
Amira - a Highly Interactive System
for Visual Data Analysis

Detlev Stalling, Malte Westerhoff, and Hans-Christian Hege
Zuse Institute Berlin (ZIB), Germany

1 Introduction

What characteristics should a good visualization system hold? What kinds of data should it
support? What capabilities should it provide? Of course, the answers depend on the particular
task and application. For some users a visualization system may be nothing more than a simple
image viewer or plotting program. For others it is integrated software dedicated to their personal
field of work, such as a computer algebra program or a finite-element simulation system. While
in such integrated systems visualization is usually just an add-on, there are also many specialized
systems whose primary focus is upon visualization itself.

On the one hand, there are many self-contained special-purpose programs written for partic-
ular applications. Examples include flow visualization systems, finite-element post-processors,
and volume rendering software for medical images. On the other hand, several general-purpose
visualization systems have been developed since scientific visualization became an independent
field of research in the late 1980s. These systems are not targeted to a particular application area,
but provide many different modules which can be combined in numerous ways, often adhering
to the data-flow principle and providing means for ‘visual programming’ [23, 4, 17, 1, 5, 15, 7].

In these ways, custom pipelines can be built to solve specific visualization problems. Al-
though these visualization environments are very flexible and powerful, they are usually more
difficult to use than special-purpose software. In addition, a major drawback induced by the
data-flow principle or pipelining approach is the lack of sophisticated user interaction. Any op-
eration which requires manual interaction, such as segmenting a medical image into different
regions, editing a polygonal surface model or molecular structures, or cropping and selecting
different parts of a complex finite-element model, is difficult to incorporate into a pipeline of
modules that is executed automatically. One may argue that these interactive tasks are not visu-
alization problems per se. But it is a matter of fact that such operations require visual support
and are essential for solving problems in many application areas.

In order to close the gap between the ease of use, power, and interactivity of monolithic
special-purpose software, and the flexibility and extensibility of data-flow oriented visualization
environments, the software systemamira has been designed. Initially developed by the scientific
visualization group at the Zuse Institute Berlin (ZIB), todayamira is available as a commercial
product together with several extensions and add-ons [2]. One major focus of the software is
the visualization and analysis of volumetric data which is common in medicine, biology, and
microscopy. These volumes can be displayed and segmented, 3D polygonal models can be re-
constructed, and these models can be further processed and converted into tetrahedral volume

1



grids. Due to its flexible design, many other tasks can also be performed inamira, including
finite-element post-processing, flow visualization, and visualization of molecules. In this chapter
we discuss the fundamental concepts, techniques, and features ofamira.

1.1 Design Goals

The development ofamira was driven by the following design goals:

• Ease-of-use.Simple visualization tasks such as extracting an oblique slice from a 3D
image or computing an isosurface should not require more than a few mouse clicks. Un-
trained users should be able to get results as quickly as possible.

• Flexibility. The system should be able to work with a large number of different data types
and with multiple data sets at once. Complex operations requiring the combination of
multiple modules should be possible, too.

• Interactivity. Techniques or components requiring heavy user interaction, both in 2D and
in 3D, should be easy to integrate. Examples are image segmentation, surface editing,
alignment operations, and many more.

• Extensibility. Users should be able to add new features to the system, e.g., new I/O rou-
tines, new modules, or even new data types or interactive editors. Existing components
should be customizable to some extent.

• Scripting interface.The system should be programmable via a scripting language, enabling
batch processing, in order to simplify user-specific routine tasks and presentations, and to
facilitate customization of the software.

• Multi-platform support. Different hardware platforms and operating systems should be
supported, in particular Windows, Linux, and other Unix variants. 64-bit code should be
supported in order to process large data sets efficiently.

• State-of-the-art algorithms.Modern visualization techniques such as direct volume ren-
dering and texture-based flow visualization should be implemented. All techniques should
be optimized for both, performance and image quality.

In the following section we first describe the general concepts we have chosen to meet these
goals. Next, we will illustrate how the system can be applied in different fields of work. We
do this by identifying common tasks and show which methods are provided to solve these tasks.
Finally, we are going to discuss someamira extensions, most prominentlyamiraVR, an extension
which allows the software to operate upon large tiled displays and within immersive virtual
reality environments.

2 General Concepts

In Fig. 1 a snapshot of theamira user interface is shown. When the software is started, three
windows are invoked: the main window containing the “object pool” and the control area, a
graphics window where visualization results will appear, and the console window where mes-
sages are printed and additional commands can be typed in. Data sets can be easily imported via
the file browser or via drag-and-drop. After a data set has been imported, it is represented as a
small icon in the object pool. The data set can be visualized by choosing an appropriate display
module from a context-sensitive popup menu over the data icon. This popup menu lists only
modules which can be connected to the particular data object. The output of a display module is
immediately shown in the graphics window. Thus, a data set often can be visualized with a single

2



Figure 1: Theamira user interface consists of the main window with the object pool and the
control area, a large 3D graphics window, and a console window for messages and command in-
put. The figure shows a medical image data set from MR angiography, visualized by a projection
view modules and a volume rendering module.

mouse click once it has been imported. Also, different visualization techniques can be combined
with each other without any limitations.

Having discussed the basic modes of operation, we now consider the concepts behindamira
in more detail.

2.1 Object Orientation

In amira data sets as well as modules are considered to be objects. These objects are represented
visually as icons in the object pool. Looking at the object pool, one can easily observe which
objects exist and how they are related to each other. If an object is selected with the mouse,
additional information and corresponding user interface elements are displayed in the work area.
These interface elements, known as “ports” inamira, allow users to interact with a module. For
example, the threshold of an isosurface module or the position of a slicing module can be adjusted
with corresponding sliders. In addition, every object also provides a script interface. One can
query an object for its properties, or one can interact with an object by calling it with certain
commands.

A major advantage of the object concept is that objects can be easily modified or edited by
other components. For this purpose powerful editors are provided, allowing modification of data
sets in a highly interactive way. Examples are theamira segmentation editor, the landmark editor,
and the surface editor. Objects can be modified not only by editors, but also by other components,
mainly compute modules. This is not easily possible in a data-flow oriented system, as in such
systems data is usually not represented to users as an independent object.

3



2.2 Inheritance and Interfaces

The object oriented approach inamira also makes use of class inheritance. For example, all
data objects are derived from a common data class. This class provides methods to duplicate
and save the object or to associate arbitrary parameters with it. A more specialized data class
represents spatial data objects, i.e., data objects which are embedded in 3D space. This class
provides methods to query the bounding box of the data object, and to set or get an optional
affine transformation matrix. Another base class represents fields, i.e., data objects which can
be evaluated at any point in a 3D domain. This class provides methods to query the component
range of the field, or to evaluate it at an arbitrary point in a transparent way, i.e., without needing
to know how the field is actually represented. The field may be defined on a regular grid, on
an unstructured grid, or even procedurally by specifying an arithmetic expression. New fields
defined in other ways may also be easily added. All display modules defined for the base class
can be used automatically for these new fields. Inamira the generic evaluation methods of the
field class are used (for example) by data probing modules, which plot field values at a point or
along a line; by flow visualization modules, which need to compute trajectories in a vector field;
or by slicing modules, which need to resample a field on a 2D grid.

However, in some cases it is not possible to derive data classes with common properties from
a common base class. For example, inamira there are separate base classes for scalar fields
and for vector fields. At the same time, scalar fields and vector fields defined on the same type
of grid, e.g., on a regular cartesian grid, have many things in common. For this reason,amira
provides a mechanism called interfaces. These are classes which describe common properties of
objects which do not necessarily have a common base class. For example, both regular scalar
fields and regular vector fields provide a lattice interface. In this class, the number of data values
per node is a variable. Thus a module or export routine using the lattice class interface can be
automatically applied to both regular scalar fields and regular vector fields, or to any other object
providing this interface.

2.3 User Interface Issues and 3D Interaction

A primary design goal ofamira is ease-of-use. Of course, this is a somewhat subjective and
loosely-defined requirement. We try to accomplish this goal using several different strategies.
First, context-sensitive popup menus are provided, offering only those modules which actually
can be connected to a given data object. Next, fewer but more powerful modules are preferred
compared to a larger number of simpler entities. For example, in order to display one slice of
a 3D image, in a data-flow oriented visualization system, users must often first extract a 2D
subimage, then convert this into geometry data, and finally display the geometry using a render
module. Inamira all of this is done by a single OrthoSlice module.

By default, visualization modules show their results directly in the main graphics window.
In many cases one simply chooses a module from a data object’s popup menu and immediately
receives a visual result. Modules which may need more time for preprocessing usually provide
an additionalDoIt button which must be pressed in order to generate a result. In this way it
is possible, for example, to first adjust the threshold of an isosurface module or to first select
the colormap of a volume rendering module before starting any computation. Optionally,DoIt
buttons can be “snapped” to an “on” position, thus facilitating automatic updates. Another point
improving the clarity of the user interface is to reduce the number of open windows and avoid
overlapping windows so far as possible. The controls ofamira objects are shown in a single
scrolled list once an object has been selected. Although multiple objects can be selected at
once, usually this is not the case. Typically, the user interface is organized as a list of so-called
ports, where each port comprises a single line with a label, followed by some buttons, text fields,
or sliders. If required, important ports can be “pinned,” which makes them visible even if the
corresponding object has been deselected.

4



In addition to the standard controls, many modules also provide a means for 3D interaction
in the graphics window. For example, a slice may be picked and translated in 3D. In order to
choose a different orientation, a trackball icon can be activated, which then in turn can be picked
and rotated. The positions of landmarks and other points can defined by simply clicking on other
objects. Similarly, information about points or faces of a grid or surface, as well as associated
data values, can be obtained by clicking on them. Parts of a 3D model or individual triangles can
be selected using a lasso tool, i.e. by drawing a contour in the graphics window.

2.4 Software Technology

Flexibility and extensibility ofamira is ensured by a specific modular software architecture where
multiple related modules are organized into different packages. Each package exists in the form
of a shared library (or DLL under Windows) which is linked to the main program at run-time.
For each package there is a resource file specifying which data classes, modules, editors, or I/O
routines are defined in that package. This way, only shared libraries providing code which is
actually being used need to be loaded. This keeps the executable size small, but still makes it
possible to have an almost unlimited number of different components in the system. In order
to extend the functionality of the system, developers can add custom packages or even replace
existing packages as needed.

amira is written in C++, and requires only a few external standard libraries. For 3D graphics
support the TGS Open Inventor toolkit is used, which is a well established and proven scene-
graph layer [13]. Open Inventor provides multi-platform support, multi-threaded rendering, and
many advanced display nodes. In addition, several Open Inventor custom nodes have been added
to amira for improved performance and image quality. All of these nodes have been directly
implemented using OpenGL. The graphical user interface ofamira is built using Qt, which is a
multi-platform widget library [16]. With Qt it is possible to use the same code base for all sup-
ported platforms. Currently support platforms are Windows, Linux, IRIX, HP-UX, and Solaris,
all with both 32-bit and 64-bit code. A Mac OS X version is planned for the near future. The
ability to run in 64-bit mode is important because it allows to process very large data sets as they
become more and more frequent in many areas of science and engineering.

2.5 Scripts and Script Objects

The script interface ofamira is based on the scripting languageTcl, which is also an established
industry standard [14]. The standard set of Tcl commands has been extended by manyamira
specific commands. In particular, the name of each object in theamira object pool can be used as
a command name allowing to interact with that particular object. Furthermore, the name of each
port of a data object or module can be used as an argument or subcommand for that object. All
ports provide Tcl methods to set or get their respective values. For example, to set the threshold
of an isosurface module in a script (i.e., the value of the port representing the threshold), one
would use the command

Isosurface threshold setValue 100 .
Scripts allow one to simplify routine tasks or to run complex presentations. When anamira net-
work is saved, a Tcl script is generated, which, when executed, restores the current state. Tcl
code can also be bound to certain function keys or to entries in the context menu of a data object.
This menu lists all modules which can be connected to an object. It is even possible to modify
the default settings of anyamira module using Tcl code. Finally, Tcl expressions can be used to
decide at run-time whether a particular module can be connected to some data object or whether
a particular export routine can be called for that object. In this way, the default rules for matching
object types and interface names can be overwritten.

Besides standard scripts,amira also supportsscript objects. Script objects are similar to
ordinary modules but are implemented completely in Tcl. Usually they provide at least three Tcl

5



procedures: a constructor, a compute routine, and a destructor. The constructor is called when
the object is initialized. Any number of standard GUI components, i.e., ports, can be created and
initialized here. The compute routine is invoked whenever one of the ports is changed. Finally,
the destructor is called when the script object is deleted. Script objects are well suited to solve
specific problems using high level commands. Often multiple standard modules are combined in
a script object in order to generate a result.

2.6 Affine Transformations

In many applications, alignment or registration of multiple data sets is important. Therefore vi-
sualization environments should allow the user to easily transform individual data sets spatially
with respect to others. Such transformations should be applicable to any spatial data object, i.e.,
any data object embedded in 3D space. For this reason, inamira an optional transformation ma-
trix can be set for all data objects derived from the spatial data’s base class. This transformation
matrix is automatically applied to any display module visualizing the data object.

The transformations can be defined interactively using the “transformation editor.” This ed-
itor allows easy transformation in 3D using so-called Open Inventor draggers, such as a 3D tab
box or a 3D virtual trackball. In addition, absolute or relative translations, rotations, and scaling
operations can be applied using text input. It is important to note that the data itself is not mod-
ified by such a transformation. In order to actually apply the transformation, a separate module
is provided. This module transforms the point coordinates of a vertex-based data object (such
as a surface or a tetrahedral grid) and resets the transformation matrix to the identity matrix.
Voxel-based data objects such as 3D images must be resampled onto a new grid. This can be
done using several different interpolation filters, either taking the original bounding box or using
an enlarged one which encloses the complete transformed data set.

2.7 Parameters

Another concept whichamira users have found very helpful across many different applications
is the ability to add arbitrary parameters to a data object. Parameters are identified by a unique
name and are associated with some value. The value may be a simple number or a tuple of
numbers, a string, some binary data, or a subfolder containing an additional list of parameters.
In this way a hierarchy of parameters can be defined. Parameters are used to store additional
information for a data set, as may be contained in specific file formats. For example, in the case
of confocal images, the wavelength of the emitted light and a description of the particular optics
is often encoded. For medical data, the patient name or a patient id is usually stored together
with many additional parameters. Some parameters are interpreted by certainamira modules.
For example, a parameter calledDataWindowis used to indicate the default greylevel window
of an image data set. Similarly, a parameter calledColormapspecifies the name of the default
colormap used to visualize the data set. This way it is easy to associate additional information
with existing data types, which then may be interpreted by custom modules. Parameters can
be edited interactively using theamira parameter editor. In addition, they can also be set and
evaluated via the Tcl command interface.

3 Features and Applications

In this section we wish to illustrate howamira can be applied within different areas of science and
engineering. Though the spectrum of applications is rather wide, there are often similar tasks to
be solved. Therefore, we will identify common requirements and show how these are addressed
within amira.

6



Figure 2: Left: Multi-part 3D confocal image stack of a bee brain visualized by slices. The
orientation of an oblique slice can be easily adjusted using a trackball dragger. Right: Theamira
segmentation editor. This component allows the user to identify and separate different objects in
a 3D image stack. Here different parts of the bee brain have been segmented.

3.1 Visualization of 3D Image Data

3D image data are important in medicine, biology, as well as in many other areas. Sources of
3D images include CT or MRI scanners, ultrasound devices, 3D confocal microscopes, and even
conventional microscopes (which usually require the specimen to be physically cut into sections).
The main characteristics of a 3D image is its regular structure, i.e., voxels arranged in a 3D array.
Many modules inamira require a 3D image to have uniform or stacked coordinates, although
rectilinear and curvilinear coordinates can be represented as well. In the case of uniform coor-
dinates, all voxels have the same size. In the case of stacked coordinates, the distance between
subsequent slices in z-direction may vary.

The most basic approach for investigating 3D images is to extract individual 2D slices. In
amira two modules are provided for this,OrthoSliceand ObliqueSlice(see Fig. 2 left). The
first module extracts axis-aligned slices, while the second displays arbitrarily oriented slices. In
the latter case, the data must be resampled onto a 2D plane. This can be done using different
interpolation kernels. Another useful module isProjectionView, which computes a maximum
intensity projection on the xy-, xz-, and yz-plane. In order to grasp the 3D structure of an image
data set, isosurfaces can be computed or direct volume rendering can be applied. For the latter
two different modules are provided. One utilizes the standard texture capabilities of modern
graphics cards, while the other one makes use of special purpose hardware (VolumePro 1000
from TeraRecon Inc.). In any case a suitable colormap must be chosen to define how the image
data are mapped to color and opacity. With the exception of isosurfaces, all methods can be
applied not only to greyscale images, but also to RGBA color images and multi-channel images.

3.2 Image Segmentation

Image segmentation denotes the process of identifying and separating different objects in a 3D
image. What constitutes an ’object’ depends upon the application. Image segmentation is a
prerequisite for geometry reconstruction from image data and for more advanced analysis of
image data. Consequently, it is an important feature in an image oriented 3D visualization system
such asamira.

In amira, segmentation results are represented by labels. For each voxel, a label is stored
specifying which object or material to which this voxel belongs. In general, image segmentation

7



can not be performed fully automatically, and human intervention is necessary. For this reason in
amira a special purpose component, thesegmentation editor,is provided (see Fig. 2 right). The
editor offers a variety of different tools for manual and semi-automatic segmentation, in both 2D
and 3D. In the simplest case, regions can be selected using a lasso, a brush or thresholding. More
advanced tools such as 2D or 3D region growing or a live-wire method are also provided. In
region growing the user selects a seed point and adjusts the lower and upper bound of a greylevel
interval. All connected voxels within this interval are then selected. In the live-wire tool, the user
selects a starting point on a boundary and then drags the cursor roughly around the outline [3].
The minimum cost contour from the seed point to the current cursor position is displayed in real
time. The cost is based on the image gradient and Laplacian, such that computed paths cleanly
follow region boundaries.

Although segmentation is primarily performed in 2D, a 3D view of the currently selected
regions is available at any time. For this purpose a fast point-based rendering technique is ap-
plied. Noisy regions or regions which have been falsely selected by a 3D threshold or region
growing operation can be easily cleared by marking them in the 3D view using the lasso tool.
Another approach for reducing the amount of work needed for image segmentation is to inter-
polate segmentation results between subsequent slices. Optionally, the interpolated results can
be automatically adapted to the image data using a “snakes” technique [9]. Furthermore, shape
interpolation from a few segmented orthogonal slices is provided by a 3D wrapping tool. The
segmentation editor also provides a number of different filters, e.g., denoising and smoothing
filters,and or morphological filters for erosion, dilation, opening, and closing operations. Various
other experimental (research stage)amira modules exist, providing additional image segmenta-
tion methods, e.g. based on statistical shape models [10].

3.3 Geometry Reconstruction

After a 3D image has been segmented, i.e., after every voxel has been assigned to some material,
a polygonal surface model can be created. Several algorithms have been described which attempt
to construct a surface model by connecting contours in neighbouring slices in the appropriate
way. However, these algorithms are not fail-safe, especially if multiple different materials are
involved. In this case non-manifold surfaces must be created, i.e., surfaces with edges where
more than two triangles join. Inamira a robust and fast surface reconstruction algorithm is
applied which triangulates all grid cells individually, similar to the marching cubes algorithm
for computing isosurfaces [12]. This algorithm guarantees that the resulting surfaces are free
from cracks and holes, that no triangles intersect each other, and that all regions assigned to
different materials are well separated from each other. If additional weights are defined (by prior
calculations) for each voxel, a smooth surface can be reconstructed. The weights are computed
by applying a Gauss filter to the binary labels, so that a non-binary smooth result is obtained.
A disadvantage of this technique is that small details of the segmented data set may be lost.
Therefore a constrained smoothing method is also provided which ensures that the final surface
is still consistent with the original labelling. A similar but more computationally expensive
method has been described in [25]. An example of a smooth 3D model reconstructed byamira is
shown in Fig. 3 (left).

3.4 Surface Simplification and Editing

Surfaces reconstructed from a segmented 3D image usually have a large number of triangles.
In fact, the polygon count of the triangular surface is in the order of the voxel size. For many
purposes the number of triangles needs to be reduced, i.e., the surface needs to be simplified.
In amira this can be done using an advanced simplification algorithm based on edge contraction.
The method tries to reduce the error induced by the simplification process as far as possible while
simultaneously optimizing triangle quality. In order to control the maximal deviation, a quadric

8



Figure 3: Left: Reconstructed polygonal surface model of a bee brain; a volume rendering of the
image data has been superimposed, showing how well the model matches the image data. Right:
Reconstructed model of a human liver, displayed at three different resolutions (1 cm maximum
edge length, 0.5 cm maximum edge length, and surface at original resolution with 0.125 cm voxel
size).

error metric is used (as proposed in [6]). In all cases, intersecting triangles are strictly avoided.
The result of a simplified surface is shown in Fig. 3 right.

Simplification is not the only surface editing operation which can be performed inamira.
For other operations an interactivesurface editoris provided. Among other tasks, this editor
allows the user to iteratively smooth or refine the surface (in whole or part); to cut parts out of
a surface and to copy them into other surfaces; or to define boundary conditions on the surface.
The latter is important when performing numerical simulations on the surface or on a tetrahedral
finite-element grid derived from it. The surface editor also provides several tools for modifying
the surface at a fine-grained level. In particular, individual edges can be flipped, subdivided, or
contracted, and points can be moved. Also, tests can be performed to check whether the surface
has intersections, holes, or inconsistently oriented triangles. Finally, triangles with a bad aspect
ratio or with small dihedral angles can be found.

All these operations allow the user to interactively modify an arbitrary surface in such a way
that a good tetrahedral grid can be generated afterwards. Grid generation itself is implemented
as a separate module inamira using an advancing front algorithm [11, 8]. The grid quality can
be improved by a subsequent smoothing or relaxation step. An example of a tetrahedral grid
generated byamira is shown in Fig. 4 (left).

3.5 Alignment of Physical Cross-Sections

With the previously described techniques, polygonal surface models and tetrahedral volume grids
can be reconstructed from 3D image stacks recorded by CT scanners, MR scanners, or confocal
microscopes. Another common approach in microscopy is to physically cut an object into slices
and to image each slice separately. In order to reconstruct geometries from such data, the indi-
vidual slices usually need to be aligned with respect to each other. For this purpose another tool
is provided inamira, theslice aligner(compare Fig. 4 right). The slice aligner supports interac-
tive, semi-automatic and automatic alignment. The tool displays two slices of a 3D image stack
at once. Different view modes can be selected that help to distinguish visually the slices. For
example, one image can be displayed in green and the other one in red, or the colors of one im-
age can be inverted. The image slice then can be manually translated or rotated. Semi-automatic

9



Figure 4: Left: Tetrahedral finite-element grid of a human body embedded in a device for hyper-
thermia treatment. Only parts of the grid are shown in order to reveal interior structures. Right:
Theamira slice aligner, an interactive tool for aligning 2D physical cross-sections.

alignment via landmarks is possible, too. Fully automatic pre-alignment can be achieved by
matching the centers of gravity as well as the principal axes of the two images. Once this has
been done, a multi-level optimization algorithm can be called which attempts to minimize the
pixelwise difference of the two images.

3.6 Multiple Data Sets and 3D Registration

In biomedical applications users often work with multiple data sets. For example, one wants to
compare images of multiple individuals, or images of the same individual recorded at different
times, or images of the same object taken with different imaging modalities, such as CT and MR.
In all of these cases it is crucial that multiple data sets can be visualized simultaneously. This
requirement is met byamira in a natural way. In order to compare multiple data sets one can use
(for example) semi-transparent displays.amira supports high-quality transparency with depth
sorting and opacity enhancement at silhouettes. Other techniques are colorwash displays, where
images of multiple data sets are superimposed on 2D slices, or computation and visualization of
difference images. For surfaces it is also possible to compute the distance between the vertices
of one surface and the nearest point on some other surface. The result can be visualized using
conventional pseudo-coloring.

When multiple corresponding data sets are to be used, the problem of registering or align-
ing these data sets with each other becomes relevant. Here, the two major techniques are rigid
and elastic registration. In the case of rigid transformation, the data set will be only translated,
rotated and possibly scaled. Such transformations can be easily encoded in an affine transfor-
mation matrix, which are supported for allamira data objects. Thus, a manual rigid registration
can be performed usingamira’s transformation editor. Another possibility is to make use of
landmarks. Corresponding landmarks can be defined in both data sets withamira’s landmark
editor. Afterwards a rigid transformation can be computed which minimizes the squared dis-
tance between each pair of landmarks. Finally, a voxel-based automatic registration can also be
computed. This method attempts to optimize a quality measure indicating the difference between
both images. Several different quality measures are implemented, including the sum over squared
pixel differences and a mutual information measure [24]. The latter is suitable for registration of
multi-modal images, e.g., CT or MR, when there is no one-to-one correspondence between the
grey values in the two images. Sometimes it is more appropriate to align reconstructed surfaces

10



instead of image data. Inamira this is supported by an iterative method which automatically tries
to find corresponding vertices and then minimizes the squared distance between these points.

In contrast to rigid registration, elastic registration is usually much more difficult to define.
In addition, it requires image data to be resampled on a new axis-aligned grid. Currently,amira
supports only an elastic registration method based upon landmarks. This method computes a
Bookstein spline which exactly matches corresponding landmarks and smoothly interpolates in-
between. This approach can be applied to both 3D images and triangular surfaces. An automatic
voxel-based elastic registration method is currently under development.

3.7 General Data Processing and Data Analysis

In addition to the specific tools we have described,amira also provides other more general utilities
for data processing. Probably one of the most important is a resampling module for reducing
or enlarging the resolution of a 3D image or other data set defined on a regular grid. Some
care must be taken when choosing a filter kernel for resampling. Inamira several different
kernels are supported, ranging from fast box and hat filters to a high-quality Lanzcos filter (which
approximates a sinc function, the optimal filter from sampling theory), for finite images. Other
tools are provided for cropping a data set, for enlarging it by replicating boundary slices, and
for changing the primitive data type of a data set. For images, the most common primitive
data types are bytes and 16-bit shorts, either signed or unsigned. Simulation data is usually
encoded using 32-bit floating point numbers. In addition, inamira 32-bit signed integers and
64-bit floating point numbers are supported. While a scalar field has only one such component,
any number of other components is also possible. For example, a vector field usually has three
components. Inamira a module is provided to extract one component from such a field, and
to combine multiple components from different sources into a new field. Another valuable tool
is the arithmetic module, used for combining multiple data sets by evaluating a user-defined
arithmetic expression per voxel or per data value. In this way it is possible (for example) to
subtract two data sets, compute the average, scale the data values, or mask out certain regions
using boolean operations.

Another class of utility modules is related to statistical data analysis. This includes simple
probing modules which evaluate a data set at some discrete points or plot it along a user-defined
line segment. Moreover, a histogram of the data values can be computed, possibly restricted
to some region of interest. Other modules are provided to compute statistical quantities such
as volume, mean grey value, standard deviation, and so on for different regions encoded in a
segmented label field; and also to compute volume-dose diagrams, or to count and statistically
analyse the connected components in a binary labeled 3D image.

3.8 Finite-Element Post-Processing

Most of the tools described in the previous sections were related to the processing of 3D im-
age data, or more generally, to data defined on regular 3D grids. However, other data types
are also important; in particular, finite-element data defined on unstructured grids.amira sup-
ports the generation of triangular surfaces and tetrahedral volume grids suitable for numerical
simulations. Such simulations are typically performed using some external code, but the results
can again be visualized inamira. This task is known as finite-element post-processing. Besides
tetrahedral grids,amira also supports hexahedral grids. Most of the general-purpose visualization
techniques and analysis tools can be also applied to data on unstructured grids; for example, slice
extraction, computation of isolines or isosurfaces, direct volume rendering (implemented via a
cell projection algorithm), data probing, or computation of histograms. In addition, scalar quan-
tities can be visualized using color-coding of the grid itself. In case of mechanical simulations,
deformations are often computed. Such data can be visualized with displacement vectors, or by
applying the displacement vectors to the initial grid sequentially such that an animation sequence

11



Figure 5: Left: Visualization of a turbine flow using the fast line integral convolution method in
a user-selected plane. Right: Visualization of the 3D flow around an airfoil using the illuminated
stream line technique.

is obtained. All of these methods can also be applied to visualize results from numerical sim-
ulations in biomedicine – e.g., simulations of mechanical loads in bones or of heat transport in
tissue – or to visualize results from numerical simulations in engineering and related disciplines.

3.9 Flow Visualization

Flow visualization has evolved into an independent field of research in scientific visualization.
Since flow fields are often generated by numerical computations, it can also be considered as a
special form of finite-element post-processing. Beyond engineering domains such as computa-
tional fluid dynamics, where (e.g.) virtual windtunnel experiments are performed, flow visual-
ization techniques are important also in in biomedicine – e.g., for analysing a simulated flow in
blood vessels or an air flow in a nasal pathway.

Flow visualization techniques have been reviewed in depth in other chapters of this book.
Therefore, here we list the different methods supported inamira without presenting algorithmic
details.

Likely the simplest method for visualizing a vector field is to draw small arrows attached to
discrete points. Arrows can be drawn on a slice, within the volume, or upon a surface inamira.
More highly resolved and comprehensible visual representations can be obtained using texture
based methods.amira supports fast line integral convolution, both on slices and on surfaces
with arbitrary topology [21, 20] (see Fig. 5, left). Probably the most popular approach to reveal
the structure of a flow field in 3D is to draw stream lines.amira includes support for illuminated
streamlines (c.f. Fig. 5, right) – i.e., streamlines that are rendered as line primitives with a lighting
applied to them [22]. This allows rapid rendering of many streamlines, while at the same time
highlighting the 3D structure of the field. Another method based on streamline computation is
the display of stream ribbons (c.f. Fig. 6, left). In addition to streamline, stream ribbons also
show the swirl and torsion of flow fields. A further extension supported byamira is the stream
surface (see Fig. 6, right). A stream surface is spanned by multiple stream lines starting from
some user-defined seed shape or rake. Stream surfaces are commonly started from a straight
line, or from a line traced along the normal or binormal direction of the vector field. All of
these stream visualization techniques are highly interactive. While seedpoint distributions can
be automatically calculated, users can also select and interactively manipulate seed points and
structures, thus supporting the investigation the flow field and highlighting of different features.
Each of these techniques again support 3D interaction, allowing the user to pick and move the
seed volume or seed shape directly within the 3D viewer.

12



Figure 6: Visualization of fluid flow within a bioreactor. Left: Stream ribbons starting in the
interactively positioned seed box. Right: Stream surface with the tangential flow depicted by
line integral convolution.

4 amiraVR and Other Extensions

The modular structure ofamira makes it possible to extend the system in various ways and
to provide extensions addressing more specific application areas. Some major extensions are
directly available as optional products. Among these, the most prominent isamiraVR, which
allowsamira to operate on a large tiled display or in a multi-wall virtual environment.

4.1 amiraVR

High-resolution multi-wall displays have received considerable attention in scientific visualiza-
tion over the last few years. Two major approaches have held special interest. The first is flat
multi-tile displays, often called “power walls.” Here, the goal is to create a very high resolu-
tion display, usually by combining several projectors in one rear projection system. With such
a display, fine details in high resolution data sets can be visualized and shown to a small or
medium sized group of observers. The other approach is to construct an immersive environment
for virtual reality applications. Usually, such environments incorporate multiple screens in a
non-planar configuration. In order to compute correct views the actual position of the observer
needs to be tracked. Non-tracked observers usually see somewhat distorted images and artifacts
at the boundary between neighbouring screens.

For performance reasons, the images for the different parts of a tiled display or for the dif-
ferent screens of a VR environment should in rendered in parallel, if possible. The simplest
approach from a software perspective is to use a multi-processor shared-memory machine with
multiple graphics pipes. This architecture is implemented by SGI Onyx systems, and also by
other workstations from vendors such as Sun or HP. To support such an architecture, it must be
possible to perform the actual rendering in parallel using multiple threads. This is supported by
amira. amira’s rendering process involves the traversal of an Open Inventor scene graph and the
calling of render methods for each node in this graph. Although early versions of Open Inventor
were not thread-safe originally, this is currently the case (since v3.1 release by TGS).

The use ofamiraVR requires specification of the display configuration – i.e., the actual setup
of the display system and (optionally) the tracking system. When the configuration file is read,
additional graphics windows are opened on the graphics pipes as specified. In case of a tiled dis-
play, the modules can be controlled via their usual interface with the 2D mouse. For user inter-
action within an immersive environment, 3D versions of all the standard GUI elements ofamira
data objects and modules are provided. In addition, a user-defined 3D menu can be displayed.
Interactive elements such as slices or draggers, which can be picked in the viewer window using

13



Figure 7: Left: Coating on a car body investigated withamiraVR. For every module a 3D version
of its respective user interface can be used. This allows full control ofamira from within an
immersive environment. Right: Atoms in a crystal lattice shown in a dome usingamiraVR.
The dome was illuminated by six laser projectors with partially overlapping images, with five
arranged in a circle and one at the top (courtesy Carl Zeiss Jena).

the 2D mouse, also react on events generated by a tracked 3D “mouse.” Thus slices can be easily
translated and rotated in 3D, or seed volumes for flow visualization can be easily adjusted. All
objects which can be picked with the 3D mouse, including menus, provide some visual feed-
back. This is important to make interaction in VR feasible. With these mechanisms, data can be
visualized in a VR environemnt in a similar way to that of the desktop GUI. All modules and
networks can be loaded without modification. This allows users (for instance) to prepare visual
demonstrations for large display systems or VR environments on a PC or notebook computer.

4.2 Developer Version

For a modern visualization system it is crucial that new functionality can be added by the user.
We have already stated that this is possible withinamira, and simplified byamira’s modular and
object-oriented design. Theamira developer version provides all of the header files and docu-
mentation required to derive new modules from existing classes. It also provides a unified make
system, which creates either makefiles or project files for integrated development environments
such as Microsoft Visual Studio. New modules based on Tcl code,script objects, do not require
the developer version, and can be implemented from withinamira’s base version.

4.3 Molecular Visualization

For the application domains of chemistry, biochemistry and molecular biology, theamira exten-
sion amiraMol has been developed. This provides tools for the analysis of complex molecules,
molecular trajectories, and molecular conformations. The extension is useful for inorganic and
organic chemistry, but its emphasis is upon the analysis of biomolecules.

The central goal of molecular biology is to elucidate the relationship between sequence,
structure, properties, and function of biomolecules. Such knowledge allows one to understand
biological processes and pharmaceutical effects, as well as to identify and optimize drug candi-
dates. Since bioactivity is guided by molecular shape and molecular fields,amiraMol provides
special means for analysing the dynamic shapes of molecules as well the corresponding molec-
ular fields. Standard and novel representations are available for visualizing biomolecules. Arbi-
trary grouping hierarchies on the molecule’s topology can be defined for coloring, masking, and
selection.

14



Figure 8: Left: Complex consisting of a mouse antibody and an antigen of Escherichia Coli.
Secondary structure representation on the left side, pure backbone representation in the middle.
Van-der-Waals balls depict the antigen. Right: Bond angle representation of a complex of the
FIS protein (Factor for Inversion Simulation) and a DNA fragment (coloured according to atom
types).

amiraMol supports common molecular file formats, such as PDB, Tripos, Unichem and MDL.
For trajectories from molecular dynamics simulation,amira provides its own native data format,
but also supports CHARMM’s dcd format. Standard techniques for molecular visualization avail-
able inamiraMol are wire frame, ball-and-stick, van-der-Waals spheres, and secondary structure
representations, see Fig. 8 (left). Beyond these, a novel technique called bond-angle represen-
tation has been developed, c.f. Fig. 8 (right), which displays a triangle for every group of three
atoms connected by two bonds. This representation requires only few geometric primitives and
provides a comprehensible view of the 3D structure.

Several colour schemes can be used to enhance the molecular representations. They permit
the user to colour the atoms according to a number of attributes such as atomic number, charge,
hydrophobicity, radius, or the atom’s index.

To take into account structural information beyond atoms and bonds, groups can be defined.
A group is a combination of atoms and other groups which can (for example) represent a residue,
a secondary structure, or anα-chain. The groups are organized into levels, such as the level of
residues or the level of chains. The user can define arbitrary new groups and levels by using
expressions. Groups may contain not only atoms but groups of arbitrary and possibly different
levels. Atoms can be coloured according to their membership in a group of a chosen level.

In order to support easy investigation of molecular structures,amiraMol offers aselection
browser. This displays all groups in a chosen level of the hierarchy. Furthermore, additional
information such as type and membership of the groups can be displayed. Groups can be se-
lected by clicking on them in the browser, by using expressions, or through interaction within the
viewer. Groups that were selected in the browser will also be highlighted in the viewer and vice
versa. Apart from selecting, the selection browser offers the possibility to hide arbitrary parts in
all of the above-mentioned representations, so that the user can concentrate on particular regions
of interest.

Shape complementarity is an important aspect in molecular interactions. Shape properties are
relevant for manual docking of ligands to proteins and for automated docking procedures. The
characterization of molecular shapes is therefore very useful for molecular modeling. In addition
to the above techniques,amiraMol offers algorithms for generating triangular approximations of
solvent excluded and solvent accessible surfaces [18]. Additionally, van-der-Waals surfaces and
interfaces between arbitrary parts of a molecule or between different molecules can be computed.
All triangular surfaces can be colour-coded by arbitrary scalar fields.

Of course, the above molecular representations can be combined with all other visualization

15



Figure 9: Left: Solvent accessible surface of the ribonuklease T1, pseudocoloured according to
the molecule’s electrostatic potential; illuminated streamlines depict the electrostatic field. Right:
Configuration density and superposed bond angle representation of Epigallocatechin-Gallat.

techniques available inamira. For instance, the electrostatic field can be depicted using vector
field visualization techniques, cf. Fig. 9 (left), or electron density isocontours can be computed.

However, molecules are not static, but rather in constant motion. Typically they fluctuate for
long periods around a certain ‘meta-stable’ shape. Less frequently, they also undergo larger shape
changes. Taken together, individual molecular configurations with similar shapes are called con-
formations. Conformation analysis is used to determine the ’essential shapes’ of molecules and
the probabilities of transitions between these shapes.amiraMol offers an extensive set of tools for
visual analysis of trajectories from molecular dynamics simulations. This allows users (e.g.) to
determine representatives of conformations and to depict conformations [19]. In Fig. 9 (right) a
representative molecular shape is displayed, together with the shape density of the corresponding
conformation.

5 Summary

We have presented the general design concepts behindamira, a 3D visualization and geometry
reconstruction system. We have also given an overview of the different techniques and algo-
rithms implemented in this system. It was shown that the combination of different concepts
such as object orientation, a simple and well-structured user interface, the integration of highly-
interactive components such as the segmentation editor, intuitive 3D interaction techniques, a
powerful scripting interface, and a broad range of advanced and innovative algorithms for vi-
sualization and data processing have yielded a powerful software system which can be usefully
applied to many problems in medicine, biology, and other scientific disciplines.

Acknowledgments We would like to sincerely thank the many students, researchers, and soft-
ware developers who contributed to theamira suite: Maro Bader, Werner Benger, Timm Baumeis-
ter, Daniel Baum, Philipp Beckmann, Robert Brandt, Martina Bröhan, Liviu Coconu, Frank
Cordes, Olaf Etzmuß, Andrei Hutanu, Ralf Kähler, Ralf Kubis, Hans Lamecker, Thomas Lange,
Alexander Maye, Andŕe Merzky, Olaf Paetsch, Steffen Prohaska, Hartmut Schirmacher, Jo-
hannes Schmidt-Ehrenberg, Martin Seebaß, Georg Skorobohayj, Brygg Ullmer, Tino Weinkauf,

16



Natascha Westerhoff, Gregor Wrobel and Stefan Zachow. Special thanks go to Brygg Ullmer
for his editing suggestions that improved grammar, vocabulary and style. We also would like
to express our gratitude to Peter Deuflhard who supported this project over many years. Fur-
thermore, we thank all research collaboration partners and early users who helped us with their
requirements to shape the system and make it practically useful.

References

[1] G. Abram and L. A. Treinish. An extended data-flow architecture for data analysis and
visualization. InVisualization ’95 proceedings, pages 263–270. IEEE Computer Society
Press, Oct. 1995.

[2] Amira - Advanced 3d Visualization and Volume Modeling. Software and user’s guide
available fromwww.amiravis.com.

[3] W. A. Barrett and E. N. Mortensen. Interactive live-wire boundary extraction.Medical
Image Analysis, 1(4):331–341, 1997.

[4] D. S. Dyer. A dataflow toolkit for visualization.IEEE Computer Graphics & Applications,
10(4):60–69, July 1990.

[5] D. Foulser. Iris explorer: a framework for investigation.ACM Computer Graphics,
29(2):13–16, may 1995.

[6] M. Garland and P. S. Heckbert. Surface simplification using quadric error metrics. InSIG-
GRAPH 97 Conference Proceedings, pages 209–216. ACM SIGGRAPH, Addison Wesley,
Aug. 1997. ISBN 0-89791-896-7.

[7] C. Gunn, A. Ortmann, U. Pinkall, K. Polthier, and U. Schwarz. An extended data-flow
architecture for data analysis and visualization. InVisualization and Mathematics, pages
249–265. Springer Verlag, 1997.

[8] H. Jin and R. I. Tanner. Generation of unstructured tetrahedral meshes by advancing front
technique.Int. J. Numer. Methods. Eng., 36:217–246, 1993.

[9] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour Models.Academic
Publishers, 1987.

[10] H. Lamecker, T. Lange, and M. Seebass. Segmentation of the liver using a 3d statistical
shape model. ZIB preprint 2002, submitted.

[11] R. Löhner and P. Parikh. Generation of three-dimensional unstructured grids by the
advancing-front method.Int. J. Numer. Methods. Fluids, 8:1135–1149, 1988.

[12] W. Lorensen and H. Cline. Marching cubes: a high resolution 3D surface construction
algorithm.Computer Graphics, 21(4):163–169, July 1987. Proceedings of SIGGRAPH’87
(Anaheim, California, July 1987).

[13] Open Inventor from TGS. Software and user’s guide available fromwww.tgs.com.

[14] J. K. Ousterhout.Tcl and the Tk Toolkit. Addison Wesley, 1994.

[15] S. G. Parker, D. M. Weinstein, and C. R. Johnson. The SCIRun computational steering soft-
ware system. In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors,Modern Software
Tools for Scientific Computing, pages 5–44. Birkhauser (Springer-Verlag), Boston, 1997.
U. of Utah.

17



[16] Qt whitepaper. Online available fromwww.trolltech.com.

[17] J. Rasure and C. Williams. An integrated data flow visual language and software develop-
ment environment.Journal of Visual Languages and Computing, 2:217–246, 1991.

[18] M. F. Sanner, A. J. Olson, and J.-C. Spehner. Reduced surface: An efficient way to compute
molecular surfaces.Biopolymers, 38:305–320, 1995.

[19] J. Schmidt-Ehrenberg, D. Baum, and H.-C. Hege. Visualizing dynamic molecular confor-
mations. In R. J. Moorhead, M. Gross, and K. I. Joy, editors,Proceedings of IEEE Visual-
ization 2002, pages 235–242, Boston MA, USA, October/November 2002. IEEE Computer
Society, IEEE Computer Society Press.

[20] D. Stalling.Fast Texture-Based Algorithms for Vector Field Visualization. PhD thesis, Zuse
Institute Berlin (ZIB), 1998.

[21] D. Stalling and H.-C. Hege. Fast and resolution independent line integral convolution.
In Proceedings of SIGGRAPH 95, Computer Graphics Proceedings, Annual Conference
Series, pages 249–256, Aug. 1995.

[22] D. Stalling, M. Z̈ockler, and H.-C. Hege. Fast Display of Illuminated Field Lines.IEEE
Transactions on Visualization and Computer Graphics, 3(2):118–128, Apr. 1997.

[23] C. Upson, T. A. Faulhaber, Jr., D. Kamins, D. Laidlaw, D. Schlegel, J. Vroom, R. Gurwitz,
and A. van Dam. The Application Visualization System: a computational environment for
scientific visualization.IEEE Computer Graphics and Applications, 9(4):30–42, July 1989.

[24] W. M. Wells, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis. Multi-modal volume
registration by maximisation of mutual information.Medical Image Analysis, 1(1):35–51,
Mar. 1996.

[25] R. Whitaker. Reducing aliasing artifacts in iso-surfaces of binary volumes. InIEEE Volume
Visualization and Graphics Symposium, pages 23–32, October 2000.

18


