
~ Computer Graphics, Volume 24, Number 4, August 1990 

Footprint Evaluation for Volume Rendering 

Lee Westover 
Numerical Design Limited 

The University of  North Carolina at Chapel Hill 

ABSTRACT 

This paper presents a forward mapping rendering algo- 
rithm to display regular volumetric grids that may not 
have the same spacings in the three grid directions. It 
takes advantage of the fact that convolution can be 
thought of as distributing energy from input samples into 
space. The renderer calculates an image plane footprint 
for each data sample and uses the footprint to spread the 
sample's energy onto the image plane. A result of the 
technique is that the forward mapping algorithm can 
support perspective without excessive cost, and support 
adaptive resampling of the three-dimensional data set 
during image generation. 

KEYWORDS: 3D Image, Volume Rendering, Recon- 
strnction, Algorithms. 

INTRODUCTION 

Volume rendering is the direct display of data sampled in 
three dimensions. There are two principle approaches to 
volume rendering: backward mapping algorithms that 
map the image plane onto the data by shooting rays from 
pixels into the data space, and forward mapping algo- 
rithms that map the data onto the image plane. 
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This distinction principly manifests itself in how and 
when reconstruction of the three-dimensional signal is 
done. Convolution can be thought of as either generat- 
ing an output sample from many input samples or as 
spreading one input sample to many output samples. 
Backward mapping algorithms typically reconstruct the 
signal at a point in space by looking at that point's 
nearest data samples and performing some type of inter- 
polation. Forward mapping algorithms differ in that they 
incrementally reconstruct the original signal by spread- 
ing each data sample's energy into space. 

Forward mapping algorithms are important because they 
are easily made parallel. Sinee each data sample only 
needs to know about a small surrounding neighborhood 
of other samples, shading and transforming can be done 
in parallel for sub-sections of the data. With today's 
parallel machines having limited local memory, this data 
distribution gets around the backward mapping problem 
of having the entire data set at each node. 

The reconstruction step is the most complicated part of 
the algorithm. The renderer must determine the screen 
space contribution of each sample point to the final 
image. A brute force method would perform a one- 
dimensional integration of the reconstruction kernel for 
every pixel for every input sample. If the renderer can 
calculate the screen space extent of the kernel, the 
number of integrations reduces to the number of samples 
times the number of pixels that fall within the extent. 
However, this is still an enormous number of integra- 
tions. 

In an orthographic view, the footprint of the projected 
reconstruction kernel for any sample is a constant except 
for a screen space offset. This allows the renderer to 
build a footprint function table once and use the table for 
all samples. Since the table is discrete, the renderer 
builds it on a fine grid to prevent artifacts. Even with this 
modification, the renderer must perform N 2 integrations 
of the kernel where N is the number of grid ceils in each 
table dimension. 
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This paper presents an algorithm that allows the renderer 
to use a pre-computecl footprint function table to build 
the view-transformed footprint table for a particular 
view. This pre-computed table is called the generic foot- 
print table because the renderer uses it to calculate the 
view-transformed table for any particular view. The 
renderer needs to calculate two things to build the view- 
transformed table. First, the renderer computes the 
screen space extent of the projection of the reconstruc- 
tion kernel. Second, the renderer computes a mapping of 
this extent to the extent that surrounds the pre-integrated 
footprint table. Then for each cell in the grid of the 
view-transformed table, the renderer maps the cell to the 
generic table and samples the generic table to find the 
cell's value. Once the renderer builds the view- 
transformed table, it can use the table for all input sam- 
pies. The renderer centers the table at the sample's pro- 
jected screen location and samples the table at the center 
of each pixel that fails within the table's extent. 

PREVIOUS WORK 

Researchers have investigated the volume rendering 
problem in the last few years and these algorithms can be 
divided along many lines. Blinn [2], Kajiya [7], 
VanHook [14], Levoy [9] and Sabella [12] describe 
methods of ray tracing volume densities with algorithms 
that map pixels onto the data by shooting rays into the 
data. Frieder [4], Lenz [8], Drebin [3], and Westover 
[15] use compositing techniques that map the data onto 
the image plane. Lorensen [10], Upson [13], and Gal- 
lagher [7] have investigated various methods of fitting 
surfaces into each data cell and then rendering the 
volume as surfaces. 

Another distinction between algorithms is whether the 
original signal is reconstructed and shaded at points of 
interest or whether the original data samples are shaded 
and then the shaded volume is reconstructed to form an 
image. Since shading is typically a non-linear process, 
interpolating the shaded volume can be problematic due 
to the high frequencies introduced by the shading model. 
On the other hand, this method only shades true data 
samples. Interpolating first, then shading, introduces 
new data samples into the data set, but shading happens 
at exact query samples. An enhancement to the algo- 
rithm presented in this paper can support either 
approach. 

Footprint determination has much in common with tex- 
ture map sampling. It is, however, almost the exact 
opposite problem. In texture mapping, a pixel is mapped 
into texture space and then all texture samples that lie 
within the mapped pixers footprint are weighted and 
accumulated to form the single texture color [6]. In 
volume rendering, the footprint is used to spread a single 
samples contribution onto every pixel that lies within the 

368 

mapped voxel's footprint. In both cases, the mapping of 
a sample from one space into a second space forms an 
elliptical footprint in the second space. 

RENDERING ALGORITHM 

The algorithm discussed in this paper is a forward map- 
ping algorithm that shades at input samples, and recon- 
structs a final image from the shaded volume. This work 
differs from the original algorithm, described in West- 
over [15], in four ways. First, the initial algorithm com- 
bined the reconstruction step and the visibility step at 
each voxel. The new algorithm performs reconstruction 
for all samples in a sheet, where a sheet is defined as a 
plane through the data that is most paraUel to the image 
plane. Each voxel in a sheet is added to a sheet cash. 
When all the voxels on a sheet are processed, the sheet is 
matted into the working image. Second, the algorithm 
now uses a generalized shading model, Abram [1], that 
supports many shading techniques including the one 
from the original algorithm. Third, many of the details of 
how footprints are calculated and used has changed, as 
described below. Forth, the new footprint method will 
allow the algorithm to support both perspective and 
adaptive refinement. 

The algorithm consists of four main parts: transforming, 
shading, reconstruction, and visibility. For the algorithm 
to run in parallel, it is critical that each step in the pro- 
cess uses only local information. The renderer processes 
a sample by transforming the sample from input <i,j,k> 
grid space to <x,y,z> screen space. It then shades the 
sample using some shading rule that uses local informa- 
tion. The shaded sample is a <x,y,z,red,green,blue,tx> 
tuple. Next the renderer determines the portion of the 
image the sample can affect and adds the sample's contri- 
bution to the sheet accumulator. The determination of 
the footprint function, the sampling of the footprint func- 
tion, and the spreading of the sample's contribution is 
called splatting. The efficient determination of the effect 
and an efficient application of the footprint function is 
the topic of this paper. When all the samples that lie in a 
sheet are processed, the renderer mattes the sheet accu- 
mulator to the working image using a compositing 
operator [11]. Once all samples are processed, the work- 
ing image becomes the final image. 

FOOTPRINT FUNCTION 

The volume reconstruction equation for a regular array 
of density values is: 

signal 3D = 

fffhv(.-x,v-y,w-z) p(x,y,z) Z (x,y,z) auavaw 

where hvO denotes the volume reconstruction kernel, p 
denotes the density function, ~ 5  denotes the comb 
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function, and u,v,w are the coordinates of the kernel. 

Moving the summation outside the integral and evaluat- 
ing the integral at point <x, y, z> results in: 

signalaD(x,y,z) = ~ hv (x-Dx, y-Dy.z-D~) p (D) 
D e  Vol 

where D ranges over the input samples that lie within the 
range for which the kernel, hvO is non-zero, and D~Dy, 
and D, are the screen space coordinates of the sample 
< D > .  

Instead of considering how multiple samples contribute 
to a point, consider how a sample can contribute to many 
points in space. The contribution at a point <x, y, z> by 
a data sample <D> is: 

contributionD (x,y,z) = hv(x-Dx.y-Dy, z-Dz) p (D ) 

Therefore, the renderer can treat each data sample indi- 
vidually and spread its contributions to the output sam- 
pies. 

The total contribution at a given <x,y> location is the 
sum of the contribution along a ray through the kernel 
that is perpendicular to the screen with its origin at 
<x,y>. The sum is calculated as the integral along z of 
the ray. Projecting the sample onto the image plane at 
pixel <x,y> is: 

contributionD(x,y) = 5 hv(x-D~,y-Dy.w) p (D) dw 

For a given sample, p is a constant and since p is 
independent of w, p can be moved outside the integral: 

contributiono(x,y ) = p (D) S hv(x-D~,,y-Dy,w) dw 

Notice that the integral is independent of the sample's 
density. Since it only depends on the sample's <x, y> 
projected location, the function footprint is defined: 

footprint (x,y) = S hv(x,y,w) dw 

where <x,y > denotes the displacement of an image sam- 
ple from the center of the shaded sample's image plane 
projection. 

METHOD 

For orthographic views, the footprint of each sample is 
the same except for a screen space offset. Therefore, the 
renderer needs only to calculate the footprint function 
once for each view of the data set. Once the footprint is 
known, the renderer can sample the footprint function at 
each pixel that lies within the footprint's extent and con- 
tribute the appropriate amount to the pixel. The weight at 
each pixel is: 

weight (x,y)D = footprint (x-D~,y-Dy) 

where <D~,Dy> denotes the sample's image plane pro- 
jection and <x,y> denote the pixel's image plane loca- 
tion. 

Sampling the footprint function involves an integration. 
Many kernels are difficult to integrate analytically and 
the renderer must use discrete methods. Since the 
renderer does not want to integrate this function many 
times for each sample, it builds a table on a fine grid and 
then performs table look-ups to evaluate the function. 
The renderer needs to determine two things to build the 
footprint table for a particular view. First, it calculates 
the screen space extent of the projection of the kernel, 
which in an orthographies view is constant for each input 
sample. All pixels that lie within the extent may be 
affected by the given sample. Second, the renderer calcu- 
lates a mapping from the view-transformed extent to an 
extent that surrounds the projection of a generic kernel. 
The generic kernel table is calculated by a pre- 
processing program that runs once for a given kernel. 

Since the pre-processor runs once, it does not matter how 
long it takes to compute the integration of the kernel. By 
using a pre-computed generic table, the renderer can 
easily change reconstruction kernels by reloading the 
generic table from disk. 

Once the renderer builds the view-transformed table, the 
table is used by the renderer for each sample, by center- 
ing the table at each sample's projected screen position 
and calculating the screen space extent of the kernel by 
offsetting the extent of the projected kernel. For each 
pixel in the extent, the renderer samples the table to 
determine the amount of contribution for the pixel. The 
renderer builds the view-transformed footprint table on a 
grid that has many samples per pixel. Without over- 
sampling rendering artifacts will occur. 

Building the Generic Footprint Table 

The method assumes that the extent of the reconstruction 
kernel is a sphere. If the extent is not a sphere, the pre- 
processor bounds the kernel by a sphere. For efficiency 
reasons, the bounding sphere should be as tight as possi- 
ble. A loese fitting sphere will cause the pre-processor to 
build a generic table that has many zero entries, which 
causes the renderer to visit many pixels that are not 
affected by a given sample. For a spherical kernel, the 
radius of the sphere is equal to the width of the recon- 
struction kernel. This sphere, called the unit region 
sphere, defines the region a sample can affect. Within 
this region, on a discrete grid, the preprocessor 
integrates the kernel along the z direction and stores the 
result in a table. This table is called the generic footprint 
table. During image generation, the renderer determines 
the extent of the projection of the view-~ansformed 
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region sphere. In addition, the renderer determines a 
mapping of each point in that extent onto the extent sur- 
rounding the unit region sphere in order to build the 
view-transformed footprint table. The projection of the 
unit region sphere on the image plane is a circle. The 
mapping from view-transformed extent to generic extent 
is then a mapping from the projection of the view- 
transformed region to a circle. 
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Figure 2. Genetic Footprint Function Table 

EXTENTS AND MAPPINGS 

There are two basic cases for determining extents and 
mappings: the unit sphere maps to a sphere after apply- 
ing the viewing transform, or the unit sphere maps to an 
ellipsoid. The result is a sphere when the input volume 
has equal spacings in each of the grid directions and the 
viewing transform has only uniform scaling. The result is 
an ellipsoid when the input volume has non-uniform 
spacing in each of the grid directions or the viewing 
transform has non-uniform scaling. Since a sphere is a 
special case of an ellipsoid, the renderer currently uses 
the elliptical method described below for all volumes. 

Extent and Mapping for Spherical Kernels 

Figure 3. Spherical Kernel 

Even when the kernel maps to a sphere, the renderer can 
not use the generic table directly and must build a view- 
transformed table. If the grid scale value and the view 

3 7 0  

scale value are both 1.0, the generic table is used, other- 
wise the renderer builds a view-transformed. This makes 
a table access fall exactly at table entries and causes all 
the interpolations to only occur once. 

Extent 

Many input volumes have fewer samples per face than 
the desired number of pixels in the image. This means 
that the input sampling rate is much smaller than the out- 
put sampling rate and each input sample needs to cover 
many pixels. The renderer calculates the extent of a 
sample's effect by scaling the unit extent by the grid 
scale value and the view scale value. 

The extent in both the x and y directions i s :  

extent =2.0*kernel_width* grid_scale*view_scale 

Mapp/ag 

The mapping from scaled extent to unit extent is trivial 
in the case of a spherical result. The projection of the 
sphere onto the image plane is a circle. The mapping 
from one circle to another circle is a scaling by the ratio 
of the radii of the two circles. The mapping is: 

1.0 
mapping = 

grid_scale_factor*view_scale_factor 

The renderer uses the mapping to map ceils of the view- 
transformed footprint table to the generic footprint table. 
If the view is simply rotated and the scale factors do not 
change, the view-transformed footprint table can be used 
again. 

Extant and Mapping for Elliptical Kernels 

Figure 4. Elliptical Kernel 

If the scalings in grid directions are different, the region 
sphere transforms into a region ellipsoid. The projection 
of the region ellipsoid is always a screen space ellipse. 
The extent of a kernel's effect is the extent of  the pro- 
jected ellipse, and the mapping from view-transformed 
table to generic table is a mapping from the projected 



' ~ '  Computer Graphics, Volume 24, Number 4, August 1990 

ellipse to the unit circle. 

Extent 

The region ellipsoid is found by transforming the unit 
region sphere by the grid scale transform and then by the 
viewing transform. By treating the unit region sphere as 
a quadrie surface, the transformations become matrix 
multiplications. 

Let the original unit sphere be U: 

1 0 0 0  
U =  0 1 0 0  

e e l  0 
0 0 0  -1 

and let the grid scale transform be S: 

IS i 0 0 0  s= s j o o  
0 Sk 0 
001 

and let the viewing transform be V: 

V =  e /  
h i  
O 0  

The grid space region ellipsoid E is: 

E = S * U  

To transform the quadric surface the renderer calculates 
both the inverse viewing transform and its transpose. 
The resulting screen space ellipsoid R is: 

R = V - l r*  E *  V -1 

with 

A D/2 El2 
DI2 B FI2 

R= El2 F/2 C 
0 0 0 

This gives an ellipsoid defined by: 

Ax 2 +By  2 + Cz z + Dxy + Exz + Fyz = K (I) 

By rearranging terms, completing the square, and solv- 
ing for x and y, the renderer can calculate the screen 
space extent of the transformed ellipse. The x extent is: 

x=± ~ A -  

and the y extent is: 

y=_+ - -  - -  ---~---------- 

K 

(E DF .}z 
D 2 . - - ~ - .  

Mapping 

The renderer also needs to calculate the mapping from 
the projection of the region ellipsoid back to the unit cir- 
cle. To do this, the renderer first calculates the screen 
space projection of the region ellipsoid which is an 
ellipse. To find the ellipse, first rewrite (1) as a quadratic 
in z. The quadratic is: 

Cz 2 + (Ex + Fy)z + (Ax ~ + By z + Dxy - K )  = 0 

Points on the edge of the projection of R have only one 
root in this quadratic. There is only one root to the qua- 
dratic aZ 2 + bZ + c = 0 when b 2 - 4ac = 0 or in this 
case when: 

(Ex + Fy) 2 - 4C (Ax 2 + By 2 + Dxy - K)  = 0 

Grouping the x 2, the y2, and the xy terms gives the 
screen space projection ellipse P: 

Xx2 + Yy2 + Zxy = K (2) 

where: 

E 2 F z EF 
x = r = z = 

Once the renderer calculates the screen space ellipse, it 
can define a transformation that takes points from the 
screen space ellipse into the unit circle. This is the 
inverse of the mapping that takes the unit circle into the 
screen space ellipse. To calculate the second mapping, 
the renderer needs to calculate two things: the amount to 
scale along the x axis and the y axis, and the amount of 
rotation about the view direction. 

Figure 5. Ellipse to Circle Mapping 
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The renderer finds these values by solving for T such 
that: 

writing P as: 

and T as: 

p = T * U * T  r 

X Z O  0 
p= Z Y O  0 

0 0 1 0  
0 0 0 - 1  

[,b°i] c d O  
T= 0 0 1  

0 0 0  

and Uas: 

1 0 0 0  
0 1 0 0  

U= 0 0 1  0 
0 0 0  -1 

and solving for X, Y, and Z: 

a 2 + b 2 = X (3) 

C 2 + d  2 = Y  (4) 

ac + bd = Z (5) 

This looks like a problem since there are three equations 
and four unknowns, a, b, c, and d, but T is a matrix that is 
made up of a scale in the x and y directions followed by 
a rotation about the z axis. So: 

a = (S,,)*cose b =-(S~)*sin0 (6) 

c = (Sy)*sin0 d = (Sy)*cos0 (7) 

Plugging (6) and (7) into (3), (4), and (5) and applying 
some algebraic manipulation brings: 

(X-Y) cos0 sin0 
Z sin0 cose 

This seems to be a problem when Z is zero but upon 
investigation of P, when Z is zero, P is a scaling of U, 
therefore T is simply: 

a = ~ and d = ' ~  and 

b = c = 0  

When Z is non-zero, let: 

G= (X-Y) and w- 
Z 

then: 

cosO 
sin0 

I 
G = w--- or w2-Gw-I = 0 

w 

using the quadratic formula w is: 
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G +.Cr  
2 

Given w, 0 is arctan( 1.0 ). This gives both sine and 
W 

cos0 and allows the renderer to solve for Sx and S r using 
(6) and (7). Sx and S~, are undefined in the above equa- 
tions when 0= 45 degrees. When this occurs, the 
renderer cheats and rotates the view an additional 0.01 
degrees about the view direction. This allows the 
renderer to calculate Sx and Sy with little if any effect on 
the image. 

With 0, S~, and Sy the renderer builds T by multiplying 
the identity matrix by a scale matrix of S~ and Sy, fol- 
lowed by a z rotation matrix of 0. The mapping from P 
into U is then the inverse of T: T -t . 

The renderer uses T -1 to map cells of  the view- 
transformed footprint table to the generic footprint table. 

TABLE SIZES AND KERNELS 

There are three parameters that can change in building 
footprint tables: the size of  the tables, how the tables are 
accessed, and the table's underlying kernel. 

There is a space versus quality tradeoff between the size 
of the footprint tables and the resultant artifacts in the 
images. Image I shows this tradeoffon an elliptical pro- 
jection. Each picture in image 1 is of a single sample 
point scaled 120 by 60 by 60. The upper left picture in 
the image uses a view-lxansformed footprint table with 5 
by 5 entries. The upper right uses a table that is 11 by 11. 
The lower left uses a table that is 21 by 21. The lower 
right uses a table that is 101 by 101. Notice how 
smoothness increases with table size. 

There is a time versus space tradeoff in how the table is 
sampled. If the footprint table has a lot of entries, then 
nearest neighbor sampling works fine. If, on the other 
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hand, the table is coarse, then the renderer needs to inter- 
polate samples from the nearest neighbors. Image 2 
shows this tradeoff on an elliptical projection. Each pie- 
ture in image 1 is of a single sample point scaled 120 by 
60 by 60. The upper left picture in the image uses a 
view-transformed footprint table with 5 by 5 entries. The 
upper fight uses a table that is 11 by 11. The lower left 
uses a table that is 21 by 21. The lower right uses a table 
that is 101 by 101. In each case, the renderer generates 
the table value with a bilinear function. Compared to 
Image 1, the footprint is much smoother on a lot smaller 
table. However, a reasonable table size is required to 
avoid bilinear artifacts. 

kernels, radius is the normalized distance from the 
center of the kernel. The upper left has a cone function 
modeling the result of the z integration. The upper fight 
has a Gaussian function as the model. The lower left 
has the first five lobs of a syne function as the model. 
The lower right has the bilinear function as the model. 

Image 4 is a portion of a computed tomography study of 
a human head. The data is clipped to only show the left 
eye. The spread of the Gaussian kernel changes in each 
sub-image. In the upper left the Gaussian is sealed so 
that its tail stops 25 percent of  the way to the next voxel 
(where 100 percent just touches the next voxel). This 
scale changes from 25 to 225 percent in steps of 25 per- 
cent from left to fight and top to bottom. In the first 
images the kernels are too sharp and do not overlap leav- 
ing gaps. In the last images the kernels are very broad 
and over blur the images. All the images in the follow- 
ing section were generated with a Gaussian kernel with a 
sigma of 2.5 and a spread of 160 percent. 

The third thing to change is the kernel itself. The choice 
of kernel can drastically affect the quality of an image. 
Image 3 is a single sample as above with four different 

Image 5 shows each of the above kernels operaating on a 
3 by 3 by 1 grid of constant values. These kernels are 
approximations to the true z integration of a three- 
dimensional kernel. The view-transformed table as 10 
by 10 entries. The patterns in the upper left image are 
the result of multiple kernels not summing to one at all 
points. The patterns in the lower left image are the result 
of ringing from the sync function at the edges of the 
sample space. Notice the sharp second order discon- 
tinuities at the comers of the image from the bilinear 
function at the lower right. Superimposed on the images 
are line drawings of a single seanline's grey value. The 
green line is when table values were interpolated from 
nearest neighbors. The red line is when just the single 
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nearest neighbor was used. and opacity based on concentration values. Since the 
algorithm works back to front, any image (in this case a 
texture map of state boundaries) can be used as a starting 
working image. The clouds are colored with blue being 
low concentration, going to green for intermediate con- 
eemration, and finally red where concentration exceeds 
the government's legal limits. 

SAMPLE IMAGES 

Image 6 is a single sample with an elliptical projection. 
The four views are of the sample with the volume rotated 
0 degrees, 10 degrees, 30 degrees, and 45 degrees about 
the view direction. The ellipse does not change shape or 
size as the volume grid is rotated about the z axis. Image 8 is an image generated from the electron density 

of the p-orbitals of copper chloride. The input grid is 64 
by 64 by 64 with even spacing in each grid direction. 
The viewing transform has only uniform scaling. The 
shading model is the emittance model with color and 
opacity based on density value. The underlying data has 
no surfaces and the image has a cloudy nature. 

Image 7 is an image of ozone concentrations over the 
northeast corner of the United States in July 15, 1980. 
The input grid is 64 by 52 by 32 with very uneven spac- 
ing in the z direction compared to the x and y directions. 
The shading model is the emittance model with color 
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Image 9 is an isodensity surface from an electron density 
map of Staphylococcus Aureus ribonuclease. The initial 
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data set was 24 by 20 by 11 and resampled using a tri- 
cubic function during a preproeessing step. The resul- 
tant data set is 137 by 113 by 59 with even spacing in 
each grid direction. The data set was then shaded using 
Levoy [9] shading techniques into a shaded data seL This 
data set was rendered using the feed-forward renderer 
with a shading table that mapped grey scale shade and 
opacity one-to-one with the input data. 

In image 11, the shader uses the <i,j,k> grid values as 
three-dimensional texture indices. Here the data has sur- 
faces, and the opacity tables are chosen to bring out the 
skin/air interface. 

Image 10 and Image 11 are images of a computed 
tomography study of a human head. The input grid is 96 
by 128 by 113 with even spacing in each grid direction. 
The shader uses local gradients as normals for a Phong 
shading model. In image 10 the color is grey. 

ENHANCEMENTS 

Perspective 

The above method can be enhanced to handle perspec- 
tive with two modifications. First, the image plane foot- 
print extent and mapping must be generated for each 
sample. These are then used to map each sample's screen 
space footprint into the generic footprint table. Second, 
the renderer approximates the screen space perspective 
projection of an ellipsoid by an ellipse. While this is not 
true in the general case, the ellipsoids that define regions 
of effect are typically small, on the order of a few pixels, 
and they seldom vary far from elliptical. With these two 
changes, the renderer can deal with the changing sam- 
piing rates of the input grid with respect to the screen 
brought on by the perspective transform. 

Adaptive Re-Sampling 

The above method can be further enhanced to rescale the 
grid spacing in areas of high variations. If nearby input 
samples vary widely, or produce colors that vary widely, 
the renderer can interpolate new values between the 
input samples along grid directions and adjust the 
appropriate grid spacing on the fly. The renderer builds 
a new footprint table each time the sampling rate 
changes. The kernel's projection quits being symmetric 
about the grid axis, but it only differs by a scale along the 
the axis. For example, the scale factor may be 4.0 for 
positive i and be 2.0 for negative i for samples that 
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border regions where adaptive sampling occurs. Samples 
within the region of resampling will each have identical 
kernel projections. The adaptive resampling will help 
the renderer alleviate the problem of the shading model 
introducing high frequency components. Additionally, 
the amount of subdivision the renderer performs is a time 
verses quality tradeoff control. Quick views under- 
sample the volume, and produce coarse images. Images 
that require better quality just take longer to generate. 
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