
~ Computer Graphics, Volume 24, Number 4, August 1990

Footprint Evaluation for Volume Rendering

Lee Westover
Numerical Design Limited

The University of North Carolina at Chapel Hill

ABSTRACT

This paper presents a forward mapping rendering algo-
rithm to display regular volumetric grids that may not
have the same spacings in the three grid directions. It
takes advantage of the fact that convolution can be
thought of as distributing energy from input samples into
space. The renderer calculates an image plane footprint
for each data sample and uses the footprint to spread the
sample's energy onto the image plane. A result of the
technique is that the forward mapping algorithm can
support perspective without excessive cost, and support
adaptive resampling of the three-dimensional data set
during image generation.

KEYWORDS: 3D Image, Volume Rendering, Recon-
strnction, Algorithms.

INTRODUCTION

Volume rendering is the direct display of data sampled in
three dimensions. There are two principle approaches to
volume rendering: backward mapping algorithms that
map the image plane onto the data by shooting rays from
pixels into the data space, and forward mapping algo-
rithms that map the data onto the image plane.

* Author's current address:
Sun Microsystems Inc
PO Box 13447
Research Triangle Park NC
27709

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

This distinction principly manifests itself in how and
when reconstruction of the three-dimensional signal is
done. Convolution can be thought of as either generat-
ing an output sample from many input samples or as
spreading one input sample to many output samples.
Backward mapping algorithms typically reconstruct the
signal at a point in space by looking at that point's
nearest data samples and performing some type of inter-
polation. Forward mapping algorithms differ in that they
incrementally reconstruct the original signal by spread-
ing each data sample's energy into space.

Forward mapping algorithms are important because they
are easily made parallel. Sinee each data sample only
needs to know about a small surrounding neighborhood
of other samples, shading and transforming can be done
in parallel for sub-sections of the data. With today's
parallel machines having limited local memory, this data
distribution gets around the backward mapping problem
of having the entire data set at each node.

The reconstruction step is the most complicated part of
the algorithm. The renderer must determine the screen
space contribution of each sample point to the final
image. A brute force method would perform a one-
dimensional integration of the reconstruction kernel for
every pixel for every input sample. If the renderer can
calculate the screen space extent of the kernel, the
number of integrations reduces to the number of samples
times the number of pixels that fall within the extent.
However, this is still an enormous number of integra-
tions.

In an orthographic view, the footprint of the projected
reconstruction kernel for any sample is a constant except
for a screen space offset. This allows the renderer to
build a footprint function table once and use the table for
all samples. Since the table is discrete, the renderer
builds it on a fine grid to prevent artifacts. Even with this
modification, the renderer must perform N 2 integrations
of the kernel where N is the number of grid ceils in each
table dimension.

© 1 9 9 0 ACM-0-89791-344-2/90/008/0367 $00.75 367

O SIGGRAPH '90, Dallas, August 6-10, 1990

This paper presents an algorithm that allows the renderer
to use a pre-computecl footprint function table to build
the view-transformed footprint table for a particular
view. This pre-computed table is called the generic foot-
print table because the renderer uses it to calculate the
view-transformed table for any particular view. The
renderer needs to calculate two things to build the view-
transformed table. First, the renderer computes the
screen space extent of the projection of the reconstruc-
tion kernel. Second, the renderer computes a mapping of
this extent to the extent that surrounds the pre-integrated
footprint table. Then for each cell in the grid of the
view-transformed table, the renderer maps the cell to the
generic table and samples the generic table to find the
cell's value. Once the renderer builds the view-
transformed table, it can use the table for all input sam-
pies. The renderer centers the table at the sample's pro-
jected screen location and samples the table at the center
of each pixel that fails within the table's extent.

PREVIOUS WORK

Researchers have investigated the volume rendering
problem in the last few years and these algorithms can be
divided along many lines. Blinn [2], Kajiya [7],
VanHook [14], Levoy [9] and Sabella [12] describe
methods of ray tracing volume densities with algorithms
that map pixels onto the data by shooting rays into the
data. Frieder [4], Lenz [8], Drebin [3], and Westover
[15] use compositing techniques that map the data onto
the image plane. Lorensen [10], Upson [13], and Gal-
lagher [7] have investigated various methods of fitting
surfaces into each data cell and then rendering the
volume as surfaces.

Another distinction between algorithms is whether the
original signal is reconstructed and shaded at points of
interest or whether the original data samples are shaded
and then the shaded volume is reconstructed to form an
image. Since shading is typically a non-linear process,
interpolating the shaded volume can be problematic due
to the high frequencies introduced by the shading model.
On the other hand, this method only shades true data
samples. Interpolating first, then shading, introduces
new data samples into the data set, but shading happens
at exact query samples. An enhancement to the algo-
rithm presented in this paper can support either
approach.

Footprint determination has much in common with tex-
ture map sampling. It is, however, almost the exact
opposite problem. In texture mapping, a pixel is mapped
into texture space and then all texture samples that lie
within the mapped pixers footprint are weighted and
accumulated to form the single texture color [6]. In
volume rendering, the footprint is used to spread a single
samples contribution onto every pixel that lies within the

368

mapped voxel's footprint. In both cases, the mapping of
a sample from one space into a second space forms an
elliptical footprint in the second space.

RENDERING ALGORITHM

The algorithm discussed in this paper is a forward map-
ping algorithm that shades at input samples, and recon-
structs a final image from the shaded volume. This work
differs from the original algorithm, described in West-
over [15], in four ways. First, the initial algorithm com-
bined the reconstruction step and the visibility step at
each voxel. The new algorithm performs reconstruction
for all samples in a sheet, where a sheet is defined as a
plane through the data that is most paraUel to the image
plane. Each voxel in a sheet is added to a sheet cash.
When all the voxels on a sheet are processed, the sheet is
matted into the working image. Second, the algorithm
now uses a generalized shading model, Abram [1], that
supports many shading techniques including the one
from the original algorithm. Third, many of the details of
how footprints are calculated and used has changed, as
described below. Forth, the new footprint method will
allow the algorithm to support both perspective and
adaptive refinement.

The algorithm consists of four main parts: transforming,
shading, reconstruction, and visibility. For the algorithm
to run in parallel, it is critical that each step in the pro-
cess uses only local information. The renderer processes
a sample by transforming the sample from input <i,j,k>
grid space to <x,y,z> screen space. It then shades the
sample using some shading rule that uses local informa-
tion. The shaded sample is a <x,y,z,red,green,blue,tx>
tuple. Next the renderer determines the portion of the
image the sample can affect and adds the sample's contri-
bution to the sheet accumulator. The determination of
the footprint function, the sampling of the footprint func-
tion, and the spreading of the sample's contribution is
called splatting. The efficient determination of the effect
and an efficient application of the footprint function is
the topic of this paper. When all the samples that lie in a
sheet are processed, the renderer mattes the sheet accu-
mulator to the working image using a compositing
operator [11]. Once all samples are processed, the work-
ing image becomes the final image.

FOOTPRINT FUNCTION

The volume reconstruction equation for a regular array
of density values is:

signal 3D =

fffhv(.-x,v-y,w-z) p(x,y,z) Z (x,y,z) auavaw

where hvO denotes the volume reconstruction kernel, p
denotes the density function, ~ 5 denotes the comb

' ~ ' Computer Graphics, Volume 24, Number 4, August 1990

function, and u,v,w are the coordinates of the kernel.

Moving the summation outside the integral and evaluat-
ing the integral at point <x, y, z> results in:

signalaD(x,y,z) = ~ hv (x-Dx, y-Dy.z-D~) p (D)
D e Vol

where D ranges over the input samples that lie within the
range for which the kernel, hvO is non-zero, and D~Dy,
and D, are the screen space coordinates of the sample
< D > .

Instead of considering how multiple samples contribute
to a point, consider how a sample can contribute to many
points in space. The contribution at a point <x, y, z> by
a data sample <D> is:

contributionD (x,y,z) = hv(x-Dx.y-Dy, z-Dz) p (D)

Therefore, the renderer can treat each data sample indi-
vidually and spread its contributions to the output sam-
pies.

The total contribution at a given <x,y> location is the
sum of the contribution along a ray through the kernel
that is perpendicular to the screen with its origin at
<x,y>. The sum is calculated as the integral along z of
the ray. Projecting the sample onto the image plane at
pixel <x,y> is:

contributionD(x,y) = 5 hv(x-D~,y-Dy.w) p (D) dw

For a given sample, p is a constant and since p is
independent of w, p can be moved outside the integral:

contributiono(x,y) = p (D) S hv(x-D~,,y-Dy,w) dw

Notice that the integral is independent of the sample's
density. Since it only depends on the sample's <x, y>
projected location, the function footprint is defined:

footprint (x,y) = S hv(x,y,w) dw

where <x,y > denotes the displacement of an image sam-
ple from the center of the shaded sample's image plane
projection.

METHOD

For orthographic views, the footprint of each sample is
the same except for a screen space offset. Therefore, the
renderer needs only to calculate the footprint function
once for each view of the data set. Once the footprint is
known, the renderer can sample the footprint function at
each pixel that lies within the footprint's extent and con-
tribute the appropriate amount to the pixel. The weight at
each pixel is:

weight (x,y)D = footprint (x-D~,y-Dy)

where <D~,Dy> denotes the sample's image plane pro-
jection and <x,y> denote the pixel's image plane loca-
tion.

Sampling the footprint function involves an integration.
Many kernels are difficult to integrate analytically and
the renderer must use discrete methods. Since the
renderer does not want to integrate this function many
times for each sample, it builds a table on a fine grid and
then performs table look-ups to evaluate the function.
The renderer needs to determine two things to build the
footprint table for a particular view. First, it calculates
the screen space extent of the projection of the kernel,
which in an orthographies view is constant for each input
sample. All pixels that lie within the extent may be
affected by the given sample. Second, the renderer calcu-
lates a mapping from the view-transformed extent to an
extent that surrounds the projection of a generic kernel.
The generic kernel table is calculated by a pre-
processing program that runs once for a given kernel.

Since the pre-processor runs once, it does not matter how
long it takes to compute the integration of the kernel. By
using a pre-computed generic table, the renderer can
easily change reconstruction kernels by reloading the
generic table from disk.

Once the renderer builds the view-transformed table, the
table is used by the renderer for each sample, by center-
ing the table at each sample's projected screen position
and calculating the screen space extent of the kernel by
offsetting the extent of the projected kernel. For each
pixel in the extent, the renderer samples the table to
determine the amount of contribution for the pixel. The
renderer builds the view-transformed footprint table on a
grid that has many samples per pixel. Without over-
sampling rendering artifacts will occur.

Building the Generic Footprint Table

The method assumes that the extent of the reconstruction
kernel is a sphere. If the extent is not a sphere, the pre-
processor bounds the kernel by a sphere. For efficiency
reasons, the bounding sphere should be as tight as possi-
ble. A loese fitting sphere will cause the pre-processor to
build a generic table that has many zero entries, which
causes the renderer to visit many pixels that are not
affected by a given sample. For a spherical kernel, the
radius of the sphere is equal to the width of the recon-
struction kernel. This sphere, called the unit region
sphere, defines the region a sample can affect. Within
this region, on a discrete grid, the preprocessor
integrates the kernel along the z direction and stores the
result in a table. This table is called the generic footprint
table. During image generation, the renderer determines
the extent of the projection of the view-~ansformed

369

O SIGGRAPH '90, Dallas, August 6-10, 1990

region sphere. In addition, the renderer determines a
mapping of each point in that extent onto the extent sur-
rounding the unit region sphere in order to build the
view-transformed footprint table. The projection of the
unit region sphere on the image plane is a circle. The
mapping from view-transformed extent to generic extent
is then a mapping from the projection of the view-
transformed region to a circle.

L; ; L,;i ; ;; ; ;; ; ; ; ~k; ; ; ;
I I W I I I I I I I I I I I I I I 1 ~ 1 I I
i , . i i i , i i i , , i , i i i , ~ 1 1

J r i I I I I I I l l I l l i P J
i i i i i i i i i i i i i l i i i i

1 1 1 1 1 1 i i i i i 1 i i 1 i i i i i 1
i i i i i i i i i i i i i i i i 1 1 i i i

I L l I l l I I I I l l I l l I J
i l l l i i i i i 1 i i i i i i i i i i i i

l ;~ , l II ; ;l I ',; l II ; ; LI'I',
I I I N I I I I I 1 1 I I I I l ~ r l I I
i i i 1 ~ i I 1 1 I 1 1 I I g l 1 I [1

L ~ ./I-.d..l..kZ~ff-k J.,L,~.U

Figure 2. Genetic Footprint Function Table

EXTENTS AND MAPPINGS

There are two basic cases for determining extents and
mappings: the unit sphere maps to a sphere after apply-
ing the viewing transform, or the unit sphere maps to an
ellipsoid. The result is a sphere when the input volume
has equal spacings in each of the grid directions and the
viewing transform has only uniform scaling. The result is
an ellipsoid when the input volume has non-uniform
spacing in each of the grid directions or the viewing
transform has non-uniform scaling. Since a sphere is a
special case of an ellipsoid, the renderer currently uses
the elliptical method described below for all volumes.

Extent and Mapping for Spherical Kernels

Figure 3. Spherical Kernel

Even when the kernel maps to a sphere, the renderer can
not use the generic table directly and must build a view-
transformed table. If the grid scale value and the view

3 7 0

scale value are both 1.0, the generic table is used, other-
wise the renderer builds a view-transformed. This makes
a table access fall exactly at table entries and causes all
the interpolations to only occur once.

Extent

Many input volumes have fewer samples per face than
the desired number of pixels in the image. This means
that the input sampling rate is much smaller than the out-
put sampling rate and each input sample needs to cover
many pixels. The renderer calculates the extent of a
sample's effect by scaling the unit extent by the grid
scale value and the view scale value.

The extent in both the x and y directions i s :

extent =2.0*kernel_width* grid_scale*view_scale

Mapp/ag

The mapping from scaled extent to unit extent is trivial
in the case of a spherical result. The projection of the
sphere onto the image plane is a circle. The mapping
from one circle to another circle is a scaling by the ratio
of the radii of the two circles. The mapping is:

1.0
mapping =

grid_scale_factor*view_scale_factor

The renderer uses the mapping to map ceils of the view-
transformed footprint table to the generic footprint table.
If the view is simply rotated and the scale factors do not
change, the view-transformed footprint table can be used
again.

Extant and Mapping for Elliptical Kernels

Figure 4. Elliptical Kernel

If the scalings in grid directions are different, the region
sphere transforms into a region ellipsoid. The projection
of the region ellipsoid is always a screen space ellipse.
The extent of a kernel's effect is the extent of the pro-
jected ellipse, and the mapping from view-transformed
table to generic table is a mapping from the projected

' ~ ' Computer Graphics, Volume 24, Number 4, August 1990

ellipse to the unit circle.

Extent

The region ellipsoid is found by transforming the unit
region sphere by the grid scale transform and then by the
viewing transform. By treating the unit region sphere as
a quadrie surface, the transformations become matrix
multiplications.

Let the original unit sphere be U:

1 0 0 0
U = 0 1 0 0

e e l 0
0 0 0 -1

and let the grid scale transform be S:

IS i 0 0 0 s= s j o o
0 Sk 0
001

and let the viewing transform be V:

V = e /
h i
O 0

The grid space region ellipsoid E is:

E = S * U

To transform the quadric surface the renderer calculates
both the inverse viewing transform and its transpose.
The resulting screen space ellipsoid R is:

R = V - l r* E * V -1

with

A D/2 El2
DI2 B FI2

R= El2 F/2 C
0 0 0

This gives an ellipsoid defined by:

Ax 2 +By 2 + Cz z + Dxy + Exz + Fyz = K (I)

By rearranging terms, completing the square, and solv-
ing for x and y, the renderer can calculate the screen
space extent of the transformed ellipse. The x extent is:

x=± ~ A -

and the y extent is:

y=_+ - - - - ---~----------

K

(E DF .}z
D 2 . - - ~ - .

Mapping

The renderer also needs to calculate the mapping from
the projection of the region ellipsoid back to the unit cir-
cle. To do this, the renderer first calculates the screen
space projection of the region ellipsoid which is an
ellipse. To find the ellipse, first rewrite (1) as a quadratic
in z. The quadratic is:

Cz 2 + (Ex + Fy)z + (Ax ~ + By z + Dxy - K) = 0

Points on the edge of the projection of R have only one
root in this quadratic. There is only one root to the qua-
dratic aZ 2 + bZ + c = 0 when b 2 - 4ac = 0 or in this
case when:

(Ex + Fy) 2 - 4C (Ax 2 + By 2 + Dxy - K) = 0

Grouping the x 2, the y2, and the xy terms gives the
screen space projection ellipse P:

Xx2 + Yy2 + Zxy = K (2)

where:

E 2 F z EF
x = r = z =

Once the renderer calculates the screen space ellipse, it
can define a transformation that takes points from the
screen space ellipse into the unit circle. This is the
inverse of the mapping that takes the unit circle into the
screen space ellipse. To calculate the second mapping,
the renderer needs to calculate two things: the amount to
scale along the x axis and the y axis, and the amount of
rotation about the view direction.

Figure 5. Ellipse to Circle Mapping

371

@ SIGGRAPH '90, Dallas, August 6-10, 1990

The renderer finds these values by solving for T such
that:

writing P as:

and T as:

p = T * U * T r

X Z O 0
p= Z Y O 0

0 0 1 0
0 0 0 - 1

[,b°i] c d O
T= 0 0 1

0 0 0

and Uas:

1 0 0 0
0 1 0 0

U= 0 0 1 0
0 0 0 -1

and solving for X, Y, and Z:

a 2 + b 2 = X (3)

C 2 + d 2 = Y (4)

ac + bd = Z (5)

This looks like a problem since there are three equations
and four unknowns, a, b, c, and d, but T is a matrix that is
made up of a scale in the x and y directions followed by
a rotation about the z axis. So:

a = (S,,)*cose b =-(S~)*sin0 (6)

c = (Sy)*sin0 d = (Sy)*cos0 (7)

Plugging (6) and (7) into (3), (4), and (5) and applying
some algebraic manipulation brings:

(X-Y) cos0 sin0
Z sin0 cose

This seems to be a problem when Z is zero but upon
investigation of P, when Z is zero, P is a scaling of U,
therefore T is simply:

a = ~ and d = ' ~ and

b = c = 0

When Z is non-zero, let:

G= (X-Y) and w-
Z

then:

cosO
sin0

I
G = w--- or w2-Gw-I = 0

w

using the quadratic formula w is:

372

G +.Cr
2

Given w, 0 is arctan(1.0). This gives both sine and
W

cos0 and allows the renderer to solve for Sx and S r using
(6) and (7). Sx and S~, are undefined in the above equa-
tions when 0= 45 degrees. When this occurs, the
renderer cheats and rotates the view an additional 0.01
degrees about the view direction. This allows the
renderer to calculate Sx and Sy with little if any effect on
the image.

With 0, S~, and Sy the renderer builds T by multiplying
the identity matrix by a scale matrix of S~ and Sy, fol-
lowed by a z rotation matrix of 0. The mapping from P
into U is then the inverse of T: T -t .

The renderer uses T -1 to map cells of the view-
transformed footprint table to the generic footprint table.

TABLE SIZES AND KERNELS

There are three parameters that can change in building
footprint tables: the size of the tables, how the tables are
accessed, and the table's underlying kernel.

There is a space versus quality tradeoff between the size
of the footprint tables and the resultant artifacts in the
images. Image I shows this tradeoffon an elliptical pro-
jection. Each picture in image 1 is of a single sample
point scaled 120 by 60 by 60. The upper left picture in
the image uses a view-lxansformed footprint table with 5
by 5 entries. The upper right uses a table that is 11 by 11.
The lower left uses a table that is 21 by 21. The lower
right uses a table that is 101 by 101. Notice how
smoothness increases with table size.

There is a time versus space tradeoff in how the table is
sampled. If the footprint table has a lot of entries, then
nearest neighbor sampling works fine. If, on the other

~ Computer Graphics, Volume 24, Number 4, August 1990

hand, the table is coarse, then the renderer needs to inter-
polate samples from the nearest neighbors. Image 2
shows this tradeoff on an elliptical projection. Each pie-
ture in image 1 is of a single sample point scaled 120 by
60 by 60. The upper left picture in the image uses a
view-transformed footprint table with 5 by 5 entries. The
upper fight uses a table that is 11 by 11. The lower left
uses a table that is 21 by 21. The lower right uses a table
that is 101 by 101. In each case, the renderer generates
the table value with a bilinear function. Compared to
Image 1, the footprint is much smoother on a lot smaller
table. However, a reasonable table size is required to
avoid bilinear artifacts.

kernels, radius is the normalized distance from the
center of the kernel. The upper left has a cone function
modeling the result of the z integration. The upper fight
has a Gaussian function as the model. The lower left
has the first five lobs of a syne function as the model.
The lower right has the bilinear function as the model.

Image 4 is a portion of a computed tomography study of
a human head. The data is clipped to only show the left
eye. The spread of the Gaussian kernel changes in each
sub-image. In the upper left the Gaussian is sealed so
that its tail stops 25 percent of the way to the next voxel
(where 100 percent just touches the next voxel). This
scale changes from 25 to 225 percent in steps of 25 per-
cent from left to fight and top to bottom. In the first
images the kernels are too sharp and do not overlap leav-
ing gaps. In the last images the kernels are very broad
and over blur the images. All the images in the follow-
ing section were generated with a Gaussian kernel with a
sigma of 2.5 and a spread of 160 percent.

The third thing to change is the kernel itself. The choice
of kernel can drastically affect the quality of an image.
Image 3 is a single sample as above with four different

Image 5 shows each of the above kernels operaating on a
3 by 3 by 1 grid of constant values. These kernels are
approximations to the true z integration of a three-
dimensional kernel. The view-transformed table as 10
by 10 entries. The patterns in the upper left image are
the result of multiple kernels not summing to one at all
points. The patterns in the lower left image are the result
of ringing from the sync function at the edges of the
sample space. Notice the sharp second order discon-
tinuities at the comers of the image from the bilinear
function at the lower right. Superimposed on the images
are line drawings of a single seanline's grey value. The
green line is when table values were interpolated from
nearest neighbors. The red line is when just the single

373

O SIGGRAPH '90, Dallas, August 6-10, 1990

nearest neighbor was used. and opacity based on concentration values. Since the
algorithm works back to front, any image (in this case a
texture map of state boundaries) can be used as a starting
working image. The clouds are colored with blue being
low concentration, going to green for intermediate con-
eemration, and finally red where concentration exceeds
the government's legal limits.

SAMPLE IMAGES

Image 6 is a single sample with an elliptical projection.
The four views are of the sample with the volume rotated
0 degrees, 10 degrees, 30 degrees, and 45 degrees about
the view direction. The ellipse does not change shape or
size as the volume grid is rotated about the z axis. Image 8 is an image generated from the electron density

of the p-orbitals of copper chloride. The input grid is 64
by 64 by 64 with even spacing in each grid direction.
The viewing transform has only uniform scaling. The
shading model is the emittance model with color and
opacity based on density value. The underlying data has
no surfaces and the image has a cloudy nature.

Image 7 is an image of ozone concentrations over the
northeast corner of the United States in July 15, 1980.
The input grid is 64 by 52 by 32 with very uneven spac-
ing in the z direction compared to the x and y directions.
The shading model is the emittance model with color

374

Image 9 is an isodensity surface from an electron density
map of Staphylococcus Aureus ribonuclease. The initial

~ Computer Graphics, Volume 24, Number 4, August 1990

data set was 24 by 20 by 11 and resampled using a tri-
cubic function during a preproeessing step. The resul-
tant data set is 137 by 113 by 59 with even spacing in
each grid direction. The data set was then shaded using
Levoy [9] shading techniques into a shaded data seL This
data set was rendered using the feed-forward renderer
with a shading table that mapped grey scale shade and
opacity one-to-one with the input data.

In image 11, the shader uses the <i,j,k> grid values as
three-dimensional texture indices. Here the data has sur-
faces, and the opacity tables are chosen to bring out the
skin/air interface.

Image 10 and Image 11 are images of a computed
tomography study of a human head. The input grid is 96
by 128 by 113 with even spacing in each grid direction.
The shader uses local gradients as normals for a Phong
shading model. In image 10 the color is grey.

ENHANCEMENTS

Perspective

The above method can be enhanced to handle perspec-
tive with two modifications. First, the image plane foot-
print extent and mapping must be generated for each
sample. These are then used to map each sample's screen
space footprint into the generic footprint table. Second,
the renderer approximates the screen space perspective
projection of an ellipsoid by an ellipse. While this is not
true in the general case, the ellipsoids that define regions
of effect are typically small, on the order of a few pixels,
and they seldom vary far from elliptical. With these two
changes, the renderer can deal with the changing sam-
piing rates of the input grid with respect to the screen
brought on by the perspective transform.

Adaptive Re-Sampling

The above method can be further enhanced to rescale the
grid spacing in areas of high variations. If nearby input
samples vary widely, or produce colors that vary widely,
the renderer can interpolate new values between the
input samples along grid directions and adjust the
appropriate grid spacing on the fly. The renderer builds
a new footprint table each time the sampling rate
changes. The kernel's projection quits being symmetric
about the grid axis, but it only differs by a scale along the
the axis. For example, the scale factor may be 4.0 for
positive i and be 2.0 for negative i for samples that

375

O SIGGRAPH '90, Dallas, August 6-10, 1990

border regions where adaptive sampling occurs. Samples
within the region of resampling will each have identical
kernel projections. The adaptive resampling will help
the renderer alleviate the problem of the shading model
introducing high frequency components. Additionally,
the amount of subdivision the renderer performs is a time
verses quality tradeoff control. Quick views under-
sample the volume, and produce coarse images. Images
that require better quality just take longer to generate.

ACKNOWLEDGEMENTS

I would like to thank my advisor, Turner Whitted, for our
numerous discussions and his helpful insight, and Robert
Whitton, for his invaluable help in converting some
vague feelings and intuitions into concrete mathematical
formulas. In addition, I would like to thank Greg Abram
and Greg Gilley for helping me with incorporating our
company's shading library into my volume renderer. I
would like to thank Dana Smith and Greg Gilley for their
help in proof reading this paper. They are responsible
for much of the readability of the paper and none of its
faults.

The copper chloride p-orbitals data is courtesy of
Michael Pique, Scripps Clinic Molecular Biology, La
Jolla, California. The computed tomography data is
courtesy of Radiation Oncology of the University of
North Carolina at Chapel Hill, North Carolina. The
ozone concentration data is courtesy of the Regional
Oxidant Model group of the Environmental Protection
Agency, Research Triangle Park, North Carolina. The
original Staphylococcus Aureus ribonuclease data is
courtesy of Chris Hill of the University of York. The
shaded Staphylococcus Aureus ribonuclease data is
courtesy of Marc Levoy University of North Carolina at
Chapel Hill, North Carolina.

REFERENCES

1. Abram, Greg, Turner Whitted. Building Block
Shaders. Proceedings of SIGGRAPH'90 (Dallas,
Texas, August 6-10, 1990). In Computer Graphics
24, 4(August 1990).

Blinn, Jim. Light Reflection Functions for Simula-
tion of Clouds and Dusty Surfaces. Proceedings of
SIGGRAPH'82 (Boston, Massachusetts, July 26-
30, 1982). In Computer Graphics 16, 3(July
1982), 21-30.

3. Drebin, Robert, Lorne Carpenter, Pat Hanrahan.
Volume Rendering. Proceedings of SIG-
GRAPH'88 (Atlanta, Georgia, August 1-5, 1988).
In Computer Graphics 22, 4(August 1988), 65-74.

Frieder, Gideon, Dan Gordon, Anthony Reynolds.
Back-to-Front Display of Voxel-Based Objects.
IEEE Computer Graphics and Applications 5,

.

.

.

.

.

.

.

10.

11.

12.

13.

14.

15.

l(January 1985).

Gallagher, Richard and Joop Nagtegaal, An
Efficient 3-D Visualization Technique for Finite
Element Models and Other Coarse Volumes.
Proceedings of SIGGRAPH'89 (Boston, Mas-
sachusetts, July 31 - August 4, 1989). In Com-
puter Graphics 23, 3(July 1989), 185-194.

Greene, Ned, Paul Heckbert. Creating Raster
Omnimax Images from Multiple Perspective
Views Using the Elliptical Weighted Average
Filter. IEEE Computer Graphics and Applications
6, 6(June 1986).

Kajiya, Jim, Brian Von Herzen. Ray Tracing
Volume Densities. Proceedings of SIGGRAPH'84
(Minneapolis, Minnesota, July 23-27, 1984). In
Computer Graphics 18, 3(July 1984), 165-174.

Lenz, Reiner, Bjorn Gudnumdsson, Bjorn
Lindskog, Per Danielsson. "Display of Density
Volumes", IEEE Computer Graphics and Applica-
tions 6, 7(July 1986).

Levoy, Mark. "Volume Rendering: Display of
Surfaces from Volume Data", IEEE Computer
Graphics and Applications 8, 5(May 1988).

Lorensen, William, Harvey Cline. "Marching
Cubes: A High Resolution 3D Surface Construc-
tion Algorithm", Proceedings of SIGGRAPH'87
(Anaheim, California, July 27-31, 1987). In Com-
puter Graphics 21, 4(July 1987), 163-170.

Porter, Thomas, Tom Duff. Compositing Digital
Images. Proceedings of SIGGRAPH'84 (Min-
neapolis, Minnesota, July 23-27, 1984). In Com-
puter Graphics 18, 30uly 1984), 253-260.

Sabella, Paolo. A Rendering Algorithm for
Visualizing 3D Scalar Data. Proceedings of SIG-
GRAPH'88 (Atlanta, Georgia, August 1-5, 1988).
In Computer Graphics 22, 4(August 1988), 51-58.

Upson, Craig, Michael Keller. VBUFFER: Visi-
ble Volume Rendering. Proceedings of SIG-
GRAPH'88 (Atlanta, Georgia, August 1-5, 1988).
In Computer Graphics 22, 4(August 1988), 59-64.

VanHook, Tim. Personal Communication. Sep-
tember I986.

Westover, Lee. "Interactive Volume Rendering"
Proceedings of the Chapel Hill Workshop on
Volume Visualization, May 1989.

376

