
on the common face is done in one manner as the face
of one voxel and in another manner as the face of the
adjoining voxel. Any correct method needs to be
consistent and in order to be consistent on these faces,
different triangulations (not considered in the original
mc method) must be used. As long as a consistent
choice is made and a proper triangulation is used, a
topologically correct surface will result. A consistent
choice could be completely arbitrary, but it would be
preferred if there were some reasonable basis for the
choice. In the next section, we describe a technique
for making this choice which is based upon bilinear
variation of F on an ambiguous face. In Section 3,
we discuss the modifications of the configurations of
Figure 2 so as to produce a topologically correct
isovalue surface. Section 4 is devoted to some
examples and concluding remarks.
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Figure 3. An example illustrating the flaw in the
marching cubes method.

Figure 4. Two possible triangulations which yield a
topologically correct isovalue surface.

2.0 Asymptotic Decider

In this section, we describe a technique for
making the choice as to which vertices to connect on
an ambiguous face. It is motivated by the use of
bilinear variation over this face. Bilinear variation
over a face is a natural extension to linear variation
along an edge. Assuming a change of variables has
been done, it is sufficient to consider the face domain
to be a unit square, { (s,t) : 0<s <1, 0<t<1} and so
we have the following formula for bilinear
interpolation:

B(s,t) = (1-s, s)( g?g g?i) ( 1{4)

where Bog, Boi1, B1o and By represent the appropriate
values of Fijjx at the four corner grid points (see
Figure 5).
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Figure 5. Bilinear;l—t'erpolation.

It is easy to verify that the contour curves of B,
{(s, t) : B(s, t) = o}, are hyperbolas. Some



possibilities as to how these contour hyperbolas and
their asymptotes relate to the domain are shown in

Figure 6.
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Figure 6. Contours of bilinear interpolant

The ambiguous case arises when both
components of the hyperbola intersect the domain.
The upper-left case of Figure 6 is such a situation.
The criteria we use for connecting vertices is based
upon whether or not they are joined by a component
of the hyperbolic arc. As it turns out, this selection
can be determined by comparing the contour value, o,
with the value of the bilinear interpolant at the
intersection point of the asymptotes. Based upon the
notation of Figure 7, the test is:

If a > B(Se,To) then connect (Sy,1)to (1,T;)

and (S0,0) to (0,Tp)
else connect (Sy,1) to (0,Tp)
and (S0,0) to (1,Ty)

(Sy. 1)

% (1, Tq)

\(Sa- !ra)

(0, To)(

(So . 0)

a>B(S, Ty)

Figure 7a. Notation
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Figure 7b. Notation

The asymptotes are easy to determine. They are
{(s, ) : =S} and {(s, t) : t = T}, where

S = Boo - Bo1
*~ Boo + B11 -Bo1 - Byo
and
Boo - B
Ty= 00 - B1o

Boo + B11 - Bo1 - B1o
Therefore, we have

Boo B11 + B1g Bog
Boo + B11 - Bo1 - B1o

B(Sa,Ta) =

For the subsequent discussion on how to
triangulate the contours contained within a voxel
which has an ambiguous face, it will be convenient
to make a definition. An ambiguous face has two
diagonally opposed grid points that are marked and the
other two diagonally opposed grid points are
unmarked. If the asymptotic decider test implies the
connection of two edges common to a single marked
grid point, then we say this face is separated,;
otherwise an ambiguous face is said to be not
separated.

Separated Not Separated
Figure 8. Ambiguous faces



3.0 The Various Cases

We now discuss the modifications necessary for
the fifteen configurations of Figure 2. We first note
that configurations 0, 1, 2, 4, 5, 8, 9, 11 and 14 have
no ambiguous faces and so no modifications are
needed for these cases. The remaining configurations
need modification. Some are more complicated than
others. The following discussion is roughly in order
of increasing complexity. The notation is the same
as for the original mc method and is shown in Figure
9.

V8 oe7 V7
€1 e
V4 Oe3 V3
(O X3
Q e .
"o | = 0" .
U
€1
VI G V2
Figure 9.

Configuration 3:

This configuration has exactly one face which is
ambiguous and so there are two possible ways to
connect the vertices and two resulting triangulations.
These are shown in Figure 10.

3A

Figure 10.
Triangulations:
3A: esezeq2, €1€4€9
3B: eqeqe3, e3e9e12, €9e12e2, €1€2e9

The reader might note that there are actually
several different (and valid) triangulations of the
polygon of Figure 3B. For example the "diagonal” of
the quadrilateral e4ezejzeq could be switched to
replace eqegez and ezegep with eqeszeqn and eqeger
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Whether or not this is desirable depends on the values
Fijx and exactly where the vertices lie on the edges.
One possible criterion is discussed by Choi et al.[2].

Configuration 6:

This configuration is similar to configuration 3
in that there is only one ambiguous face; namely the
right face. It differs from configuration 3 in that there
are seven vertices rather than six. There are two
possible triangulations which have already been
shown in the left portion of Figure 4. Case B is
where the right face is separated and case A is where it
is not separated.

Triangulations:
6A: e2e12€4, €4€12€7, €4€9€7 ; €9€6E7, €9€10€6
6B: egeeq, €9€10€2; €12€6€7

Configuration 12:

For this configuration, there are two ambiguous
faces; namely the front and the left. This gives rise
to 22 = 4 boundary polygons. Possible triangulations
of these polygons are shown in Figure 11.

Figure 11.

Triangulations:
12A: e3e11€4; €1€2e9, €289, €2ege6
12B: eje4€11, €6€9€8, €1€9€6, €1€6€11> €6€3€11>
€6e2e3
12C: eje4e0; €3eg€11, €3€6€8, €3€2€6
12D: e3eqe9, €6€11€8, €3€11€6, €3€6€9, €6€1€9,
€6€2€1



Configuration 10:

Here again we have two ambiguous faces; the top
and the bottom. When both faces are separated (10A)
or both are not separated (10C) there are two
components for the isovalue surface. In the other two
cases, where one face is separated and the other is not,
the situation is quite different in that it is impossible
to triangulate the boundary polygon.
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\It“igure 12.

In the interest of completeness, we give the
following argument that the boundary polygon of
Figure 12 can not be triangulated: First note that the
following edges are not allowed: e3e; 1, €3e7, €12€11,
€12€7, €1€10, €1€5, €9e10, €9e5. Now, egeq] must be
the edge of some triangle. There are only two
vertices that can be joined with this edge; namely el
and e7. Similarly, only e3 and e5 can join with the
edge ejpeq2. This gives rise to four possibilities: 1)
The triangles e3ej2e10 and ejegeq, 2) the triangles
ejoeser2 and ejegeq 1, 3) the triangles ej2e10e3 and
e7e11€9 4) the triangles ejzejpes and e7eqjeq.
Consider possibility 1): The edge eje3 must join with
some vertex to make a triangle. The only vertices
left are €], €5, €7 and e, but if a triangle is formed
with any one of these vertices, we end up with one of
the disallowed edges so this is impossible. Consider
possibility 2); The only vertex that can join with the
edge ese7 to form a triangle is ey;. Similarly, ejes3
can only join with e13. Now, to complete the
triangulation, we need to add either ejze] or ejes
which are both disallowed. So this is also
impossible. Possibility 3 is eliminated with an
argument similar to that for possibility 1 and
possibility 4 is eliminated with an argument similar
to that used for possibility 2. This concludes the
argument.

One way to eliminate this problem of not being
able to triangulate the boundary polygon is to add a
vertex that is interior to the voxel. We use
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eo = (1-u)ey(top) + uey(bot)

a-F(eg(top))
F(eg(bot)) - F(eg(top))
(Sa(top), Ta(top)), eq(bot) = (Sg(bot), Ty (bot)) are
the intercepts of the asymptotes of B(s, t) = o on the
top face and bottom face, respectively. It is easy to
verify that O<u<l since in each case (10B or 10D) the

top and bottom differ as to whether they are separated
or not.

where u = and eg(top) =

Figure 13.

Triangulations:
10A: ejeseq, e3e0€11; €10€12€7, €7€5€10
10B: ejeseq, €3€12€0, €12€10€0, €10€5€0, €5€7€0,
€7€11€0, €11€9€0, €9€1€0
10C: e 1e7es, e11€5€9; €3e12€1, €1€10e12
10D: ejej0eq, €10€12€0, €12€7€0, €7€5€0, €5€9€0,
€9e11€0, €11€3€0, €3€1€0

Configuration 7:

For this configuration, there are three ambiguous
faces and so there are 23 = 8 possibilities. These
eight boundary connections are illustrated in Figure
14.
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Figure 14. Eight possible boundary polygons.

Without regard to orientation, cases b, ¢ and e are
equivalent; each having two faces where the marked
grid points are separated by contour edges. Casesd, f
and h are also equivalent with one face where marked
grid points are separated. Consequently, only four
cases need be considered. The triangulations are
shown in Figure 15. The case of 7C is similar to the
eight point boundary polygon of configuration 10 in
that an additional point is required in order to produce
a valid triangulation. Here, we take this additional
point €g to be a point on the line through grid point
v and grid point vg. It is computed by linear
interpolation as eg = (1-u)vy + uvg where u = (-
F(v2) / (F(vg)-F(v2))

TA
@

Figure 15.

Triangulations:
TA: e3e4e11; €6€7€12; €1€2€10
7B: ece7€12; €1011€3, €103€2, €10€11€1, €1€4€11
7C: e1€e10e0, €10€6€0, €6E7€0, €7€12€0, €12€2€0,
€2€3€0, €3€11€0, €]11€4€0, €4€1€0
TD: eze12€3; €10€6€7, €10€1€7, €1€7€1 1, €1€11€4
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Configuration 13:

For this configuration, all six faces are
ambiguous and so there are potentially 26 = 64 cases
to consider. This number can be reduced considerably
by forming equivalence classes based upon rotations.
These cases are distinguished by the number and
configuration of separated faces. There can be zero
separated faces up to six separated faces. In the case
of two, three and four separated faces, there are two
configurations each. These are all illustrated in
Figure 16 except the case of six separated faces which
is shown in Figure 2.

@ @ (

No sep. faces One sep. face Two sep. faces

(front ) (opp front & back)
13 13E 13E
1
Two sep. faces Three sep. faces  Three sep. faces
(adj, front & right) (left, front, right) (front, right, bottom)
13 13H 131

Four sep. faces

(front & back
not separated)

Four sep. faces

(front & right
not separated)

Five sep. faces
(front not
separated)

Figure 16.

The cases of 13E and 13F have a single
connected boundary polygon with twelve vertices. In
either case, this polygon can not be triangulated
without an additional interior vertex. In the case of
13E and 13F the vertex eg is computed by linear
interpolation on the line joining vg and v;. The cases
of 13D and 13H each have a boundary polygon with
two components; one with three vertices and another
with nine vertices. The polygons with nine vertices
can not be triangulated as is. In the case of 13D an
additional vertex, €, is taken on the line joining vg
and v and in the case of 13H, e, is taken on the line
joining v3 and vs.

Triangulations:
13A: e3eqeq1; €1€2€10; €5€8€9, €6€7€12



13B: esegeo; €6€7€12; €10€11€2, €2€3€11, €10€11€4
€10e1€4

13C: ejejpeq, €10€11€4, €11€10€2, €2€3€11;
€6€5€12, €12€5€9, €12€9€7, €7€9€8

13D: e1e10€0, €10€6€0, €6€7€0, €12€7€0, €12€2€0,
€2€3€(, €3€11€0, €11€4€0, €4€1€0; €5€8€9

13E: eje10€0, €10€6€0, €6€7€0, €7€12€0, €12€2€0,
€2€e3€e0, €3€11€0, €]1€8€Q, EZESEQ, E5E9E(,
€9e4e, €4€1€0

13F: ejegeq, egegeq, €ge5€0, €5€10€0, €10€6€0,
€6€7€0, €7€12€0, €12€2€0, €2€3€0, €3€11€0,
€11€4€0, €4€1€0

13G: ejeger, egerel2, ege2€4, €4€12€3; €10e5€8,
€10€8€11, €10€11€6» €6€11€7

13H: ejegeq, egeqeq, €4€3€0, €3€12€0, €12€6€0,
€6€5€0, €5€10€0, €10€2€0, €2€1€0); €7€11€8

131: egeqe3, ege3e2, €9€12€1, €1€12€2; €10€6€5;
€11€8¢7

13]: e1e0eq; ese10e6; €3€2€12; €11€8€7

4.0 Examples and Remarks

The modifications we have suggested for
configurations with ambiguous faces adds
considerable complexity to the mc method. A natural
question to ask is how often do these configurations
arise, if at all. The answer is that they certainly do
occur in real data sets, but not very often. We have
tabulated the frequency of occurrence of the various
configurations for several data sets. A sample of
these results is shown in Table 1. The first example
consists of 69x65x65 voxels. The data is from a
CAT-scan. The contour value is o = 12.6 and
Figure 17 shows the isovalue surface. The second
example is over the same cuberille grid, but the
values Fijji are determined by evaluating the function

F(x,y,z) = .Sexp{-10[(x-.25)2 + (y-.25)2]}
+ 75exp{-16[(x-.25)? + (y-.25)2 + (z-.25)2]}
+.50exp{-10[(x-.75)2 + (y-.125)2 + (z-.5)2]}
-25exp{-20[(x-.75})? + (y-.75)2]}.

The contour level is o = .557. The third example
uses a cuberille grid consisting of 49x49x49 voxels
and the function is

F(x,y, z) = .Texp{-16[(x-.3)2+(y-.3)2+(z-.3)2]}
+.9exp{-16[(x-.7)%+(y-.7)2+(z-.3)2)}
+.7exp{-16[(x-.3)2+(y-.7)2+(z-.7)?]}
+.7exp{-16[(x-.7)2+(y-.3)2+(z-.7)3]}.

The contour level is o = .463 and a portion of the
isovalue surface using the original mc method is
shown in Figure 18. The "hole" illustrates the flaw
of the mc method.

Config) Example 1 Example 2 Example 3
0 263,519 285,074 110,993

1 7,705 1,912 1,673

2 8,710 2,065 2,421
3A 60 0 6
3B 46 0 6

4 28 0 0

S5 5,611 1,228 1,143
6A 20 0 0
B 47 0 0
7A 3 0 0
7B,D 3 0 0
7C 3 0 0

8 4,637 906 1,146

9 1,003 304 261
10A,C 13 0 0
10B,D 1 0 0
11 36 0 0
12A,C of 0 0
12B,D 4 0 0
13 0 0 0
14 69 0 0

Table 1. Frequency of configurations

Even though the ambiguous cases are infrequent,
an implementation that produces correct results in all
cases, must deal with them in some manner. While
the modifications suggested here do add to the
implementation complexity, they would not have any
significant effect on the running time or the total
number of triangles produced.

The approach presented here is in the spirit of
repairing the mc method and is not intended to
suggest that this is the preferred method of computing
isovalue surfaces in all circumstances. There are
other methods for solving this problem. Some are
modifications of the mc method (see [2], for example)
and others are based upon assembling curve contours
from slices (see [1] and [7]). The method proposed by
Wilhelms and Van Gelder [15] resolves this
ambiguity by using estimates of gradients obtained
by fitting a low degree polynomial. A very simple
approach (see [13], [12], and [11]) is based upon
subdividing each cube into 5 (or 6) tetrahedra and
assuming linear variation on each tetrahedron. This
method produces more triangles than the mc method,
but if this is a problem, it is possible to "post-
process” the triangulated surface and remove some
vertices. Wyvill et al. [16] also give an algorithm
based upon cubes and linear interpolation. They
mention the problem of ambiguous faces, but they
deal with the triangulation in quite a different manner
than it is done here. In order to facilitate the



triangulation of nonplanar polygons, they always
append the centroid.

One of the purposes of computing contour
surfaces is to provide a means of graphing or
visualizing 3D data. Other techniques are discussed
by Hamann [8], Foley et al.[5] , Kaufman [9], Upson
[14] and Nielson et al.[13].
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Figure 17. Isovalue surface of skull data.

Figure 18. Flaw with mc method.
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