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Real-Time Volume Graphics

The tremendous evolution of programmable graphics hardware has madeAbstract
high-quality real-time volume graphics a reality. In addition to the tra-
ditional application of rendering volume data in scientific visualization,
the interest in applying these techniques for real-time rendering of at-
mospheric phenomena and participating media such as fire, smoke, and
clouds is growing rapidly. This course covers both applications in sci-
entific visualization, e.g., medical volume data, and real-time rendering,
such as advanced effects and illumination in computer games, in detail.
Course participants will learn techniques for harnessing the power of con-
sumer graphics hardware and high-level shading languages for real-time
rendering of volumetric data and effects. Beginning with basic texture-
based approaches including hardware ray casting, the algorithms are
improved and expanded incrementally, covering local and global illumi-
nation, scattering, pre-integration, implicit surfaces and non-polygonal
isosurfaces, transfer function design, volume animation and deformation,
dealing with large volumes, high-quality volume clipping, rendering seg-
mented volumes, higher-order filtering, and non-photorealistic volume
rendering. Course participants are provided with documented source
code covering details usually omitted in publications.

Participants should have a working knowledge of computer graphics andPrerequisites
some background in graphics programming APIs such as OpenGL or
DirectX. Familiarity with basic visualization techniques is helpful, but
not required.

Intermediate-Advanced. Participants should have a working knowl-Level of
Difficulty edge of computer graphics and some background in graphics program-

ming APIs such as OpenGL or DirectX. Familiarity with basic visual-
ization techniques is helpful, but not required.
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GPU-Based Ray Casting [35 min] (D. Weiskopf) 9:40–10:15
• Ray casting in regular grids (ray setup, ray integration)
• Ray casting in tetrahedral grids
• Acceleration techniques (early ray termination, empty space skipping,

adaptive sampling)
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Local Illumination for Volumes [25 min] (M. Hadwiger) 10:30-10:55
• Gradient estimation
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• Transfer functions
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• Multi-dimensional transfer functions
• image-driven and data-driven methods, user interaction and feedback
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• Pre-integrated volume rendering and clipping
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Volume Rendering

In traditional modeling, 3D objects are created using surface representa-
tions such as polygonal meshes, NURBS patches or subdivision surfaces.
In the traditional modeling paradigm, visual properties of surfaces, such
as color, roughness and reflectance, are modeled by means of a shading
algorithm, which might be as simple as the Phong model or as complex
as a fully-featured shift-variant anisotropic BRDF. Since light transport
is evaluated only at points on the surface, these methods usually lack
the ability to account for light interaction which is taking place in the
atmosphere or in the interior of an object.

Contrary to surface rendering, volume rendering [68, 17] describes a
wide range of techniques for generating images from three-dimensional
scalar data. These techniques are originally motivated by scientific visu-
alization, where volume data is acquired by measurement or numerical
simulation of natural phenomena. Typical examples are medical data
of the interior of the human body obtained by computed tomography
(CT) or magnetic resonance imaging (MRI). Other examples are com-
putational fluid dynamics (CFD), geological and seismic data, as well
as abstract mathematical data such as 3D probability distributions of
pseudo random numbers.

With the evolution of efficient volume rendering techniques, volumet-
ric data is becoming more and more important also for visual arts and
computer games. Volume data is ideal to describe fuzzy objects, such
as fluids, gases and natural phenomena like clouds, fog, and fire. Many
artists and researchers have generated volume data synthetically to sup-
plement surface models, i.e., procedurally [19], which is especially useful
for rendering high-quality special effects.

Although volumetric data are more difficult to visualize than sur-
faces, it is both worthwhile and rewarding to render them as truly three-
dimensional entities without falling back to 2D subsets.
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Figure 1.1: Voxels constituting a volumetric object after it has been discretized.

1.1 Volume Data

Discrete volume data set can be thought of as a simple three-dimensional
array of cubic elements (voxels1) [46], each representing a unit of space
(Figure 1.1).

Although imagining voxels as tiny cubes is easy and might help to vi-
sualize the immediate vicinity of individual voxels, it is more appropriate
to identify each voxel with a sample obtained at a single infinitesimally
small point from a continuous three-dimensional signal

f(~x) ∈ IR with ~x ∈ IR3. (1.1)

Provided that the continuous signal is band-limited with a cut-off-
frequency νs, sampling theory allows the exact reconstruction, if the sig-
nal is evenly sampled at more than twice the cut-off-frequency (Nyquist
rate). However, there are two major problems which prohibit the ideal
reconstruction of sampled volume data in practise.

• Ideal reconstruction according to sampling theory requires the con-
volution of the sample points with a sinc function (Figure 1.2a) in
the spacial domain. For the one-dimensional case, the sinc function
reads

sinc(x) =
sin(πx)

πx
. (1.2)

The three-dimensional version of this function is simply obtained
by tensor-product. Note that this function has infinite extent.
Thus, for an exact reconstruction of the original signal at an arbi-
trary position all the sampling points must be considered, not only

1volume elements
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those in a local neighborhood. This turns out to be computation-
ally intractable in practise.

• Real-life data in general does not represent a band-limited signal.
Any sharp boundary between different materials represents a step
function which has infinite extent in the frequency domain. Sam-
pling and reconstruction of a signal which is not band-limited will
produce aliasing artifacts.

In order to reconstruct a continuous signal from an array of voxels
in practise the ideal 3D sinc filter is usually replaced by either a box
filter (Figure 1.2a) or a tent filter (Figure 1.2b). The box filter calcu-
lates nearest-neighbor interpolation, which results in sharp discontinu-
ities between neighboring cells and a rather blocky appearance. Trilinear
interpolation, which is achieved by convolution with a 3D tent filter, rep-
resents a good trade-off between computational cost and smoothness of
the output signal.

In Part 7 of these course notes, we will investigate higher-order recon-
struction methods for GPU-based real-time volume rendering [34, 35].

1.2 Direct Volume Rendering

In comparison to the indirect methods, which try to extract a surface de-
scription from the volume data in a preprocessing step, direct methods
display the voxel data by evaluating an optical model which describes
how the volume emits, reflects, scatters, absorbs and occludes light [76].
The scalar value is virtually mapped to physical quantities which describe
light interaction at the respective point in 3D-space. This mapping is

0 11 -1

CBA

00-1

1

-1

1

2 31

1

-2-3
0.5-0.5

Figure 1.2: Reconstruction filters for one-dimensional signals. In practise, box
filter(A) and tent filter(B) are used instead of the ideal sinc-filter(C).
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termed classification (see Part 4 of the course notes) and is usually per-
formed by means of a transfer function. The physical quantities are then
used for images synthesis. Different optical models for direct volume
rendering are described in section 1.2.1.

During image synthesis the light propagation is computed by inte-
grating light interaction effects along viewing rays based on the optical
model. The corresponding integral is known as the volume rendering
integral, which is described in section 1.2.2. Naturally, under real-world
conditions this integral is solved numerically. Optionally, the volume
can be shaded according to the illumination from external light sources,
which is the topic of Part 3.

1.2.1 Optical Models

Almost every direct volume rendering algorithms regards the volume
as a distribution of light-emitting particles of a certain density. These
densities are more or less directly mapped to RGBA quadruplets for com-
positing along the viewing ray. This procedure, however, is motivated
by a physically-based optical model.

The most important optical models for direct volume rendering are
described in a survey paper by Nelson Max [76], and we only briefly
summarize these models here:

• Absorption only. The volume is assumed to consist of cold,
perfectly black particles that absorb all the light that impinges on
them. They do not emit, or scatter light.

• Emission only. The volume is assumed to consist of particles
that only emit light, but do not absorb any, since the absorption
is negligible.

• Absorption plus emission. This optical model is the most com-
mon one in direct volume rendering. Particles emit light, and oc-
clude, i.e., absorb, incoming light. However, there is no scattering
or indirect illumination.

• Scattering and shading/shadowing. This model includes scat-
tering of illumination that is external to a voxel. Light that is scat-
tered can either be assumed to impinge unimpeded from a distant
light source, or it can be shadowed by particles between the light
and the voxel under consideration.
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• Multiple scattering. This sophisticated model includes support
for incident light that has already been scattered by multiple par-
ticles.

The optical model used in all further considerations will be the one of
particles simultaneously emitting and absorbing light. The volume ren-
dering integral described in the following section also assumes this par-
ticular optical model. More sophisticated models account for scattering
of light among particles of the volume itself, and also include shadowing
and self-shadowing effects.

1.2.2 The Volume Rendering Integral

Every physically-based volume rendering algorithms evaluates the vol-
ume rendering integral in one way or the other, even if viewing rays are
not employed explicitly by the algorithm. The most basic volume ren-
dering algorithm is ray-casting, covered in Section 1.2.3. It might be
considered as the “most direct” numerical method for evaluating this in-
tegral. More details are covered below, but for this section it suffices to
view ray-casting as a process that, for each pixel in the image to render,
casts a single ray from the eye through the pixel’s center into the vol-
ume, and integrates the optical properties obtained from the encountered
volume densities along the ray.

Note that this general description assumes both the volume and the
mapping to optical properties to be continuous. In practice, of course, the
volume data is discrete and the evaluation of the integral is approximated
numerically. In combination with several additional simplifications, the
integral is usually substituted by a Riemann sum.

We denote a ray cast into the volume by ~x(t), and parameterize it by
the distance t from the eye. The scalar value corresponding to a position
along the ray is denoted by s

(
~x(t)

)
. If we employ the emission-absorption

model, the volume rendering equation integrates absorption coefficients
κ(s) (accounting for the absorption of light), and emissive colors c(s)
(accounting for radiant energy actively emitted) along a ray. To keep
the equations simple, we denote emission c and absorption coefficients κ
as function of the eye distance t instead of the scalar value s:

c(t) := c
(
s
(
~x(t)

))
and κ(t) := κ

(
s
(
~x(t)

))
(1.3)

Figure 1.3 illustrates the idea of emission and absorption. An amount
of radiant energy, which is emitted at a distance t = d along the viewing
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Figure 1.3: An amount of radiant energy emitted at t = d is partially absorbed
along the distance d.

ray is continuously absorbed along the distance d until it reaches the eye.
This means that only a portion c′ of the original radiant energy c emitted
at t = d will eventually reach the eye. If there is a constant absorption
κ = const along the ray, c′ amounts to

c′ = c · e−κd . (1.4)

However, if absorption κ is not constant along the ray, but itself depend-
ing on the position, the amount of radiant energy c′ reaching the eye
must be computed by integrating the absorption coefficient along the
distance d

c′ = c · e−
∫ d
0 κ(t̂) dt̂ . (1.5)

The integral over the absorption coefficients in the exponent,

τ(d1, d2) =

∫ d2

d1

κ(t̂) dt̂ (1.6)

is also called the optical depth. In this simple example, however, light was
only emitted at a single point along the ray. If we want to determine the
total amount of radiant energy C reaching the eye from this direction,
we must take into account the emitted radiant energy from all possible
positions t along the ray:

C =

∫ ∞

0

c(t) · e−τ(0, t) dt (1.7)

In practice, this integral is evaluated numerically through either back-to-
front or front-to-back compositing (i.e., alpha blending) of samples along
the ray, which is most easily illustrated in the method of ray-casting.
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1.2.3 Ray-Casting

Ray-casting [68] is an image-order direct volume rendering algorithm,
which uses straight-forward numerical evaluation of the volume rendering
integral (Equation 1.7). For each pixel of the image, a single ray2 is cast
into the scene. At equi-spaced intervals along the ray the discrete volume
data is resampled, usually using tri-linear interpolation as reconstruction
filter. That is, for each resampling location, the scalar values of eight
neighboring voxels are weighted according to their distance to the actual
location for which a data value is needed. After resampling, the scalar
data value is mapped to optical properties via a lookup table, which
yields an RGBA quadruplet that subsumes the corresponding emission
and absorption coefficients [68] for this location. The solution of the
volume rendering integral is then approximated via alpha blending in
either back-to-front or front-to-back order.

The optical depth τ (Equation 1.6), which is the cumulative absorp-
tion up to a certain position ~x(t) along the ray, can be approximated by
a Riemann sum

τ(0, t) ≈ τ̃(0, t) =

bt/∆tc∑
i=0

κ(i ·∆t) ∆t (1.8)

with ∆t denoting the distance between successive resampling locations.
The summation in the exponent can immediately be substituted by a
multiplication of exponentiation terms:

e−τ̃(0, t) =

bt/∆tc∏
i=0

e−κ(i·∆t)∆t (1.9)

Now, we can introduce opacity A, well-known from alpha blending, by
defining

Ai = 1− e−κ(i·∆t)∆t (1.10)

and rewriting equation 1.9 as:

e−τ̃(0, t) =

bt/dc∏
i=0

(1− Aj) (1.11)

This allows opcaity Ai to be used as an approximation for the absorption
of the i-th ray segment, instead of absorption at a single point.

2assuming super-sampling is not used for anti-aliasing



ACM SIGGRAPH 2004 9

Similarly, the emitted color of the i-th ray segment can be approxi-
mated by:

Ci = c(i ·∆t) ∆t (1.12)

Having approximated both the emissions and absorptions along a ray,
we can now state the approximate evaluation of the volume rendering
integral as (denoting the number of samples by n = bT/δtc):

C̃ =
n∑

i=0

Ci

i−1∏
j=0

(1− Ai) (1.13)

Equation 1.13 can be evaluated iteratively by alpha blending in either
back-to-front, or front-to-back order.

1.2.4 Alpha Blending

Equation 1.13 can be computed iteratively in back-to-front order by step-
ping i from n− 1 to 0:

C ′
i = Ci + (1− Ai)C

′
i+1 (1.14)

A new value C ′
i is calculated from the color Ci and opacity Ai at the cur-

rent location i, and the composite color C ′
i+1 from the previous location

i + 1. The starting condition is C ′
n = 0.

Note that in all blending equations, we are using opacity-weighted
colors [112], which are also known as associated colors [9]. An opacity-
weighted color is a color that has been pre-multiplied by its associated
opacity. This is a very convenient notation, and especially important
for interpolation purposes. It can be shown that interpolating color
and opacity separately leads to artifacts, whereas interpolating opacity-
weighted colors achieves correct results [112].

The following alternative iterative formulation evaluates equa-
tion 1.13 in front-to-back order by stepping i from 1 to n:

C ′
i = C ′

i−1 + (1− A′
i−1)Ci (1.15)

A′
i = A′

i−1 + (1− A′
i−1)Ai (1.16)

New values C ′
i and A′

i are calculated from the color Ci and opacity Ai at
the current location i, and the composited color C ′

i−1 and opacity A′
i−1

from the previous location i − 1. The starting condition is C ′
0 = 0 and

A′
0 = 0.
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Note that front-to-back compositing requires tracking alpha values,
whereas back-to-front compositing does not. In a hardware implementa-
tion, this means that destination alpha must be supported by the frame
buffer (i.e., an alpha valued must be stored in the frame buffer, and
it must be possible to use it as multiplication factor in blending op-
erations), when front-to-back compositing is used. However, since the
major advantage of front-to-back compositing is an optimization com-
monly called early ray termination, where the progression along a ray is
terminated as soon as the cumulative alpha value reaches 1.0, and this
is difficult to perform in hardware, GPU-based volume rendering usually
uses back-to-front compositing.

1.2.5 The Shear-Warp Algorithm

The shear-warp algorithm [64] is a very fast approach for evaluating
the volume rendering integral. In contrast to ray-casting, no rays are
cast back into the volume, but the volume itself is projected slice by
slice onto the image plane. This projection uses bi-linear interpolation
within two-dimensional slices, instead of the tri-linear interpolation used
by ray-casting.

The basic idea of shear-warp is illustrated in figure 1.4 for the case of
orthogonal projection. The projection does not take place directly on the
final image plane, but on an intermediate image plane, called the base
plane, which is aligned with the volume instead of the viewport. Further-
more, the volume itself is sheared in order to turn the oblique projection
direction into a direction that is perpendicular to the base plane, which
allows for an extremely fast implementation of this projection. In such a
setup, an entire slice can be projected by simple two-dimensional image
resampling. Finally, the base plane image has to be warped to the final

image plane

B CA
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image plane
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Figure 1.4: The shear-warp algorithm for orthogonal projection.
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Figure 1.5: The shear-warp algorithm for perspective projection.

image plane. Note that this warp is only necessary once per generated
image, not once per slice. Perspective projection can be accommodated
similarly, by scaling the volume slices, in addition to shearing them, as
depicted in figure 1.5.

The clever approach outlined above, together with additional opti-
mizations, like run-length encoding the volume data, is what makes the
shear-warp algorithm probably the fastest software method for volume
rendering. Although originally developed for software rendering, we will
encounter a principle similar to shear-warp in hardware volume render-
ing, specifically in the chapter on 2D-texture based hardware volume
rendering (3.2). When 2D textures are used to store slices of the vol-
ume data, and a stack of such slices is texture-mapped and blended in
hardware, bi-linear interpolation is also substituted for tri-linear interpo-
lation, similarly to shear-warp. This is once again possible, because this
hardware method also employs object-aligned slices. Also, both shear-
warp and 2D-texture based hardware volume rendering require three
slice stacks to be stored, and switched according to the current viewing
direction. Further details are provided in chapter 3.2.

1.3 Maximum Intensity Projection

Maximum intensity projection (MIP) is a variant of direct volume ren-
dering, where, instead of compositing optical properties, the maximum
value encountered along a ray is used to determine the color of the corre-
sponding pixel. An important application area of such a rendering mode,
are medical data sets obtained by MRI (magnetic resonance imaging)
scanners. Such data sets usually exhibit a significant amount of noise
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that can make it hard to extract meaningful iso-surfaces, or define trans-
fer functions that aid the interpretation. When MIP is used, however,
the fact that within angiography data sets the data values of vascular
structures are higher than the values of the surrounding tissue, can be
exploited easily for visualizing them.

In graphics hardware, MIP can be implemented by using a maximum
operator when blending into the frame buffer, instead of standard alpha
blending. Figure 1.6 shows a comparison of direct volume rendering and
MIP used with the same data set.

A B

Figure 1.6: A comparison of direct volume rendering (A), and maximum intensity
projection (B).



Graphics Hardware

For hardware accelerated rendering, a virtual scene is modeled by the
use of planar polygons. The process of converting such a set of poly-
gon into a raster image is called display traversal. The majority of 3D
graphics hardware implement the display traversal as a fixed sequence of
processing stages [26]. The ordering of operations is usually described as
a graphics pipeline displayed in Figure 2.1. The input of such a pipeline
is a stream of vertices, which are initially generated from the description
of a virtual scene by decomposing complex objects into planar polygons
(tessellation). The output is the raster image of the virtual scene, that
can be displayed on the screen.

The last couple of years have seen a breathtaking evolution of con-
sumer graphics hardware from traditional fixed-function architectures
(up to 1998) over configurable pipelines to fully programmable floating-
point graphics processors with more than 100 million transistors in 2002.
With forthcoming graphics chips, there is still a clear trend towards
higher programmability and increasing parallelism.

2.1 The Graphics Pipeline

For a coarse overview the graphics pipeline can be divided into three
basic tiers.

Geometry Processing computes linear transformations of the incom-
ing vertices in the 3D spacial domain such as rotation, translation
and scaling. Groups of vertices from the stream are finally joined
together to form geometric primitives (points, lines, triangles and
polygons).

Rasterization decomposes the geometric primitives into fragments.
Each fragment corresponds to a single pixel on the screen. Raster-
ization also comprises the application of texture mapping.
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Figure 2.1: The standard graphics pipeline for display traversal.

Fragment Operations are performed subsequently to modify the frag-
ment’s attributes, such as color and transparency. Several tests are
applied that finally decide whether the incoming fragment is dis-
carded or displayed on the screen.

For the understanding of the new algorithms that have been devel-
oped within the scope of this thesis, it is important to exactly know the
ordering of operations in this graphics pipeline. In the following sections,
we will have a closer look at the different stages.

2.1.1 Geometry Processing

The geometry processing unit performs so-called per-vertex operations,
i.e operations that modify the incoming stream of vertices. The geometry
engine computes linear transformations, such as translation, rotation and
projection of the vertices. Local illumination models are also evaluated
on a per-vertex basis at this stage of the pipeline. This is the reason
why geometry processing is often referred to as transform & light unit
(T&L). For a detailed description the geometry engine can be further
divided into several subunits, as displayed in Figure 2.2.

Modeling Transformation: Transformations which are used to ar-
range objects and specify their placement within the virtual scene
are called modeling transformations. They are specified as a 4× 4
matrix using homogenous coordinates.

Viewing Transformation: A transformation that is used to specify
the camera position and viewing direction is termed viewing trans-
formation. This transformation is also specified as a 4× 4 matrix.
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Figure 2.2: Geometry processing as part of the standard graphics pipeline.

Modeling and viewing matrices can be pre-multiplied to form a
single modelview matrix.

Lighting/Vertex Shading: After the vertices are correctly placed
within the virtual scene, the Phong model [82] for local illumina-
tion is calculated for each vertex by default. On a programmable
GPU, an alternative illumination model can be implemented using
a vertex shader. Since illumination requires information about nor-
mal vectors and the final viewing direction, it must be performed
after modeling and viewing transformation.

Primitive Assembly: Rendering primitives are generated from the in-
coming vertex stream. Vertices are connected to lines, lines are
joined together to form polygons. Arbitrary polygons are usually
tessellated into triangles to ensure planarity and to enable interpo-
lation in barycentric coordinates.

Clipping: Polygon and line clipping is applied after primitive assembly
to remove those portions of geometry which are is not displayed on
the screen.

Perspective Transformation: Perspective transformation computes
the projection of the geometric primitive onto the image plane.

Perspective transformation is the final step of the geometry process-
ing stage. All operations that are located after the projection step are
performed within the two-dimensional space of the image plane.

2.1.2 Rasterization

Rasterization is the conversion of geometric data into fragments. Each
fragment corresponds to a square pixel in the resulting image. The pro-
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Figure 2.3: Rasterization as part of the standard graphics pipeline.

cess of rasterization can be further divided into three different subtasks
as displayed in Figure 2.3.

Polygon rasterization: In order to display filled polygons, rasteriza-
tion determines the set of pixels that lie in the interior of the poly-
gon. This also comprises the interpolation of visual attributes such
as color, illumination terms and texture coordinates given at the
vertices.

Texture Fetch: Textures are two-dimensional raster images, that are
mapped onto the polygon according to texture coordinates speci-
fied at the vertices. For each fragment these texture coordinates
must be interpolated and a texture lookup is performed at the re-
sulting coordinate. This process generates a so-called texel, which
refers to an interpolated color value sampled from the texture map.
For maximum efficiency it is also important to take into account
that most hardware implementations maintain a texture cache.

Fragment Shading: If texture mapping is enabled, the obtained texel
is combined with the interpolated primary color of the fragment in
a user-specified way. After the texture application step the color
and opacity values of a fragment are final.

2.1.3 Fragment Operations

The fragments produced by rasterization are written into the frame
buffer, which is a set of pixels arranged as a two-dimensional array. The
frame buffer also contains the portion of memory that is finally displayed
on the screen. When a fragment is written, it modifies the values already
contained in the frame buffer according to a number of parameters and
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Figure 2.4: Fragment operations as part of the standard graphics pipeline.

conditions. The sequence of tests and modifications is termed fragment
operations and is displayed in Figure 2.4.

Alpha Test: The alpha test allows the discarding of a fragment con-
ditional on the outcome of a comparison between the fragments
opacity α and a specified reference value.

Stencil Test: The stencil test allows the application of a pixel stencil
to the visible frame buffer. This pixel stencil is contained in a so-
called stencil-buffer, which is also a part of the frame buffer. The
stencil test conditionally discards a fragment, if the stencil buffer
is set for the corresponding pixel.

Depth Test: Since primitives are generated in arbitrary sequence, the
depth test provides a mechanism for correct depth ordering of par-
tially occluded objects. The depth value of a fragment is therefore
stored in a so-called depth buffer. The depth test decides whether
an incoming fragment is occluded by a fragment that has been
previously written by comparing the incoming depth value to the
value in the depth buffer. This allows the discarding of occluded
fragments.

Alpha Blending: To allow for semi-transparent objects, alpha blending
combines the color of the incoming fragment with the color of the
corresponding pixel currently stored in the frame buffer.

After the scene description has completely passed through the graph-
ics pipeline, the resulting raster image contained in the frame buffer can
be displayed on the screen or written to a file. Further details on the ren-
dering pipeline can be found in [91, 26]. Different hardware architectures
ranging from expensive high-end workstations to consumer PC graphics
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boards provide different implementations of this graphics pipeline. Thus,
consistent access to multiple hardware architectures requires a level of
abstraction, that is provided by an additional software layer called appli-
cation programming interface (API). We are using OpenGL [91] as API
and Cg as shading language throughout these course notes, although ev-
ery described algorithm might be as well implemented using DirectX and
any high-level shading language.

2.2 Programmable GPUs

The first step towards a fully programmable GPU was the introduc-
tion of configurable rasterization and vertex processing in late 1999.
Prominent examples are NVidia’s register combiners or ATI’s fragment
shader OpenGL extensions. Unfortunately, it was not easy to access
these vendor-specific features in a uniform way, back then.

The major innovation provided by today’s graphics processors is the
introduction of true programmability. This means that user-specified
micro-programs can be uploaded to graphics memory and executed di-
rectly by the geometry stage (vertex shaders) and the rasterization unit
(fragment or pixel shaders). Such programs must be written in an
assembler-like language with the limited instruction set understood by
the graphics processor (MOV, MAD, LERP and so on). However, high-level
shading languages which provide an additional layer of abstraction were
introduced quickly to access the capabilities of different graphics chips in
an almost uniform way. Popular examples are Cg introduced by NVidia,
which is derived from the Stanford Shading Language. The high-level
shading language (HLSL) provided by Microsoft’s DirectX 8.0 uses a
similar syntax. The terms vertex shader and vertex program, and also
fragment shader and fragment program have the same meaning, respec-
tively.

2.2.1 Vertex Shaders

Vertex shaders are user-written programs which substitute major parts
of the fixed-function computation of the geometry processing unit. They
allow customization of the vertex transformation and the local illumina-
tion model. The vertex program is executed once per vertex: Every time
a vertex enters the pipeline, the vertex processor receives an amount of
data, executes the vertex program and writes the attributes for exactly
one vertex. The vertex shader cannot create vertices from scratch or
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remove incoming vertices from the pipeline.

The programmable vertex processor is outlined in Figure 2.5. For
each vertex the vertex program stored in the instruction memory is ex-
ecuted once. In the loop outlined in the diagram, an instruction is first
fetched and decoded. The operands for the instruction are then read
from input registers which contain the original vertex attributes or from
temporary registers. All instruction are vector operations, which are
performed on xyzw-components for homogenous coordinates or RGBA-
quadruplets for colors. Mapping allows the programmer to specify, du-
plicate and exchange the indices of the vector components (a process
known as swizzling) and also to negate the respective values. If all the
operands are correctly mapped the instruction is eventually executed
and the result is written to temporary or output registers. At the end
of the loop the vertex processor checks whether or not there are more
instructions to be executed, and decides to reenter the loop or terminate
the program by emitting the output registers to the next stage in the
pipeline.

A simple example of a vertex shader is shown in the following code
snippet. Note that in this example the vertex position is passed as a
2D coordinate in screen space and no transformations are applied. The
vertex color is simply set to white.

// A simple vertex shader

struct myVertex {
float4 position : POSITION;

float4 color : COLOR;

};

myVertex main (float2 pos : POSITION)

{
myVertex result;

result.position = float4(pos,0,1);

result.color = float4(1, 1, 1, 1);

return result;

}
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Figure 2.5: The programmable vertex processing unit executes a vertex program
stored in local video memory. During the execution a limited set of input-, output-
and temporary registers is accessed.

2.2.2 Fragment Shaders

Pixel shaders refer to programs, which are executed by the rasterization
unit. They are used to compute the final color and depth values of a
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fragment. The fragment program is executed once per fragment: Every
time that polygon rasterization creates a fragment, the fragment proces-
sor receives a fixed set of attributes, such as colors, normal vectors or
texture coordinates, executes the fragment program and writes the final
color and z-value of the fragment to the output registers.

The diagram for the programmable fragment processor is shown in
Figure 2.6. For each fragment the fragment program stored in instruction
memory is executed once. The instruction loop of the fragment processor
is similar to the vertex processor, with a separate path for texture fetch
instructions. At first an instruction is first fetched and decoded. The
operands for the instruction are read from the input registers which con-
tain the fragments attributes or from temporary registers. The mapping
step again computes the component swizzling and negation.

If the current instruction is a texture fetch instruction, the fragment
processor computes the texture address with respect to texture coordi-
nates and level of detail. Afterwards, the texture unit fetches all the
texels which are required to interpolate a texture sample at the give co-
ordinates. These texels are finally filtered to interpolate the final texture
color value, which is then written to an output or temporary register.

If the current instruction is not a texture fetch instruction, it is
executed with the specified operands and the result is written to the
respective registers. At the end of the loop the fragment processor
checks whether or not there are more instructions to be executed, and
decides to reenter the loop or terminate the program by emitting the
output registers to the fragment processing stage. As an example, the
most simple fragment shader is displayed in the following code snippet:

// The most simple fragment shader

struct myOutput {
float4 color : COLOR;

};

myOutput main (float4 col : COLOR)

{
myOutput result;

result.color = col;

return result;

}
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For more information on the programmable vertex and fragment pro-
cessors, please refer to the Cg programming guide [25]

Figure 2.6: For each fragment, the programmable fragment processor executes
a micro-program. In addition to reading the input and temporary registers, the
fragment processor is able to generate filtered texture samples from the texture
images stored in vide memory.
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Sampling a Volume Via
Texture Mapping

As illustrated in the introduction to these course notes, the most funda-
mental operation in volume rendering is sampling the volumetric data
(Section 1.1). Since this data is already discrete, the sampling task per-
formed during rendering is actually a resampling, which means that the
continuous signal must reconstructed approximately as necessary to sam-
pling it again in screen space. The ray casting approach, that we have
examined in the previous part is a classical image-order approach, be-
cause it divides the resulting image into pixels and then computes the
contribution of the entire volume to each pixel.

Image-order approaches, however, are contrary to the way rasteri-
zation hardware generates images. Graphics hardware usually uses an
object-order approach, which divides the object into primitives and then
calculates which set of pixels are influenced by a primitive.

As we have seen in the introductory part, the two major operations
related to volume rendering are interpolation and compositing, both of

Figure 3.1: Rendering a volume by compositing a stack of 2D texture-mapped slices
in back-to-front order. If the number of slices is too low, they become visible as
artifacts.



ACM SIGGRAPH 2004 25

which can efficiently be performed on modern graphics hardware. Tex-
ture mapping operations basically interpolate a texture image to obtain
color samples at locations that do not coincide with the original grid.
Texture mapping hardware is thus an ideal candidate for performing
repetitive resampling tasks. Compositing individual samples can eas-
ily be done by exploiting fragment operations in hardware. The major
question with regard to hardware-accelerated volume rendering is how
to achieve the same – or a sufficiently similar – result as the ray-casting
algorithm.

In order to perform volume rendering in an object-order approach, the
resampling locations are generated by rendering a proxy geometry with
interpolated texture coordinates (usually comprised of slices rendered as
texture-mapped quads), and compositing all the parts (slices) of this
proxy geometry from back to front via alpha blending. The volume data
itself is stored in 2D- or 3D-texture images. If only a density volume is
required, it can be stored in a single 3D texture with each texel corre-
sponding to a single voxel. If the volume is too large to fit into texture
memory, it must be split onto several 3D textures. Alternatively, volume
data can be stored in a stack of 2D textures, each of which corresponds
to an axis-aligned slice through the volume.

There are several texture-based approaches which mainly differ in the
way the proxy geometry is computed.

Polygon Slices Final Image3D Texture

Figure 3.2: View-aligned slices used as proxy geometry with 3D texture mapping.
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Polygon Slices Final Image2D Textures

Figure 3.3: Object-aligned slices used as proxy geometry with 2D texture mapping.

3.1 Proxy Geometry

The first thing we notice if we want to perform volume rendering with
rasterization hardware is, that hardware does not support any volumet-
ric rendering primitives. Supported primitives comprise points, lines and
planar polygons. In consequence, if we want to utilize rasterization hard-
ware for volume rendering, we have to convert our volumetric representa-
tion into rendering primitives supported by hardware. A set of hardware
primitives representing out volumetric object is called a proxy geometry.
Ideally, with respect to the traditional modeling paradigm of separating
shape from appearance, the shape of the proxy geometry should not have
any influence on the final image, because only the appearance, i.e. the
texture, is important.

The conceptually simplest example of proxy geometry is a set of
view-aligned slices (quads that are parallel to the viewport, usually also
clipped against the bounding box of the volume, see Figure 3.2), with
3D texture coordinates that are interpolated over the interior of these
slices, and ultimately used to sample a single 3D texture map at the cor-
responding locations. 3D textures, however, often incur a performance
penalty in comparison to 2D textures. This penalty is mostly due texture
caches which are optimized for 2D textures.

One of the most important things to remember about the proxy ge-
ometry is that it is intimately related to the type of texture (2D or 3D)
used. When the orientation of slices with respect to the original volume
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data (i.e., the texture) can be arbitrary, 3D texture mapping is manda-
tory, since a single slice would have to fetch data from several different
2D textures. If, however, the proxy geometry is aligned with the original
volume data, texture fetch operations for a single slice can be guaranteed
to stay within the same 2D texture. In this case, the proxy geometry
is comprised of a set of object-aligned slices (see Figure 3.3), for which
2D texture mapping capabilities suffice. The following sections describe
different kinds of proxy geometry and the corresponding resampling ap-
proaches in more detail.

3.2 2D-Textured Object-Aligned Slices

If only 2D texture mapping capabilities are used, the volume data must
be stored in several two-dimensional texture maps. A major implication
of the use of 2D textures is that the hardware is only able to resample
two-dimensional subsets of the original volumetric data.

The proxy geometry in this case is a stack of planar slices, all of which
are required to be aligned with one of the major axes of the volume
(either the x, y, or z axis), mapped with 2D textures, which in turn
are resampled by the hardware-native bi-linear interpolation [11]. The
reason for the requirement that slices must be aligned with a major axis
is that each time a slice is rendered, only two dimensions are available for
texture coordinates, and the third coordinate must therefore be constant.
Now, instead of being used as an actual texture coordinate, the third
coordinate selects the texture to use from the stack of slices, and the

image planeimage planeimage planeimage plane image plane

B EA C D

Figure 3.4: Switching the slice stack of object-aligned slices according to the viewing
direction. Between image (C) and (D) the slice stack used for rendering has been
switched.
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CA B

Figure 3.5: The location of sampling points changes abruptly (C), when switching
from one slice stack (A), to the next (B).

other two coordinates become the actual 2D texture coordinates used
for rendering the slice. Rendering proceeds from back to front, blending
one slice on top of the other (see Figure 3.3).

Although a single stack of 2D slices can stores the entire volume, one
slice stack does not suffice for rendering. When the viewpoint is rotated
about the object, it would be possible that imaginary viewing rays pass
through the object without intersecting any slices polygons. This cannot
be prevented with only one slice stack. The solution for this problem is
to actually store three slice stacks, one for each of the major axes. During
rendering, the stack with slices most parallel to the viewing direction is
chosen (see Figure 3.4).

Under-sampling typically occurs most visibly along the major axis of
the slice stack currently in use, which can be seen in Figure 3.1. Ad-
ditional artifacts become visible when the slice stack in use is switched
from one stack to the next. The reason for this is that the actual loca-
tions of sampling points change abruptly when the stacks are switched,
which is illustrated in Figure 3.5. To summarize, an obvious drawback
of using object-aligned 2D slices is the requirement for three slice stacks,
which consume three times the texture memory a single 3D texture would
consume. When choosing a stack for rendering, an additional consider-
ation must also be taken into account: After selecting the slice stack, it
must be rendered in one of two directions, in order to guarantee actual
back-to-front rendering. That is, if a stack is viewed from the back (with
respect to the stack itself), it has to be rendered in reversed order, to
achieve the desired result.

The following code fragment (continued on the next page) shows how
both of these decisions, depending on the current viewing direction with
respect to the volume, could be implemented:
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GLfloat modelview matrix[16];

GLfloat modelview rotation matrix[16];

// obtain the current viewing transformation

// from the OpenGL state

glGet( GL MODELVIEW MATRIX, modelview matrix );

// extract the rotation from the matrix

GetRotation( modelview matrix, modelview rotation matrix );

// rotate the initial viewing direction

GLfloat view vector[3] = {0.0f, 0.0f, -1.0f};
MatVecMultiply( modelview rotation matrix, view vector );

// find the largest absolute vector component

int max component = FindAbsMaximum( view vector );

// render slice stack according to viewing direction

switch ( max component ) {
case X:

if ( view vector[X] > 0.0f )

DrawSliceStack PositiveX();

else

DrawSliceStack NegativeX();

break;

case Y:

if ( view vector[Y] > 0.0f )

DrawSliceStack PositiveY();

else

DrawSliceStack NegativeY();

break;

case Z:

if ( view vector[Z] > 0.0f )

DrawSliceStack PositiveZ();

else

DrawSliceStack NegativeZ();

break;

}
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Opacity Correction

In texture-based volume rendering, alpha blending is used to compute
the compositing of samples along a ray. As we have seen in Section 1.2.4,
this alpha blending operation is actually numerical approximation to the
volume rendering integral. The distance ∆t (see Equation 1.8) between
successive resampling locations most of all depends on the distance be-
tween adjacent slices.

The sampling distance ∆t is easiest to account for if it is constant
for all “rays” (i.e., pixels). In this case, it can be incorporated into the
numerical integration in a preprocess, which is usually done by simply
adjusting the transfer function lookup table accordingly.

In the case of view-aligned slices the slice distance is equal to the
sampling distance, which is also equal for all “rays” (i.e., pixels). Thus,
it can be accounted for in a preprocess.

When 2D-textured slices are used, however, ∆t not only depends on
the slice distance, but also on the viewing direction. This is shown in
Figure 3.6 for two adjacent slices. The sampling distance is only equal to
the slice distance when the stack is viewed perpendicularly to its major
axis (d3). When the view is rotated, the sampling distance increases.
For this reason, the lookup table for numerical integration (the transfer
function table, see Part 5 ) has to be updated whenever the viewing
direction changes. The correct opacity α̃ for a sampling distance ∆t
amounts to

α̃ = 1− (1− α)
∆t
∆s (3.1)

with α referring to the opacity at the original sampling rate ∆s which is
accounted for in the transfer function.

This opacity correction is usually done in an approximate manner,
by simply multiplying the stored opacities by the reciprocal of the cosine
between the viewing vector and the stack direction vector:

// determine cosine via dot-product

// vectors must be normalized!

float cor cos = DotProduct3( view vector, slice normal);

// determine correction factor

float opac cor factor =

( cor cos != 0.0f ) ? (1.0f / cor cos) : 1.0f;

Note that although this correction factor is used for correcting opacity
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Figure 3.6: The distance between adjacent sampling points depends on the viewing
angle.

values, it must also be applied to the respective RGB colors, if these are
stored as opacity-weighted colors, which usually is the case [112].

Discussion

The biggest advantage of using object-aligned slices and 2D textures for
volume rendering is that 2D textures and the corresponding bi-linear
interpolation are a standard feature of all 3D graphics hardware archi-
tectures, and therefore this approach can practically be implemented
anywhere. Also, the rendering performance is extremely high, since bi-
linear interpolation requires only a lookup and weighting of four texels
for each resampling operation.

The major disadvantages of this approach are the high memory re-
quirements, due to the three slice stacks that are required, and the re-
striction to using two-dimensional, i.e., usually bi-linear, interpolation
for texture reconstruction. The use of object-aligned slice stacks also
leads to sampling and stack switching artifacts, as well as inconsistent
sampling rates for different viewing directions. A brief summary is con-
tained in table 3.1.

2D-Textured Object-Aligned Slices

Pros Cons

⊕ very high performance ª high memory requirements
⊕ high availability ª bi-linear interpolation only

ª sampling and switching ar-
tifacts
ª inconsistent sampling rate

Table 3.1: Summary of volume rendering with object-aligned slices and
2D textures.
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3.3 2D Slice Interpolation

Figure 3.1 shows a fundamental problem of using 2D texture-mapped
slices as proxy geometry for volume rendering. In contrast to view-
aligned 3D texture-mapped slices (section 3.4), the number of slices can-
not be changed easily, because each slice corresponds to exactly one slice
from the slice stack. Furthermore, no interpolation between slices is per-
formed at all, since only bi-linear interpolation is used within each slice.
Because of these two properties of that algorithm, artifacts can become
visible when there are too few slices, and thus the sampling frequency
is too low with respect to frequencies contained in the volume and the
transfer function.

In order to increase the sampling frequency without enlarging the
volume itself (e.g., by generating additional interpolated slices before
downloading them to the graphics hardware), inter-slice interpolation
has to be performed on-the-fly by the graphics hardware itself. On the
graphics boards hardware which support multi-texturing, this can be
achieved by binding two textures simultaneously instead of just one when
rendering the slice, and performing linear interpolation between these
two textures [83].

In order to do this, we have to specify fractional slice positions, where
the integers correspond to slices that actually exist in the source slice
stack, and the fractional part determines the position between two ad-
jacent slices. The number of rendered slices is now independent of the
number of slices contained in the volume, and can be adjusted arbitrarily.

For each slice to be rendered, two textures are activated, which corre-
spond to the two neighboring original slices from the source slice stack.
The fractional position between these slices is used as weight for the
inter-slice interpolation. This method actually performs tri-linear inter-
polation within the volume. Standard bi-linear interpolation is employed
for each of the two neighboring slices, and the interpolation between the
two obtained results altogether achieves tri-linear interpolation.

On-the-fly interpolation of intermediate slices can be implemented as
a simple fragment shader in Cg, as shown in the following code snippet.
The two source slices that enclose the position of the slice to be rendered
are configured as texture0 and texture1, respectively. The two calls to
the function tex2D interpolate both texture images bi-linearly, using the
x- and y- components of the texture coordinate. The third linear inter-
polation step which is necessary for trilinear interpolation is performed
subsequently using the lerp function and the z- component of the tex-
ture coordinate. The final fragment contains the linearly interpolated



ACM SIGGRAPH 2004 33

result corresponding to the specified fractional slice position.

// Cg fragment shader for 2D slice interpolation

half4 main (float3 texcoords : TEXCOORD0,

uniform sampler2D texture0,

uniform sampler2D texture1) : COLOR0

{
float4 t0 = tex2D(texture0,texcoords.xy);

float4 t1 = tex2D(texture1,texcoords.xy);

return (half4) lerp(t0, t1, texcoords.z);

}

Discussion

The biggest advantage of using object-aligned slices together with on-the-
fly interpolation between two 2D textures for volume rendering is that
this method combines the advantages of using only 2D textures with the
capability of arbitrarily controlling the sampling rate, i.e., the number of
slices. Although not entirely comparable to tri-linear interpolation in a
3D texture, the combination of bi-linear interpolation and a second linear
interpolation step ultimately allows tri-linear interpolation in the volume.
The necessary features of consumer hardware, i.e., multi-texturing with
at least two simultaneous textures, and the ability to interpolate between
them, are widely available on consumer graphics hardware.

Disadvantages inherent to the use of object-aligned slice stacks still
apply, though. For example, the undesired visible effects when switching
slice stacks, and the memory consumption of the three slice stacks. A

2D Slice Interpolation

Pros Cons

⊕ high performance ª high memory requirements
⊕ tri-linear interpolation ª switching effects
⊕ available on consumer hard-

ware
ª inconsistent sampling rate

for perspective projection

Table 3.2: Summary of 2D slice interpolation volume rendering.
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Figure 3.7: Sampling locations on view-aligned slices for parallel (A), and perspec-
tive projection (B), respectively.

brief summary is contained in table 3.2.

3.4 3D-Textured View-Aligned Slices

In many respects, 3D-textured view-aligned slices are the simplest type
of proxy geometry (see Figure 3.2). In this case, the volume is stored
in a single 3D texture map, and 3D texture coordinates are interpolated
over the interior of the proxy geometry polygons. These texture coor-
dinates are then used directly for indexing the 3D texture map at the
corresponding location, and thus resampling the volume.

The big advantage of 3D texture mapping is that it allows slices to
be oriented arbitrarily within the 3D texture domain, i.e., the volume
itself. Thus, it is natural to use slices aligned with the viewport, since
such slices closely mimic the sampling used by the ray-casting algorithm.
They offer constant distance between samples for orthogonal projection
and all viewing directions, as outlined in Figure 3.7(A). Since the graph-
ics hardware is already performing completely general tri-linear interpo-
lation within the volume for each resampling location, proxy slices are
not bound to original slices at all. The number of slices can easily be
adjusted on-the-fly and without any restrictions. In case of perspective
projection, the distance between successive samples is different for adja-
cent pixels, however, which is depicted in Figure 3.7(B). Artifacts caused
by a not entirely accurate opacity compensation, however, are only no-
ticeable for a large field-of-view angle of the viewing frustum. If this is
the case, spherical shells must be employed instead of planar slices as
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described in Section 3.5.

Discussion

The biggest advantage of using view-aligned slices and 3D textures for
volume rendering is that hardware-accelerated tri-linear interpolation is
employed for resampling the volume at arbitrary locations. Apart from
better image quality compared to bi-linear interpolation, this allows the
rendering of slices with arbitrary orientation with respect to the volume,
making it possible to maintain a constant sampling rate for all pixels and
viewing directions. Additionally, a single 3D texture suffices for storing
the entire volume, if there is enough texture memory available.

The major disadvantage of this approach is that tri-linear interpola-
tion is significantly slower than bi-linear interpolation, due to the require-
ment for using eight texels for every single output sample, and texture
fetch patterns that decrease the efficiency of texture caches. A brief
summary is contained in table 3.3.

3.5 3D-Textured Spherical Shells

All types of proxy geometry that use planar slices (irrespective of whether
they are object-aligned, or view-aligned), share the basic problem that
the distance between successive samples used to determine the color of
a single pixel is different from one pixel to the next in the case of per-
spective projection. This fact is illustrated in Figure 3.7(B).

When incorporating the sampling distance in the numerical approx-
imation of the volume rendering integral, this pixel-to-pixel difference
cannot easily be accounted for. A possible solution to this problem is
the use of spherical shells instead of planar slices [65]. In order to attain
a constant sampling distance for all pixels using perspective projection,
the proxy geometry has to be spherical, i.e., be comprised of concentric

3D-Textured View-Aligned Slices

Pros Cons

⊕ high performance ª availability still limited
⊕ tri-linear interpolation ª inconsistent sampling rate

for perspective projection

Table 3.3: Summary of 3D-texture based volume rendering.
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spherical shells. In practice, these shells are generated by clipping tes-
sellated spheres against both the viewing frustum and the bounding box
of the volume data.

The major drawback of using spherical shells as proxy geometry is
that they are more complicated to setup than planar slice stacks, and
they also require more geometry to be rendered, i.e., parts of tessellated
spheres.

This kind of proxy geometry is only useful when perspective pro-
jection is used, and can only be used in conjunction with 3D texture
mapping. Furthermore, the artifacts of pixel-to-pixel differences in sam-
pling distance are often hardly noticeable, and planar slice stacks usually
suffice even when perspective projection is used.

3.6 Slices vs. Slabs

An inherent problem of using slices as proxy geometry is that the number
of slices directly determines the (re)sampling frequency, and thus the
quality of the rendered result. Especially when high frequencies (“sharp
edges”) are contained in the employed transfer functions, the required
number of slices can become very high. Even though the majority of
texture based implementations allow the number of slices to be increased
on demand via interpolation done entirely on the graphics hardware, the
fill rate demands increase dramatically.

A very elegant solution to this problem arrives with the use of slabs
instead of slices, together with pre-integrated classification [21], which
is described in more detail in Part 7 of these course notes.. A slab
is not a new geometrical primitive, but simply the space between two
adjacent slices. During rendering, the solution of the integral of ray
segments which intersect this space is properly accounted for by looking
up a pre-computed solution. This solution is a function of the scalar
values of both the back slice to the front slice. It is obtained from a
pre-integrated lookup table stored as a 2D texture. Geometrically, a
slab can be rendered as a slice with its immediately neighboring slice
(either in the back, or in front) projected onto it. For further details on
pre-integrated volume rendering, we refer you to Part 7.



Components of a
Hardware Volume Renderer

This chapter presents an overview of the major components of a texture-
based hardware volume renderer from an implementation-centric point
of view. The goal of this chapter is to convey a feeling of where the
individual components of such a renderer fit in, and in which order they
are executed. Details are covered in subsequent chapters. The compo-
nent structure presented here is modeled after separate portions of code
that can be found in an actual implementation of a volume renderer for
consumer graphics cards. They are listed in the order in which they are
executed by the application code, which is not necessarily the same as
they are “executed” by the graphics hardware itself!

4.1 Volume Data Representation

Volume data has to be stored in memory in a suitable format, usually
already prepared for download to the graphics hardware as textures.
Depending on the type of proxy geometry used, the volume can either
be stored in a single block, when view-aligned slices together with a
single 3D texture are used, or split up into three stacks of 2D slices,
when object-aligned slices together with multiple 2D textures are used.
Usually, it is convenient to store the volume only in a single 3D array,
which can be downloaded as a single 3D texture, and extract data for
2D textures on demand.

Depending on the complexity of the rendering mode, classification,
and illumination, there may even be several volumes containing all the
information needed. Likewise, the actual storage format of voxels de-
pends on the rendering mode and the type of volume, e.g., whether the
volume stores densities, gradients, gradient magnitudes, and so on. Con-
ceptually different volumes may also be combined into the same actual
volume, if possible. For example, combining gradient and density data
in RGBA voxels.
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Although it is often the case that the data representation issue is
part of a preprocessing step, this is not necessarily so, since new data
may have to be generated on-the-fly when the rendering mode or specific
parameters are changed.

This component is usually executed only once at startup, or only ex-
ecuted when the rendering mode changes.

4.2 Volume Textures

In order for the graphics hardware to be able to access all the required
volume information, the volume data must be downloaded and stored in
textures. At this stage, a translation from data format (external format)
to texture format (internal format) might take place, if the two are not
identical.

This component is usually executed only once at startup, or only ex-
ecuted when the rendering mode changes.

How and what textures containing the actual volume data have to be
downloaded to the graphics hardware depends on a number of factors,
most of all the rendering mode and type of classification, and whether
2D or 3D textures are used.

The following example code fragment downloads a single 3D texture.
The internal format is set to GL INTENSITY8, which means that a single
8 bit value is stored for each texel. For uploading 2D textures instead of
3D textures , similar commands have to be used to create all the slices
of all three slice stacks.

// bind 3D texture target

glBindTexture( GL TEXTURE 3D, volume texture name 3d );

glTexParameteri( GL TEXTURE 3D, GL TEXTURE WRAP S, GL CLAMP );

glTexParameteri( GL TEXTURE 3D, GL TEXTURE WRAP T, GL CLAMP );

glTexParameteri( GL TEXTURE 3D, GL TEXTURE WRAP R, GL CLAMP );

glTexParameteri( GL TEXTURE 3D, GL TEXTURE MAG FILTER, GL LINEAR );

glTexParameteri( GL TEXTURE 3D, GL TEXTURE MIN FILTER, GL LINEAR );

// download 3D volume texture for pre-classification

glTexImage3D( GL TEXTURE 3D, 0, GL INTENSITY8,

size x, size y, size z,

GL COLOR INDEX, GL UNSIGNED BYTE, volume data 3d );
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4.3 Transfer Function Tables

Transfer functions are usually represented by color lookup tables. They
can be one-dimensional or multi-dimensional, and are usually stored as
simple arrays.

Transfer functions may be downloaded to the hardware in basically
one of two formats: In the case of pre-classification, transfer functions
are downloaded as texture palettes for on-the-fly expansion of palette
indexes to RGBA colors. If post-classification is used, transfer func-
tions are downloaded as 1D, 2D, or even 3D textures (the latter two
for multi-dimensional transfer functions). If pre-integration is used, the
transfer function is only used to calculate a pre-integration table, but
not downloaded to the hardware itself. Then, this pre-integration table
is downloaded instead. This component might even not be used at all,
which is the case when the transfer function has already been applied to
the volume textures themselves, and they are already in RGBA format.

This component is usually only executed when the transfer function
or rendering mode changes.

The following code fragment demonstrated the use
of the OpenGL extensions GL ext paletted texture und
GL ext shared texture palette for pre-classification. It uploads
a single texture palette that can be used in conjunction with an indexed
volume texture for pre-classification. The respective texture must have
an internal format of GL COLOR INDEX8 EXT. The same code can be used
for rendering with either 2D, or 3D slices, respectively:

// download color table for pre-classification

glColorTableEXT(

GL SHARED TEXTURE PALETTE EXT,

GL RGBA8,

256 * 4,

GL RGBA,

GL UNSIGNED BYTE,

opacity corrected palette );

If post-classification is used instead, the same transfer function table can
be used, but it must be uploaded as a 1D texture instead:
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// bind 1D texture target

glBindTexture( GL TEXTURE 1D, palette texture name );

glTexParameteri( GL TEXTURE 1D, GL TEXTURE WRAP S, GL CLAMP );

glTexParameteri( GL TEXTURE 1D, GL TEXTURE MAG FILTER, GL LINEAR );

glTexParameteri( GL TEXTURE 1D, GL TEXTURE MIN FILTER, GL LINEAR );

// download 1D transfer function texture for post-classification

glTexImage1D( GL TEXTURE 1D, 0, GL RGBA8, 256 * 4, 0,

GL RGBA, GL UNSIGNED BYTE, opacity corrected palette );

If pre-integration is used, a pre-integration texture is uploaded as a 2D
texture instead of the transfer function table (see Part 7).

4.4 Fragment Shader Configuration

Before the volume can be rendered using a specific rendering mode, the
fragment shader has to be configured accordingly. How textures are
stored and what they contain is crucial for the fragment shader. Likewise,
the format of the shaded fragment has to correspond to what is expected
by the alpha blending stage (section 4.5).

This component is usually executed once per frame, i.e., the entire
volume can be rendered with the same fragment shader configuration.

The code that determines the operation of the fragment shader
is highly dependent on the underlying hardware architecture (sec-
tion 2.2.2). The code for configuring the fragment shader also de-
pends on the shading language that is used. The following code snippet
shows how to create a fragment shader using Cg with the multivendor
ARB fragment program OpenGL profile:

// create the fragment shader

CGprogram myShader = cgCreateProgram(context,

CG SOURCE,

programString,

CG PROFILE ARBFP1,

"main",

args);

cgGLLoadProgram(myShader);
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If the fragment shader is loaded to the graphics board, it can be
bound and enabled as many times as necessary:

// bind the fragment shader

cgGLBindProgram(myShader);

cgGLEnableProfile(CG PROFILE ARBFP1);

// use the shader

cgGLDisableProfile(CG PROFILE ARBFP1);

4.5 Blending Mode Configuration

The blending mode determines how a fragment is combined with the
corresponding pixel in the frame buffer. In addition to the configuration
of alpha blending, we also configure alpha testing in this component, if it
is required for discarding fragments to display non-polygonal iso-surfaces.
The configuration of the blending stage and the alpha test usually stays
the same for an entire frame.

This component is usually executed once per frame, i.e., the entire
volume can be rendered with the same blending mode configuration.

For direct volume rendering, the blending mode is more or less
standard alpha blending. Since color values are usually pre-multiplied
by the corresponding opacity (also known as opacity-weighted [112], or
associated [9] colors), the factor for multiplication with the source color
is one:

// enable blending

glEnable( GL BLEND );

// set blend function

glBlendFunc( GL ONE, GL ONE MINUS SRC ALPHA );

For non-polygonal iso-surfaces, alpha testing has to be configured
for selection of fragments corresponding to the desired iso-values. The
comparison operator for comparing a fragment’s density value with the
reference value is usually GL GREATER, or GL LESS, since using GL EQUAL

is not well suited to producing a smooth surface appearance (not many
interpolated density values are exactly equal to a given reference value).
Alpha blending must be disabled for this rendering mode. More de-
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tails about rendering non-polygonal iso-surfaces, especially with regard
to illumination, can be found in Part 4

// disable blending

glDisable(GL BLEND );

// enable alpha testing

glEnable(GL ALPHA TEST );

// configure alpha test function

glAlphaFunc(GL GREATER, isovalue );

For maximum intensity projection, an alpha blending equation of
GL MAX EXT must be supported, which is either a part of the imaging
subset, or the separate GL EXT blend minmax extension. On consumer
graphics hardware, querying for the latter extension is the best way to
determine availability of the maximum operator.

// enable blending

glEnable(GL BLEND );

// set blend function to identity (not really necessary)

glBlendFunc(GL ONE,GL ONE );

// set blend equation to max

glBlendEquationEXT(GL MAX EXT );

4.6 Texture Unit Configuration

The use of texture units corresponds to the inputs required by the frag-
ment shader. Before rendering any geometry, the corresponding textures
have to be bound. When 3D textures are used, the entire configuration
of texture units usually stays the same for an entire frame. In the case
of 2D textures, the textures that are bound change for each slice.

This component is usually executed once per frame, or once per slice,
depending on whether 3D, or 2D textures are used.

The following code fragment shows an example for configuring two
texture units for interpolation of two neighboring 2D slices from the z
slice stack (section 3.3):
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// configure texture unit 1

glActiveTextureARB(GL TEXTURE1 ARB );

glBindTexture( GL TEXTURE 2D, tex names stack z[sliceid1]);

glEnable( GL TEXTURE 2D );

// configure texture unit 0

glActiveTextureARB( GL TEXTURE0 ARB );

glBindTexture( GL TEXTURE 2D, tex names stack z[sliceid0]);

glEnable( GL TEXTURE 2D );

4.7 Proxy Geometry Rendering

The last component of the execution sequence outlined in this chapter, is
getting the graphics hardware to render geometry. This is what actually
causes the generation of fragments to be shaded and blended into the
frame buffer, after resampling the volume data accordingly.

This component is executed once per slice, irrespective of whether 3D
or 2D textures are used.

Explicit texture coordinates are usually only specified when render-
ing 2D texture-mapped, object-aligned slices. In the case of view-aligned
slices, texture coordinates can easily be generated automatically, by ex-
ploiting OpenGL’s texture coordinate generation mechanism, which has
to be configured before the actual geometry is rendered:

// configure texture coordinate generation

// for view-aligned slices

float plane x[] = { 1.0f, 0.0f, 0.0f, 0.0f };
float plane y[] = { 0.0f, 1.0f, 0.0f, 0.0f };
float plane z[] = { 0.0f, 0.0f, 1.0f, 0.0f };
glTexGenfv( GL S, GL OBJECT PLANE, plane x );

glTexGenfv( GL T, GL OBJECT PLANE, plane y );

glEnable( GL TEXTURE GEN S );

glEnable( GL TEXTURE GEN T );

glEnable( GL TEXTURE GEN R );

The following code fragment shows an example of rendering a single
slice as an OpenGL quad. Texture coordinates are specified explicitly,
since this code fragment is intended for rendering a slice from a stack of
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object-aligned slices with z as its major axis:

// render a single slice as quad (four vertices)

glBegin( GL QUADS );

glTexCoord2f( 0.0f, 0.0f );

glVertex3f( 0.0f, 0.0f, axis pos z );

glTexCoord2f( 0.0f, 1.0f );

glVertex3f( 0.0f, 1.0f, axis pos z );

glTexCoord2f( 1.0f, 1.0f );

glVertex3f( 1.0f, 1.0f, axis pos z );

glTexCoord2f( 1.0f, 0.0f );

glVertex3f( 1.0f, 0.0f, axis pos z );

glEnd();

Vertex coordinates are specified in object-space, and transformed to
view-space using the modelview matrix. In the case of object-aligned
slices, all the glTexCoord2f() commands can simply be left out. If
multi-texturing is used, a simple vertex program can be exploited for
generating the texture coordinates for the additional units, instead of
downloading the same texture coordinates to multiple units. On the
Radeon 8500 it is also possible to use the texture coordinates from unit
zero for texture fetch operations at any of the other units, which solves
the problem of duplicate texture coordinates in a very simple way, with-
out requiring a vertex shader or wasting bandwidth.
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Introduction to
Ray Casting

The previous Part on “GPU-Based Volume Rendering” describes a tra-
ditional and widely used approach to volume rendering on graphics hard-
ware. This approach uses a 2D proxy geometry to sample the underlying
3D data set. The predominant proxy geometries are either view-aligned
slices (through a 3D texture) or axis-aligned slices (oriented along a stack
of 2D textures). Slice-based volume rendering owes its success to a num-
ber of important reasons: (1) a high bandwidth between texture memory
and rasterization unit, (2) built-in interpolation methods for a fast re-
sampling (bilinear for stacks of 2D textures or trilinear in 3D textures),
and (3) a high rasterization performance. Moreover, the core rendering
routines are quite simple to implement.

Despite of these benefits, slice-based volume rendering has a num-
ber of significant disadvantages—especially for large data sets. As the
number and the position of the slices are directly determined by the
volume data set, this object-space approach is strongly influenced by
the complexity of the data set. Output sensitivity, however, should be
the ultimate goal of any computer graphics algorithm. An image-space
approach that takes into account the complexity of the generated im-
age may come closer to this goal. In volume rendering the overhead for
a naive object-space technique can be quite large because a significant
number of fragments does not contribute to the final image. Typically,
only 0.2% to 4% of all fragments are visible [61]. Most volume render-
ing applications focus on visualizing boundaries of objects or selected
material regions. Therefore, large parts of a volume data set are set
completely transparent and are not visible. In addition, many of the
remaining fragments are invisible due to occlusion effects. Figures 5.1
and 5.2 show two typical examples for volume visualization that contain
only a small fraction of visible fragments.

Ray casting [68] is a well-known approach to address these issues.
As outlined in Part II (“GPU-Based Volume Rendering”), ray casting
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represents a direct numerical evaluation of the volume rendering integral.
For each pixel in the image, a single ray is cast into the volume (neglecting
possible super sampling on the image plane). Then the volume data is
resampled at discrete positions along the ray. Figure 5.3 illustrates ray
casting. By means of the transfer function the scalar data values are
mapped to optical properties that are the basis for accumulating light
information along the ray. The back-to-front compositing scheme,

Cdst = (1− αsrc)Cdst + Csrc ,

is changed into the front-to-back compositing equation,

Cdst = Cdst + (1− αdst)Csrc

αdst = αdst + (1− αdst)αsrc . (5.1)

In this way, compositing can be performed in the same order as the ray
traversal.

The ray casting algorithm can be split into the following major parts.
First, a light ray needs to be set up according to given camera parameters
and the respective pixel position. Then, the ray has to be traversed by
stepping along the ray, i.e., a loop needs to be implemented. Optical
properties are accumulated within this loop. Finally, this process has to
stop when the volume is traversed.

Ray casting can easily incorporate a number of acceleration tech-
niques to overcome the aforementioned problems of slice-based volume
rendering. Early ray termination allows us to truncate light rays as soon
as we know that volume elements further away from the camera are oc-
cluded. Ray traversal can be stopped when the accumulated opacity
αdst reaches a certain user-specified limit (which is typically very close
to 1). Another advantage is that the step sizes for one ray can be chosen
independently from other rays, e.g., empty regions can be completely
skipped or uniform regions can be quickly traversed by using large step
sizes.

All these aspects are well-known and have been frequently used in
CPU-based implementations of ray casting. The main goal of this part
of the course is to describe how ray casting and its acceleration tech-
niques can be realized on a GPU architecture. Ray casting exhibits an
intrinsic parallelism in the form of completely independent light rays.
This parallelism can be easily mapped to GPU processing, for example,
by associating the operations for a single ray with a single pixel. In this
way, the built-in parallelism for a GPU’s fragment processing (multi-
ple pixel pipelines) is used to achieve efficient ray casting. In addition,
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volume data and other information can be stored in textures and thus
accessed with the high internal bandwidth of a GPU.

A GPU implementation of ray casting, however, has to address some
issues that are not present on CPUs. First, loops are not supported
in fragment programs. Therefore, the traversal of a ray needs to be
initiated by a CPU-based program. Second, it is hard to implement con-
ditional breaks, which are required to stop ray traversal. This problem
is particularly important when acceleration techniques are implemented.

We discuss GPU-based ray casting in the following two chapters.
Chapter 6 focuses on ray casting for uniform grids, while Chapter 7
describes ray casting for tetrahedral grids.
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Figure 5.1: Volume rendering of an aneurysm data set.

Figure 5.2: Volume rendering of the CT scan of a carp.
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eye

rays

view plane

Figure 5.3: Ray casting. For each pixel, one viewing ray is traced. The ray is
sampled at discrete positions to evaluate the volume rendering integral.



Ray Casting in
Uniform Grids

GPU Ray Casting with Early Ray Termination

Uniform grids have a simple geometric and topological structure. An
early implementation of GPU-based ray casting for uniform grids was
published by Röttger et al. [84]; a similar approach is taken by Krüger
and Westermann [61]. These two papers are the basis for the descrip-
tion in this chapter. Both approaches need the functionality of Pixel
Shader 2.0 (DirectX) or comparable functionality via OpenGL fragment
programs; both implementations were tested on an ATI Radeon 9700.

We discuss the two main ingredients of GPU-based ray casting: (a)
data storage and (b) fragment processing. In graphics hardware data
can be stored in, and efficiently accessed from, textures. The data set
(its scalar values and, possibly, its gradients) are held in a 3D texture
in the same way as for rendering with view-aligned slices (see Part II).
In addition, ray casting needs intermediate data that is “attached” to
light rays. Due to the direct correspondence between ray and pixel,
intermediate data is organized in 2D textures with a one-to-one mapping
between texels and pixels on the image plane.

Accumulated colors and opacities are represented in such 2D textures
to implement the front-to-back compositing equation (5.1). In addition,
the current sampling position along a ray can be stored in an interme-
diate texture. Typically, just the 1D ray parameter is held, i.e., the
length between entry point into the volume and current position [84].
The mentioned intermediate values are continuously updated during ray
traversal. Since OpenGL and DirectX have no specification for a simul-
taneous read and write access to textures, a ping-pong scheme makes
such an update possible. Two copies of a texture are used; one texture
holds the data from the previous sample position and allows for a read
access while the other texture is updated by a write access. The roles
of the two textures are exchanged after each iteration. Textures can be
efficiently modified via the render-to-texture functionality of DirectX or
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Figure 6.1: Principal structure of multi-pass rendering for GPU ray casting.

the WGL ARB render texture support for OpenGL under Windows.

Some intermediate parameters can either be stored in 2D textures
or, alternatively, computed on-the-fly within a fragment program. For
example, the ray direction can computed once and then stored in a tex-
ture (as in [61]) or computed on-the-fly (as in [84]). The ray direction
can determined by taking the normalized difference vector between exit
point and entry point, or the normalized difference between entry point
and camera position.

Other important aspects deal with the implementation of the frag-
ment programs. Different programs are used in different parts of a multi-
pass rendering approach. Figure 6.1 shows the principal structure of
multi-pass rendering for GPU ray casting.

Ray setup is performed once per frame to compute the initial pa-
rameters for the rays, i.e., the entry points into the cube-shaped volume
and the direction of the rays (in [61]) or the initial ray parameter (in
[84]). The entry points are determined by rendering the frontfaces of the
volume and attaching the positions to the vertices. Scanline conversion
fills in-between values via interpolation.

Ray traversal and integration are performed via multiple render
passes. Fragment are once again generated by rendering the bound-
ary polygons of the volume (here, the frontfaces). The new position is
computed by shifting the previous position along the ray direction ac-
cording to the integration step size. The contribution of this ray segment
(between previous and subsequent position) is accumulated according to
the compositing equation (5.1). The source color Csrc and source opacity
αsrc can be obtained by evaluating the transfer function at the sample
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points [61] (in the same way as for slice-based rendering from Part II).
Alternatively, the integrated contribution of the ray segment between
the two points can be taken into account [84]. Here, a linear inter-
polation of scalar values is assumed between the two points, and the
contribution to the volume rendering integral can be obtained from a
pre-computed lookup-table. We refer to Part VII for a detailed descrip-
tion of this pre-integration approach. For the following discussion it is
sufficient to understand that we have a 2D lookup-table that provides
the color Csrc and opacity αsrc of a ray segment. The two parameters for
the lookup-table are the scalar values at the start point and end point of
the segment. Regardless whether pre-integration or point sampling are
used, a ping-pong scheme is employed to iteratively update the colors
and opacities along the rays.

Another important aspect is the implementation of the stopping cri-
terion. Early ray termination leads to cancellation of ray traversal as
soon as a certain opacity level is reached. In addition, ray traversal has
to end when the ray leaves the volume. This ray termination cannot be
included in the above fragment program for ray traversal and integration
because GPUs do not support a conditional break for this iteration loop.
Therefore, ray termination is implemented in another fragment program
that is executed after the shader for traversal and integration (see Fig-
ure 6.1). Actual ray termination is implemented by using a depth test
and setting the z buffer accordingly, i.e., the z value is specified in a
way to reject fragments that correspond to terminated rays. In addi-
tion to the termination of single rays on a pixel-by-pixel basis, the whole
iteration process (the outer loop in multi-pass rendering) has to stop
when all rays are terminated. An asynchronous occlusion query allows
us to check how many fragments are actually drawn in a render pro-
cess; multi-pass rendering is stopped when the occlusion query reports
no drawn fragments [84]. An alternative solution is based on the early
z-test (as used in [61]). The maximum number of render passes has to
be known beforehand, e.g., by computing the worst-case number of sam-
pling steps. Here, all sampling steps are always initiated by multi-pass
rendering. Fragments that correspond to terminated rays, however, are
rejected by the efficient early z-test. In this way, the time-consuming
fragment programs are skipped for terminated rays.

In the remainder of this section, the two implementations [61, 84]
are described separately. The approach by Röttger et al. [84] is realized
as follows. Three floating-point textures, with two components each, are
used for intermediate values: the first texture for accumulated RG values,
the second texture for accumulated BA values, and the third texture for
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the single-component ray parameter (i.e., the other component is not
used). In all rendering passes, fragments are generated by rendering the
frontfaces of the volume box. Ray setup and the first integration step are
combined in a single render pass (and therefore in a combined fragment
program). The implementation uses multiple render targets to update
the three aforementioned 2D textures.

A second fragment program realizes a single ray traversal and in-
tegration step. Non-normalized ray directions are attached as texture
coordinates to the vertices of the volume’s bounding box and interpo-
lated during scanline conversion. Actual direction vectors are determined
within the fragment program by normalizing to unit length. The cur-
rent sampling position is computed from the direction vector and the ray
parameter (as fetched from the intermediate texture). The subsequent
position is obtained by adding the fixed traversal step size. A 3D texture
lookup in the data set provides the scalar values at the two endpoints
of the current ray segment. These two scalar values serve as parameters
for a dependent lookup in the pre-integration table. If (optional) volume
illumination is switched on, the gradients included in the 3D data tex-
ture are used to evaluate the local illumination model (typically Phong
or Blinn-Phong). Finally, all contributions are added and combined with
the previously accumulated RGBA values according to the compositing
equation (5.1).

A third fragment program is responsible for ray termination. It is
executed after each traversal step. The ray termination program checks
whether the ray has left the volume or the accumulated opacity has
reached its limit. When a ray is terminated, the z buffer is set so that
the corresponding pixel is no longer processed (in any future rendering
pass for traversal or ray termination).

An asynchronous occlusion query is applied to find out when all rays
are terminated. A total number of 2n + 1 render passes is required if n
describes the maximum number of samples along a single ray.

Krüger and Westermann [61] use a similar algorithmic structure, but
include some differences in their implementation. Their ray setup is
distributed over two different rendering passes. The first pass determines
the entry points into the volume. The frontfaces of the volume box are
rendered, with the 3D positions attached to the vertices. In-between
positions are obtained via interpolation during rasterization. The 3D
positions are written to a 2D render texture that we denote “POS”.
The second pass computes the ray direction by taking the normalized
difference between exit and entry points (into or out of the volume). Only
in this second pass, fragments are generated by rendering the backfaces
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of the volume box. The 3D positions of the exit points are attached to the
vertices and interpolated during scanline conversion. The entry points
are read from the texture “POS”. In addition to the ray direction, the
length of each ray is computed in stored in a 2D render texture denoted
“DIR”.

The main loop iterates over two different fragment programs. In these
rendering passes, fragments are generated by drawing the frontfaces of
the volume. The first program implements ray traversal and integration.
Each render pass samples m steps along the ray by partially rolling out
the traversal loop within the fragment program. This avoids some data
transfer between fragment program and textures (for the accumulated
RGBA values) and therefore increases the rendering performance. In ad-
dition, the traversal shader checks whether the ray has left the volume,
based on the length of a ray that is read from the texture “DIR”. If a ray
has left the volume, opacity is set to a value of one. The second shader
program implements ray termination. Here, opacity is checked against a
given threshold. If the ray is ended (due to early ray termination or be-
cause it has left the volume), the z buffer is set so that the corresponding
pixel is no longer processed.

Krüger and Westermann [61] use a fixed number of rendering passes
and do not employ an occlusion query. The number of passes depends
on the maximum length of a ray, the traversal step size, and the number
of intermediate steps m. Due to the efficient early z-test, the overhead
for possibly unnecessary render passes is small.

Adaptive Sampling

A typical volume data set has different regions with different characteris-
tics. On the one hand, there can be largely uniform, or even completely
empty, regions in which a fine sampling of the ray integral is not neces-
sary. On the other hand, details at boundaries between different regions
should be represented by an accurate sampling of the ray. To address
this issues, we describe the adaptive sampling approach taken by Röttger
et al. [84].

Adaptive sampling relies on an additional data structure that controls
the space-variant sampling rate. This importance volume describes the
maximum isotropic sampling distance, and is computed from a user-
specified error tolerance and the local variations of the scalar data set.
The importance volume is stored in a 3D texture whose resolution can
be chosen independently from the resolution of the scalar data set.

The ray casting algorithm from the previous section needs only a
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slight modification to incorporate adaptive sampling. During ray traver-
sal, an additional 3D texture lookup in the importance volume (at the
current position) yields the step size for the following iteration. This
space-variant step size is now used to compute the next sampling point—
instead of a fixed step distance.

This approach relies on pre-integration to determine a segment’s
contribution to the volume rendering integral. A key feature of pre-
integration is its separation of the sampling criteria for the data set and
the transfer function [55]. Without pre-integration, the rate for an ac-
curate sampling of the volume rendering integral has to be based on the
variations of the RGBA values that result from a mapping of scalar val-
ues via the transfer function. If, for example, the scalar values vary only
very smoothly and slowly, but the transfer function contains very high
frequencies, a high overall sampling rate will have to be chosen for the
volume rendering integral. In other words, the sampling rate has to take
into account the frequencies of the data set and the transfer function.
In contrast, pre-integration “absorbs” the effect of the transfer function
by means of a pre-computed lookup-table. Accordingly, only the spatial
variations of the data set have to taken into account for an accurate sam-
pling. Therefore, the construction of the importance volume makes use
of the structure of the data set only, and does not consider the transfer
function. A benefit of this approach is that the importance volume is
fixed for a stationary data set, i.e., it is computed only once (by the CPU)
and downloaded to the GPU. Unfortunately, another potential case for
optimization is not taken into account: If the volume rendering integral
contains only low frequencies because of the effect of the simple structure
of the chosen transfer function, the sampling rate will be unnecessarily
high for a data set containing higher frequencies.

Figure 6.2 shows an example image generated by ray casting with
adaptive sampling. Image (a) depicts the original volume visualization.
Image (b) visualizes the corresponding number of sampling steps. Due
to adaptive sampling, only few steps are needed for the uniform, empty
space around the bonsai. Early ray termination reduces the number
of samples in the region of the opaque trunk. In the leave’s region,
the importance volume indicates that a fine sampling is required (due to
strongly varying scalar data values). Therefore, many sampling steps are
used for this part of the image. Figure 6.2 (c) visualizes the number of
sampling steps if a more opaque transfer function is applied to the same
data set and under the same viewing conditions. The reduced number
of samples for the leaves is striking. This effect is caused by early ray
termination: After the first hit on an opaque leaf, a ray is ended.



ACM SIGGRAPH 2004 57
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Figure 6.2: Comparison of the number of rendering steps for different transfer
functions. Image (a) shows the original volume visualization, image (b) the corre-
sponding number of sampling steps (black corresponds to 512 samples). Image (c)
visualizes the number of sampling steps for a more opaque transfer function; this
illustrates the effect of early ray termination.

Empty-Space Skipping

Empty-space skipping is useful when a volume visualization contains
large portions of completely transparent space. Transparency is deter-
mined after the transfer function was applied to the data set. An addi-
tional data structure is used to identify empty regions. For example, an
octree hierarchy can be employed to store the minimum and maximum
scalar data values within a node. In combination with the transfer func-
tion, these min/max values allow us to determine completely transparent
nodes.

Krüger and Westermann [61] reduce the octree to just a single level
of resolution—in their implementation to (1/8)3 of the size of the scalar
data set. This reduced “octree” can be represented by a 3D texture, with
the R and G components holding the minimum and maximum values
for each node. Empty regions can only be identified by applying the
transfer function to the original data and, afterwards, checking whether
the data is rendered visible. We need a mapping from the min/max
values to a Boolean value that classifies the node as empty or not. This
two-parameter function is realized by a 2D texture that indicates for
each min/max pair whether there is at least one non-zero component
in the transfer function in the range between minimum and maximum
scalar value. This 2D empty-space table depends on the transfer function
and has to be updated whenever the transfer function is changed. The
empty-space table is computed on the CPU and then uploaded to the
GPU. Note that the “octree” 3D texture depends on the data only and
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has to be generated just once for a stationary data set.
The fragment program for ray termination is extended to take into

account empty-space skipping (cf. the discussion at the end of the first
section). The frontfaces of the volume are rendered in the same way
as before, while the step size is increased according to the size of the
“octree” structure. Due to the larger step size, the number of traver-
sal iterations is decreased. The min/max values are sampled from the
“octree” and serve as parameters for a dependent texture lookup in the
empty-space table. Empty space is skipped by setting the z value of the
depth buffer to the maximum; the code for the fine-grained sampling of
the scalar data set is skipped by the early z-test. Conversely, a non-
empty node leads to a z value of zero and a subsequent integration of
the ray segment. The z value is reset to zero as soon as a non-empty
node is found (and if the opacity is still below the threshold for early ray
termination).



Ray Casting in
Tetrahedral Grids

Unstructured grids are widely used in numerical simulations to discretize
the computational domain. Their resolution can be locally adapted to
achieve a required numerical accuracy, while minimizing the total number
of grid cells. For example, unstructured grids are popular in applications
like computational fluid dynamics (CFD). Although unstructured grids
may contain a variety of different cell types (such as tetrahedra, hexahe-
dra, or prisms), these grids can always be decomposed into a collection of
tetrahedra. Therefore, tetrahedral meshes are the most important type
of unstructured grids.

Volume rendering of tetrahedral meshes is traditionally implemented
on graphics hardware by means of cell projection, e.g., according to
Shirley and Tuchman [94]. Unfortunately, cell projection with non-
commutative blending requires a view-dependent depth sorting of cells,
which still has to be performed on the CPU. Whenever the camera or the
volume is moved, new graphical primitives have to be generated by the
CPU and transferred to the GPU. Therefore, cell projection benefits only
in parts from the performance increase of GPUs. Another problem of cell
projection is that cyclic meshes require special treatment [56]. With the
R-buffer architecture [113, 50] order-independent cell projection could be
achieved; however, the R-buffer has not been realized yet.

Fortunately, ray casting for tetrahedral meshes can overcome these
problems. This chapter describes a ray casting approach that can be
completely mapped to the GPU. This approach was proposed by Weiler
et al. [102]. A re-print of this paper is included in the course notes. We
refer to this paper for details of the implementation and some additional
background information. Similarly to ray casting in uniform grids (see
previous chapter), the algorithm can be readily parallelized because the
operations for each ray are independent. A ray is once again identified
with its corresponding pixel on the image plane. Therefore, rays can be
processed in parallel on the GPU by mapping the ray casting operations
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Figure 7.1: Ray traversal in a tetrahedral grid. For each pixel, one viewing ray is
traced. The ray is sampled at all intersected cell faces (black dots).

to fragment programs. The rendering performance can additionally be
increased by early ray termination.

Basic Structure of the Algorithm

GPU ray casting is based on a ray propagation approach similar to the
CPU approach by Garrity [27]. Figure 7.1 illustrates how each viewing
ray is propagated in a front-to-back fashion from cell to cell until the
whole grid has been traversed. The traversal follows the links between
neighboring cells. A ray begins at its first intersection with the mesh,
which is determined during an initialization phase.

The traversal is performed in multiple render passes. In each pass the
color and opacity contribution of a pixel’s current cell is computed anal-
ogously to the GPU-based view-independent cell projection by Weiler
et al. [104]. Pre-integrated volume rendering is used to determine the
contribution of a ray segment within a tetrahedron [86]. Finally, these
contributions are accumulated according to the front-to-back composit-
ing equation (5.1). The convexification approach by Williams [110] is
used to allow for re-entries of viewing rays in non-convex meshes. Con-
vexification converts non-convex meshes into convex meshes by filling
the empty space between the boundary of the mesh and a convex hull of
the mesh with imaginary cells.

Although ray casting for uniform grids and tetrahedral grids are
strongly related to each other, some important difference have to be
taken into account to process tetrahedral meshes. First, the topolog-
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ical information about the connectivity of neighboring cells has to be
stored, i.e., more complex data structures have to be handled. Second,
ray traversal samples the volume at entry/exit points of cells, i.e., inter-
sections between ray and cells need to be computed.

Fragment programs are used to perform all computations for the ray
propagation. Fragments are generated by rendering screen-filling rectan-
gles. Each rendering pass executes one propagation step for each viewing
ray. The whole mesh is processed by stepping through the volume in
multiple passes. The algorithm consists of the following steps:

• Ray setup (initialization)

• While within the mesh:

. Compute exit point for current cell

. Determine scalar value at exit point

. Compute ray integral within current cell via pre-integration

. Accumulate colors and opacities by blending

. Proceed to adjacent cell through exit point

The algorithm starts by initializing the first intersection of the viewing
ray, i.e., an intersection with one of the boundary faces of the mesh.
This can be implemented using a rasterization of the visible boundary
faces, similarly to ray casting in uniform grids. However, it may also be
performed on the CPU as there are usually far less boundary faces than
cells in a mesh, and thus, this step is not time critical.

The remaining steps can be divided into the handling of ray integra-
tion and ray traversal. These steps have to transfer intermediate informa-
tion between successive rendering passes. This intermediate information
is represented by several 2D RGBA textures that have a one-to-one map-
ping between texels and pixels on the image plane. The textures contain
the current intersection point of the ray with the face of a cell, the index
of the cell the ray is about to enter through this face (including the index
of the entry face), and the accumulated RGBA values.

The intermediate textures are read and updated during each render-
ing pass. Since OpenGL and DirectX have no specification for a simul-
taneous read and write access to textures, a ping-pong scheme makes
such an update possible. Two copies of a texture are used; one texture
holds the data from the previous sample position and allows for a read
access while the other texture is updated by a write access. The roles
of the two textures are exchanged after each iteration. Textures can be
efficiently modified via the render-to-texture functionality of DirectX or
the WGL ARB render texture support for OpenGL under Windows.
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Figure 7.2: Terminology for the mesh representation. (a) The vertex vt,i is opposite
to the i-th face of cell t; the normal nt,i is perpendicular to the i-th face. (b) The
neighboring cell at,i shares the i-th face. (c) The i-th face of t corresponds to the
ft,i-th face of t’s neighbor at,i.

Mesh Representation

Before we discuss ray integration and ray traversal in more detail, we
would like to show how the rather complex mesh data can be repre-
sented on the GPU. A tetrahedral mesh contains information on topol-
ogy (neighboring cells), geometry (position of vertices, normal vectors),
and scalar data values. Figure 7.2 illustrates how this information is
attached to a mesh. Cells are labelled by an integer index t that ranges
from 0 to n− 1, where n is the number of cells in the mesh. Each tetra-
hedron t has four faces. The normal vectors on the faces are labelled
nt,i, where i ∈ {0, 1, 2, 3} specifies the face. Normal vectors are assumed
to point outwards. The four vertices of a tetrahedron t are denoted vt,i;
vertex vt,i is opposite to the i-th face. The neighbor of a tetrahedron t
that is adjacent to the i-th face is labelled at,i. The index of the face of
at,i that corresponds to the i-th face of t is called ft,i.

In addition to the structure of the mesh, the data values play an
important role. The scalar field value s(x) at a point x can be computed
by

s(x) = gt · (x− x0) + s(x0) = gt · x + (−gt · x0 + s(x0)) . (7.1)

The gradient of the scalar field, gt, is constant within a cell because
a linear, barycentric interpolation is assumed. The advantage of this
representation is that the scalar values inside a cell can be efficiently
reconstructed by computing one dot product and one scalar addition,
while we still need to store only one vector gt and one scalar ĝt = −gt ·
x0 + s(x0) for each cell (x0 is the position of an arbitrary vertex of the
cell).
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Table 7.1: Mesh data represented by textures.

data in tex coords texture data
texture u v w r g b α

vertices t i vt,i —
face normals t i nt,i ft,i

neighbor data t i at,i — —
scalar data t — gt ĝt

The mesh data is stored in 2D and 3D RGBA textures at floating-
point resolution. Since the mesh data is constant for a stationary data
set, these textures are generated in a pre-processing step on the CPU.
Table 7.1 gives an overview of this texture representation. Cell indices are
encoded in two texture coordinates because their values can exceed the
range of a single texture coordinate. 3D textures are used for vertices,
face normals, and neighbor data; a 2D texture is used for the scalar
data. The textures are accessed via the cell index. For 3D textures
the additional w coordinate represents the index of the vertex, face, or
neighbor.

Ray Integration and Cell Traversal

Integration along a whole ray is split into a collection of integrations
within single cells. The evaluation of the volume rendering integral
within a cell can be efficiently and accurately handled by pre-integration
[86]. We refer to Part VII for a detailed description of the pre-integration
approach. For the following discussion it is sufficient to understand that
we have a 3D lookup-table that provides the color Csrc and opacity αsrc

of a ray segment. The parameters for the lookup-table are the scalar
values at the entry point and exit point of the segment, as well as the
length of the segment.

The entry point and its scalar value are communicated via the in-
termediate 2D textures. In addition, the index of the current cell is
given in these textures. The exit point is computed by determining the
intersection points between the ray and the cell’s faces and taking the
intersection point that is closest to the eye (but not on a visible face). We
denote the index for the entry face by j, the position of the eye by e, and
the normalized direction of the viewing ray by r. Then the three inter-
section points with the faces of cell t are e+λir, where 0 ≤ i < 4∧ i 6= j
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and

λi =
(v − e) · nt,i

r · nt,i

, with v = vt,3−i .

Note that no intersection is checked for the entry face j because this
intersection point is already known. A face is visible and its correspond-
ing intersection point should be discarded when the denominator in the
above equation is negative. The minimum of the values λi is computed
in the fragment program to determine the exit point.

The exit point is used to calculate the corresponding scalar value
according to Equation (7.1). Also, the distance between exit and en-
try point is determined. With the length of the ray segment and the
two scalar values at the end points of the segment, a lookup in the 3D
pre-integration table yields the color Csrc and opacity αsrc of this seg-
ment. Finally, this RGBA contribution is accumulated according to the
compositing equation (5.1).

The traversal of the whole mesh is guided by the current cell index
stored in the intermediate textures. The fragment program takes the
current index and updates each texel of the texture with the index of
the cell adjacent to the face through which the viewing ray leaves the
current cell. This index is given by at,i for the current cell t, where i is the
index that corresponds to the exit face. Boundary cells are represented
by an index −1, which allows us to determine whether a viewing ray has
left the mesh. This approach is only valid for convex meshes, where no
”re-entries” into the mesh are possible. Therefore, non-convex meshes
are converted into convex meshes by filling the empty space between the
boundary of the mesh and a convex hull of the mesh with imaginary
cells during a preprocessing step [110]. The current cell index is also
used to implement early ray termination: The index is set to −1 when
the accumulated opacity has reached the user-specified threshold.

Another important aspect is the implementation of ray termination.
Two issues have to be taken into account. First, for each fragment we
have to detect whether the corresponding ray is terminated (due to early
ray termination or because the ray has left the volume). Second, the
whole render loop has to be stopped when all rays are terminated. Note
that the same problems are discussed in Chapter 6 on ray casting in
uniform grids.

Ray termination is realized by using a depth test and setting the z
buffer accordingly, i.e., the z value is specified in a way to reject frag-
ments that correspond to terminated rays. Actual ray termination is
implemented in another fragment program that is executed after the
shader for traversal and integration. The ray termination shader checks
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(a) (b)

Figure 7.3: GPU-based ray casting in a tetrahedral grid. Image (a) shows the
isosurface of an orbital data set, image (b) a semi-transparent volume rendering.

whether the current index is −1. In this case, the z value is set to a value
that prevents further updates of the corresponding pixel, i.e., subsequent
executions of the shader for ray integration and cell traversal are blocked
by the efficient early z-test.

An asynchronous occlusion query is employed to determine when all
rays have been terminated. The asynchronous delivery of the occlusion
query result leads to some additional rendering passes. This effect, how-
ever, can be neglected compared to the delay caused by waiting for the
result.

Example Images

Figure 7.3 shows example images generated by GPU-based ray casting
in a tetrahedral grid. Image (a) depicts the isosurface of an orbital data
set, image (b) a semi-transparent volume rendering.
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Basic Local Illumination

Local illumination models allow the approximation of the light intensity
reflected from a point on the surface of an object. This intensity is eval-
uated as a function of the (local) orientation of the surface with respect
to the position of a point light source and some material properties. In
comparison to global illumination models indirect light, shadows and
caustics are not taken into account. Local illumination models are sim-
ple, easy to evaluate and do not require the computational complexity
of global illumination. The most popular local illumination model is the
Phong model [82, 7], which computes the lighting as a linear combination
of three different terms, an ambient, a diffuse and a specular term,

IPhong = Iambient + Idiffuse + Ispecular.

Ambient illumination is modeled by a constant term,

Iambient = ka = const.

Without the ambient term parts of the geometry that are not directly lit
would be completely black. In the real world such indirect illumination
effects are caused by light intensity which is reflected from other surfaces.

Diffuse reflection refers to light which is reflected with equal in-
tensity in all directions (Lambertian reflection). The brightness of a dull,
matte surface is independent of the viewing direction and depends only
on the angle of incidence ϕ between the direction ~l of the light source
and the surface normal ~n. The diffuse illumination term is written as

Idiffuse = Ip kd cos ϕ = Ip kd (~l • ~n).

Ip is the intensity emitted from the light source. The surface property kd

is a constant between 0 and 1 specifying the amount of diffuse reflection
as a material specific constant.
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Specular reflection is exhibited by every shiny surface and causes so-
called highlights. The specular lighting term incorporates the vector ~v
that runs from the object to the viewer’s eye into the lighting compu-
tation. Light is reflected in the direction of reflection ~r which is the
direction of light ~l mirrored about the surface normal ~n. For efficiency
the reflection vector ~r can be replaced by the halfway vector ~h,

Ispecular = Ip ks cosn α = Ip ks (~h • ~n)n.

The material property ks determines the amount of specular reflection.
The exponent n is called the shininess of the surface and is used to
control the size of the highlights.

Basic Gradient Estimation

The Phong illumination models uses the normal vector to describe the
local shape of an object and is primarily used for lighting of polygonal
surfaces. To include the Phong illumination model into direct volume
rendering, the local shape of the volumetric data set must be described
by an appropriate type of vector.

For scalar fields, the gradient vector is an appropriate substitute for
the surface normal as it represents the normal vector of the isosurface for
each point. The gradient vector is the first order derivative of a scalar
field f(x, y, z), defined as

∇f = (fx, fy, fz) = (
δ

δx
f,

δ

δy
f,

δ

δz
f), (8.1)

using the partial derivatives of f in x-, y- and z-direction, respectively.
The scalar magnitude of the gradient measures the local variation of
intensity quantitatively. It is computed as the absolute value of the
vector,

||∇f || =
√

fx
2 + fy

2 + fz
2. (8.2)

For illumination purposes only the direction of the gradient vector is of
interest.

There are several approaches to estimate the directional derivatives
for discrete voxel data. One common technique based on the first terms
from a Taylor expansion is the central differences method. According to
this, the directional derivative in x-direction is calculated as
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fx(x, y, z) = f(x + 1, y, z) − f(x− 1, y, z) with x, y, z ∈ IN. (8.3)

Derivatives in the other directions are computed analogously. Cen-
tral differences are usually the method of choice for gradient pre-
computation. There also exist some gradient-less shading techniques
which do not require the explicit knowledge of the gradient vectors. Such
techniques usually approximate the dot product with the light direction
by a forward difference in direction of the light source.

A B C

D E F

Figure 8.1: CT data of a human hand without illumination (A), with dif-
fuse illumination (B) and with specular illumination (C). Non-polygonal
isosurfaces with diffuse (D), specular (C) and diffuse and specular (E)
illumination.

Simple Per-Pixel Illumination

The integration of the Phong illumination model into a single-pass vol-
ume rendering procedure requires a mechanism that allows the compu-
tation of dot products and component-wise products in hardware. This
mechanism is provided by the pixel shaders functionality of modern con-
sumer graphics boards. For each voxel, the x-, y- and z-components
of the (normalized) gradient vector is pre-computed and stored as color
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components in an RGB texture. The dot product calculations are di-
rectly performed within the texture unit during rasterization.

A simple mechanism that supports dot product calculation is pro-
vided by the standard OpenGL extension EXT texture env dot3. This
extension to the OpenGL texture environment defines a new way to com-
bine the color and texture values during texture applications. As shown
in the code sample, the extension is activated by setting the texture en-
vironment mode to GL COMBINE EXT. The dot product computation must
be enabled by selecting GL DOT3 RGB EXT as combination mode. In the
sample code the RGBA quadruplets (GL SRC COLOR) of the primary color
and the texel color are used as arguments.

// enable the extension

glTexEnvi(GL TEXTURE ENV, GL TEXTURE ENV MODE,

GL COMBINE EXT);

// preserve the alpha value

glTexEnvi(GL TEXTURE ENV, GL COMBINE ALPHA EXT,

GL REPLACE);

// enable dot product computation

glTexEnvi(GL TEXTURE ENV, GL COMBINE RGB EXT,

GL DOT3 RGB EXT);

// first argument: light direction stored in primary

color

glTexEnvi(GL TEXTURE ENV, GL SOURCE0 RGB EXT,

GL PRIMARY COLOR EXT);

glTexEnvi(GL TEXTURE ENV, GL OPERAND0 RGB EXT,

GL SRC COLOR);

// second argument: voxel gradient stored in RGB

texture

glTexEnvi(GL TEXTURE ENV, GL SOURCE1 RGB EXT, GL TEXTURE);

glTexEnvi(GL TEXTURE ENV, GL OPERAND1 RGB EXT,

GL SRC COLOR);

This simple implementation does neither account for the specular
illumination term, nor for multiple light sources. More flexible illumi-
nation effects with multiple light sources can be achieved using newer
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OpenGL extensions or high-level shading languages.

Advanced Per-Pixel Illumination

The drawback of the simple implementation described above is its re-
striction to a single diffuse light source. Using the fragment shading
capabilities of current hardware via OpenGL extensions or high-level
shading languages, additional light sources and more sophisticated light-
ing models and effects can be incorporated into volume shading easily.
See Figure 8.1 for example images.

The following sections outline more sophisticated approaches to local
illumination in volume rendering.



Non-Polygonal Isosurfaces

Rendering a volume data set with opacity values of only 0 and 1, will
result in an isosurface or an isovolume. Without illumination, however,
the resulting image will show nothing but the silhouette of the object as
displayed in Figure 9.1 (left). It is obvious, that illumination techniques
are required to display the surface structures (middle and right).

In a pre-processing step the gradient vector is computed for each
voxel using the central differences method or any other gradient estima-
tion scheme. The three components of the normalized gradient vector
together with the original scalar value of the data set are stored as RGBA
quadruplet in a 3D-texture:

Figure 9.1: Non-polygonal isosurface without illumination (left), with diffuse illu-
mination (middle) and with specular light (right)
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∇I =



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Iy

Iz



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−→
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G

B

I −→ A

The vector components must be normalized, scaled and biased to adjust
their signed range [−1, 1] to the unsigned range [0, 1] of the color com-
ponents. In our case the alpha channel contains the scalar intensity value
and the OpenGL alpha test is used to discard all fragments that do not
belong to the isosurface specified by the reference alpha value. The setup
for the OpenGL alpha test is displayed in the following code sample. In
this case, the number of slices must be increased extremely to obtain
satisfying images. Alternatively the alpha test can be set up to check
for GL GREATER or GL LESS instead of GL EQUAL, allowing a considerable
reduction of the sampling rate.

glDisable(GL BLEND); // Disable alpha blending

glEnable(GL ALPHA TEST); // Alpha test for isosurfacing

glAlphaFunc(GL EQUAL, fIsoValue);

What is still missing now is the calculation the Phong illumination
model. Current graphics hardware provides functionality for dot product
computation in the texture application step which is performed during
rasterization. Several different OpenGL extensions have been proposed
by different manufacturers, two of which will be outlined in the following.

The original implementation of non-polygonal isosurfaces was pre-
sented by Westermann and Ertl [107]. The algorithm was expanded to
volume shading my Meissner et al [77]. Efficient implementations on PC
hardware are described in [83].



Reflection Maps

If the illumination computation becomes too complex for on-the-fly com-
putation, alternative lighting techniques such as reflection mapping come
into play. The idea of reflection mapping originates from 3D computer
games and represents a method to pre-compute complex illumination
scenarios. The usefulness of this approach derives from its ability to
realize local illumination with an arbitrary number of light sources and
different illumination parameters at low computational cost. A reflection
map caches the incident illumination from all directions at a single point
in space.

The idea of reflection mapping has been first suggested by Blinn [8].
The term environment mapping was coined by Greene [32] in 1986.
Closely related to the diffuse and specular terms of the Phong illumi-
nation model, reflection mapping can be performed with diffuse maps or
reflective environment maps. The indices into a diffuse reflection map
are directly computed from the normal vector, whereas the coordinates

Figure 10.1: Example of a environment cube map.
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for an environment map are a function of both the normal vector and
the viewing direction. Reflection maps in general assume that the illu-
minated object is small with respect to the environment that contains it.

A special parameterization of the normal direction is used in order
to construct a cube map as displayed in Figure 10.1. In this case the
environment is projected onto the six sides of a surrounding cube. The
largest component of the reflection vector indicates the appropriate side
of the cube and the remaining vector components are used as coordinates
for the corresponding texture map. Cubic mapping is popular because
the required reflection maps can easily be constructed using conventional
rendering systems and photography.

Since the reflection map is generated in the world coordinate space,
accurate application of a normal map requires to account for the local
transformation represented by the current modeling matrix. For reflec-
tive maps the viewing direction must also be taken into account. See
figure 10.2 for example images of isosurface rendering with reflection
mapping.

Figure 10.2: Isosurface of the engine block with diffuse reflection map
(left) and specular environment map (right).



Deferred Shading

In standard rendering pipelines, shading equations are often evaluated
for pixels that are entirely invisible or whose contribution to the final
image is negligible. With the shading equations used in real-time ren-
dering becoming more and more complex, avoiding these computations
for invisible pixels becomes an important goal.

A very powerful concept that allows to compute shading only for
actually visible pixels is the notion of deferred shading. Deferred shad-
ing computations are usually driven by one or more input images that
contain all the information that is necessary for performing the final
shading of the corresponding pixels. The major advantage of deferred

Figure 11.1: Deferred shading computations for an isosurface given as a
floating point image of ray-surface intersection positions. First, differ-
ential properties such as the gradient and additional partial derivatives
can be computed. These derivatives also allow to compute principal cur-
vature information on-the-fly. In the final shading pass, the obtained
properties can be used for high-quality shading computations. All of
these computations and shading operations have image space instead of
object space complexity and are only performed for visible pixels.
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computations is that it reduces their complexity from being proportional
to object space, e.g., the number of voxels in a volume, to the complex-
ity of image space, i.e., the number of pixels in the final output image.
Naturally, these computations are not limited to shading equations per
se, but can also include the derivation of additional information that is
only needed for visible pixels and may be required as input for shading,
such as differential surface properties.

In this section, we describe deferred shading computations for render-
ing isosurfaces of volumetric data. The computations that are deferred
to image space are not limited to actual shading, but also include the
derivation of differential implicit surface properties such as the gradient
(first partial derivatives), the Hessian (second partial derivatives), and
principal curvature information.

Figure 11.1 shows a pipeline for deferred shading of isosurfaces of
volume data. The input to the pipeline is a single floating point image
storing ray-surface intersection positions of the viewing rays and the

Figure 11.2: Example image space rendering passes of deferred isosurface
shading. Surface properties such as (a) the gradient, (b) principal cur-
vature magnitudes (here: κ1), and (c) principal curvature directions can
be reconstructed. These properties can be used in shading passes, e.g.,
(d) Blinn-Phong shading, (e) color coding of curvature measures (here:√

κ2
1 + κ2

2), and (f) advection of flow along principal curvature directions.
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Figure 11.3: Deferred shading of an isosurface from a ray-isosurface in-
tersection and a gradient image (left). Solid texture filtering can be done
using tri-linear interpolation (center), or tri-cubic filtering in real-time
(right).

isosurface. This image can be obtained via slicing the volume, e.g., using
the traditional approach employing the hardware alpha test, or first hit
ray casting using one of the recent approaches for hardware-accelerated
ray casting.

From this intersection position image, differential isosurface proper-
ties such as the gradient and additional partial derivatives such as the
Hessian can be computed first. This allows shading with high-quality
gradients, as well as computation of high-quality principal curvature
magnitude and direction information. Sections 12 and 13 describe high-
quality reconstruction of differential isosurface properties.

In the final actual shading pass, differential surface properties can be
used for shading computations such as Blinn-Phong shading, color map-
ping of curvature magnitudes, and flow advection along curvature direc-
tions, as well as applying a solid texture to the isosurface. Figure 11.2
shows example image space rendering passes of deferred isosurface ren-
dering.

Shading from gradient image

The simplest shading equations depend on the normal vector of the iso-
surface, i.e., its normalized gradient. The normal vector can for example
be used to compute Blinn-Phong shading, and reflection and refraction
mapping that index an environment map with vectors computed from the
view vector and the normal vector. See figure 11.3(left) for an example.
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Solid texturing

The initial position image that contains ray-isosurface intersection posi-
tions can be used for straight-forward application of a solid texture onto
an isosurface. Parameterization is simply done by specifying the trans-
formation of object space to texture space coordinates, e.g., via an affine
transformation. For solid texturing, real-time tri-cubic filtering can be
used instead of tri-linear interpolation in order to achieve high-quality
results. See figure 11.3(center and right) for a comparison.



Deferred Gradient
Reconstruction

The most important differential property of the isosurface that needs to
be reconstructed is the gradient of the underlying scalar field f :

g = ∇f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)T

(12.1)

The gradient can then be used as implicit surface normal for shading and
curvature computations.

The surface normal is the normalized gradient of the volume, or its
negative, depending on the notion of being inside/outside the object
bounded by the isosurface: n = −g/|g|. The calculated gradient can be
stored in a single RGB floating point image, see figure 11.2(a).

Hardware-accelerated high-quality filtering can be used for recon-
struction of high-quality gradients by convolving the original scalar vol-
ume with the first derivative of a reconstruction kernel, e.g., the derived
cubic B-spline kernel shown in figure 12.1(a). The quality difference be-
tween cubic filtering and linear interpolation is even more apparent in
gradient reconstruction than it is in value reconstruction. Figure 12.2

Figure 12.1: The first (a) and second (b) derivatives of the cubic B-spline filter for
direct high-quality reconstruction of derivatives via convolution.
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shows a comparison of different combinations of filters for value and gra-
dient reconstruction, i.e., linear interpolation and cubic reconstruction
with a cubic B-spline kernel. Figure 12.3 compares linear and cubic
(B-spline) reconstruction using reflection mapping and a line pattern en-
vironment map. Reconstruction with the cubic B-spline achieves results
with C2 continuity.

Figure 12.2: Linear and cubic filtering with a cubic B-spline kernel for value and
gradient reconstruction on a torus: (a) both value and gradient are linear; (b) value
is linear and gradient cubic; (c) both value and gradient are cubic.

Figure 12.3: Comparing linear and cubic gradient reconstruction with a cubic B-
spline using reflection lines. Top row images linear, bottom row cubic filtering.



Other Differential Properties

In addition to the gradient of the scalar volume, i.e., its first partial
derivatives, further differential properties can be reconstructed in addi-
tional deferred shading passes.

For example, implicit principal curvature information can be com-
puted from the second partial derivatives of the volume. Curvature
has many applications in surface investigation and rendering, e.g., non-
photorealistic rendering equations incorporating curvature magnitudes
in order to detect surface structures such as ridge and valley lines, or
rendering silhouettes of constant screen space thickness.

Second partial derivatives: the Hessian

The Hessian H is comprised of all second partial derivatives of the scalar
volume f :

H = ∇g =




∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂y∂x

∂2f
∂2y

∂2f
∂y∂z

∂2f
∂z∂x

∂2f
∂z∂y

∂2f
∂2z


 (13.1)

Due to symmetry, only six unique components need to be calculated,
which can be stored in three RGB floating point images.

High-quality second partial derivatives can be computed by convolv-
ing the scalar volume with a combination of first and second derivatives of
the cubic B-spline kernel, for example, which is illustrated in figure 12.1.

Principal curvature magnitudes

The first and second principal curvature magnitudes (κ1, κ2) of the iso-
surface can be estimated directly from the gradient g and the Hessian
H [48], whereby tri-cubic filtering in general yields high-quality results.
This can be done in a single rendering pass, which uses the three par-
tial derivative RGB floating point images generated by previous pipeline
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stages as input textures. It amounts to a moderate number of vector and
matrix multiplications and solving a quadratic polynomial.

The result is a floating point image storing (κ1, κ2), which can then
be used in the following passes for shading and optionally calculating
curvature directions. See figure 11.2(b).

Principal curvature directions

The principal curvature magnitudes are the eigenvalues of a 2x2 eigen-
system in the tangent plane specified by the normal vector, which can
be solved in the next rendering pass for the corresponding eigenvectors,
i.e., the 1D subspaces of principal curvature directions. Representative
vectors for either the first or second principal directions can be computed
in a single rendering pass.

The result is a floating point image storing principal curvature direc-
tion vectors. See Figure 11.2(c).

Filter kernel considerations

All curvature reconstructions in this chapter employ a cubic B-spline
filter kernel and its derivatives. It has been shown that cubic filters
are the lowest order reconstruction kernels for obtaining high-quality
curvature estimates. They also perform very well when compared with
filters of even higher order [48].

The B-Spline filter is a good choice for curvature reconstruction be-
cause it is the only fourth order BC-spline filter which is both accurate
and continuous for first and second derivatives [79, 48]. Hence it is the
only filter of this class which reconstructs continuous curvature estimates.

However, although B-spline filters produce smooth and visually pleas-
ing results, they might be inappropriate in some applications where data
interpolation is required [78]. Using a combination of the first and sec-
ond derivatives of the cubic B-spline for derivative reconstruction, and a
Catmull-Rom spline for value reconstruction is a viable alternative that
avoids smoothing the original data [48].
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Introduction

The volume rendering of abstract data values requires the assignment
of optical properties to the data values to create a meaningful image.
It is the role of the transfer function to assign these optical properties,
the result of which has profound effect on the quality of the rendered
image. While the transformation from data values to optical properties
is typically a simple table lookup, the creation of a good transfer function
to create the table can be a difficult task.

In order to make the discussion of transfer function design more un-
derstandable, we dissect it into two distinct parts; Classification and
Optical Properties. The first chapter focuses on the conceptual role of
the transfer function as a feature classifier. The following chapter covers
the second half of the transfer function story; how optical properties are
assigned to the classified features for image synthesis.



Classification and
Feature Extraction

Classification in the context of volume graphics is defined as ”the process
of identifying features of interest based on abstract data values”. In typ-
ical volume graphics applications, especially volume visualization, this is
effectively a pattern recognition problem in which patterns found in raw
data are assigned to specific categories. The field of pattern recognition
is mature and widely varying, and an overview of general theory and
popular methods can be found in the classic text by Duda, Hart, and
Stork [18]. Traditionally, the transfer function is not thought of as a
feature classifier. Rather, it is simply viewed as a function that takes the
domain of the input data and transforms it to the range of red, green,
blue, and alpha. However, transfer functions are used to assign specific
patterns to ranges of values in the source data that correspond to fea-
tures of interest, for instance bone and soft tissue in CT data, whose
unique visual quality in the final image can be used to identify these
regions.

Why do we need a transfer function anyway? Why not store the
optical properties in the volume directly? There are at least two good
answers to these questions. First, it is inefficient to update the entire
volume and reload it each time the transfer function changes. It is much
faster to load the smaller lookup table and let the hardware handle the
transformation from data value to optical properties. Second, evaluating
the transfer function (assigning optical properties) at each sample prior
to interpolation can cause visual artifacts. This approach is referred to
as pre-classification and can cause significant artifacts in the final ren-
dering, especially when there is a sharp peak in the transfer function. An
example of pre-classification can be seen on the left side of Figure 15.1
while post-classification (interpolating the data first, then assigning op-
tical properties) using the exact same data and transfer function is seen
on the right.
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Figure 15.1: Pre-classification (left) verses post-classification (right)

15.1 The Transfer Function as a Feature

Classifier

Often, the domain of the transfer function is 1D, representing a scalar
data value such as radio-opacity in CT data. A single scalar data value,
however, need not be the only quantity used to identify the difference
between materials in a transfer function. For instance, Levoy’s volume
rendering model [68] includes a 2D transfer function, where the domain is
scalar data value cross gradient magnitude. In this case, data value and
gradient magnitude are the axes of a multi-dimensional transfer func-
tion. Adding the gradient magnitude of a scalar dataset to the transfer
function can improve the ability of the transfer function to distinguish
materials from boundaries. Figures 15.2(c) and 15.2(d) show how this
kind of 2D transfer function can help isolate the leaf material from the
bark material of the Bonsai Tree CT dataset. It is important to consider
any and all data values or derived quantities that may aid in identifying
key features of interest. Other derived quantities, such as curvature or
shape metrics [49], can help define important landmarks for generating
technical illustration-like renderings as seen in Figure 15.3. See [52] for
examples of more general multi-dimensional transfer functions applied to
multivariate data. Examples of visualizations generated using a transfer
function based on multiple independent (not derived) scalar data values
can be seen in Figure 15.4.

15.2 Guidance

While the transfer function itself is simply a function taking the input
data domain to the rgba range, the proper mapping to spectral space
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Figure 15.2: 1D (a and c) verses 2D (b and d) transfer functions.

Figure 15.3: Using curvature and shape measures as axes of the transfer function.
The upper small images show silhouette edges, the lower small images show ridge
valley emphasis, and the large images show these combined into the final illustration.
Images courtesy of Gordon Kindlman, use by permission.

(optical properties) is not intuitive and varies based on the range of
values of the source data as well as the desired goal of the final volume
rendering. Typically, the user is presented with a transfer function editor
that visually demonstrates changes to the transfer function. A naive
transfer function editor may simply give the user access to all of the
optical properties directly as a series of control points that define piece-
wise linear (or higher order) ramps. This can be seen in Figure 15.5.
This approach can make specifying a transfer function a tedious trial
and error process. Naturally, adding dimensions to the transfer function
can further complicate a user interface.

The effectiveness of a transfer function editor can be enhanced with
features that guide the user with data specific information. He et al. [41]
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Figure 15.4: General multi-dimensional transfer functions, using multiple primary
data values. A is a numerical weather simulation using temperature, humidity, and
pressure. B is a color cryosection dataset using red, green, and blue visible light. C
is a MRI scan using proton density, T1, and T2 pulse sequences.

Figure 15.5: An arbitrary transfer function showing how red, green, blue, and alpha
vary as a function of data value f(x,y,z) .

generated transfer functions with genetic algorithms driven either by
user selection of thumbnail renderings, or some objective image fitness
function. The purpose of this interface is to suggest an appropriate
transfer function to the user based on how well the user feels the rendered
images capture the important features.

The Design Gallery [74] creates an intuitive interface to the entire
space of all possible transfer functions based on automated analysis and
layout of rendered images. This approach parameterizes the space of all
possible transfer functions. The space is stochastically sampled and a
volume rendering is created. The images are then grouped based on sim-
ilarity. While this can be a time consuming process, it is fully automated.
Figure 15.6 shows an example of this user interface.

A more data-centric approach is the Contour Spectrum [2], which
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Figure 15.6: The Design Gallery transfer function interface.

visually summarizes the space of isosurfaces in terms of data metrics like
surface area and mean gradient magnitude. This guides the choice of iso-
value for isosurfacing, and also provides information useful for transfer
function generation. Another recent paper [1] presents a novel transfer
function interface in which small thumbnail renderings are arranged ac-
cording to their relationship with the spaces of data values, color, and
opacity. This kind of editor can be seen in Figure 15.2.

One of the most simple and effective features that a transfer function
interface can include is a histogram. A histogram shows a user the be-
havior of data values in the transfer function domain. In time, a user can
learn to read the histogram and quickly identify features. Figure 15.8(b)
shows a 2D joint histogram of the Chapel Hill CT dataset. The arches
identify material boundaries and the dark blobs located at the bottom
identify the materials themselves.

Volume probing is another way to help the user identify features.
This approach gives the user a mechanism for pointing at a feature in the
spatial domain. The values at this point are then presented graphically
in the transfer function interface, indicating to the user the ranges of
data values which identify the feature. This approach can be tied to a
mechanism that automatically sets the transfer function based on the
data values at the being feature pointed at. This technique is called
dual-domain interaction [52]. The action of this process can be seen in
Figure 15.9.
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Figure 15.7: A thumbnail transfer function interface.

Often it is helpful to identify discrete regions in the transfer function
domain that correspond to individual features. Figure 15.10 shows an
integrated 2D transfer function interface. This type of interface con-
structs a transfer function using direct manipulation widgets. Classi-
fied regions are modified by manipulating control points. These control
points change high level parameters such as position, width, and optical
properties. The widgets define a specific type of classification function
such as a Gaussian ellipsoid, inverted triangle, or linear ramp. This
approach is advantageous because it allows the user to focus more on
feature identification and less on the shape of the classification function.
We have also found it useful to allow the user the ability to paint directly
into the transfer function domain.

15.3 Summary

In all, our experience has shown that the best transfer functions are
specified using an iterative process. When a volume is first encountered,
it is important to get an immediate sense of the structures contained in
the data. In many cases, a default transfer function can achieve this.
By assigning higher opacity to higher gradient magnitudes and varying
color based on data value, as seen in Figure 15.11, most of the important
features of the datasets are visualized. The process of volume probing
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(a) A 1D histogram. The black region
represents the number of data value oc-
currences on a linear scale, the grey is on
a log scale. The colored regions (A,B,C)
identify basic materials.
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(b) A log-scale 2D joint histogram. The
lower image shows the location of mate-
rials (A,B,C), and material boundaries
(D,E,F).
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(c) A volume rendering showing all of the
materials and boundaries identified above,
except air (A), using a 2D transfer function.

Figure 15.8: Material and boundary identification of the Chapel Hill CT Head
with data value alone(a) and data value and gradient magnitude (f ’)(b). The basic
materials captured by CT, air (A), soft tissue (B), and bone (C) can be identified
using a 1D transfer function as seen in (a). 1D transfer functions, however, can-
not capture the complex combinations of material boundaries; air and soft tissue
boundary (D), soft tissue and bone boundary (E), and air and bone boundary (F)
as seen in (b) and (c).
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Figure 15.9: Probing and dual-domain interaction.

Figure 15.10: Classification widgets

allows the user to identify the location of data values in the transfer
function domain that correspond to specific features. Dual-domain in-
teraction allows the user to set the transfer function by simply pointing
at a feature. By having simple control points on discrete classification
widgets the user can manipulate the transfer function directly to expose
a feature in the best way possible. By iterating through this process of
exploration, specification, and refinement, a user can efficiently specify
a transfer function that produces a high quality visualization.
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Figure 15.11: The “default” transfer function.



Implementation

The evaluation of the transfer function is computationally expensive and
time consuming, and when implemented on the CPU the rate of display
is limited. Moving the transfer function evaluation onto graphics hard-
ware allows volume rendering to occur at interactive rates. Evaluating a
transfer function using graphics hardware effectively amounts to an ar-
bitrary function evaluation of data value via a table lookup. This can be
accomplished in two ways, using a user defined lookup table and using
dependent texture reads.

The first method uses the glColorTable() to store a user de-
fined 1D lookup table, which encodes the transfer function. When
GL COLOR TABLE is enabled, this function replaces an 8 bit texel
with the RGBA components at that 8 bit value’s position in the lookup
table. Some high end graphics cards permit lookups based on 12 bit tex-
els. On some commodity graphics cards, such as the NVIDIA GeForce,
the color table is an extension known as paletted texture. On these
platforms, the use of the color table requires that the data texture have
an internal format of GL COLOR INDEX* EXT, where * is the
number of bits of precision that the data texture will have (1,2,4,or 8).
Other platforms may require that the data texture’s internal format be
GL INTENSITY8.

The second method uses dependent texture reads. A dependent
texture read is the process by which the color components from one tex-
ture are converted to texture coordinates and used to read from a second
texture. In volume rendering, the first texture is the data texture and
the second is the transfer function. The GL extensions and function
calls that enable this feature vary depending on the hardware, but their
functionality is equivalent. On older GeForce3 and GeForce4, this func-
tionality is part of the Texture Shader extensions. On the ATI Radeon
8500, dependent texture reads are part of the Fragment Shader exten-
sion. Fortunately, modern hardware platforms, GeforceFX and Radeon
9700 and later, provide a much more intuitive and simple mechanism to
perform dependent texture reads via the ARB Fragment Program
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extension. While dependent texture reads can be slower than using a
color table, they are much more flexible. Dependent texture reads can
be used to evaluate multi-dimensional transfer functions, or they can be
used for pre-integrated transfer function evaluations. Since the transfer
function can be stored as a regular texture, dependent texture reads also
permit transfer functions that define more than four optical properties,
achieved by using multiple transfer function textures. When dealing with
transfer function domains with greater than two dimensions, it is simplest
to decompose the transfer function domain into a separable product of
multiple 1D or 2D transfer functions, or designing the transfer function
as a procedural function based on simple mathematical primitives [54].
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Introduction

In the previous chapter we discussed various techniques for classifying
patterns, specifically ranges of data value, that identify key features of
interest in volumetric data. These techniques are most applicable to
visualization tasks, where the data is acquired via scanning devices or
numerical simulation. This chapter focuses on the application of optical
properties, based on the classification, to generate meaningful images. In
general, the discussion in this chapter applies to nearly all volume graph-
ics application, whether they be visualization or general entertainment
applications of volume rendering. Just as the domain of the transfer
function isn’t limited to scalar data, the range of the transfer function
isn’t limited to red, green, blue, and alpha color values.



Light Transport

The traditional volume rendering equation proposed by Levoy [68] is a
simplified approximation of a more general volumetric light transport
equation first used in computer graphics by Kajiya [44]. The render-
ing equation describes the interaction of light and matter as a series of
scattering and absorption events of small particles. Accurate, analytic,
solutions to the rendering equation however, are difficult and very time
consuming. A survey of this problem in the context of volume rendering
can be found in [76]. The optical properties required to describe the
interaction of light with a material are spectral, i.e. each wavelength
of light may interact with the material differently. The most commonly
used optical properties are absorption, scattering, and phase function.
Other important optical properties are index of refraction and emission.
Volume rendering models that take into account scattering effects are
complicated by the fact that each element in the volume can potentially
contribute light to each other element. This is similar to other global
illumination problems in computer graphics. For this reason, the tradi-
tional volume rendering equation ignores scattering effects and focuses
on emission and absorption only. In this section, our discussion of opti-
cal properties and volume rendering equations will begin with simplified
approximations and progressively add complexity. Figure 18.1 illustrates
the geometric setup common to each of the approximations.

18.1 Traditional volume rendering

The classic volume rendering model originally proposed by Levoy [68]
deals with direct lighting only with no shadowing. If we parameterize a
ray in terms of a distance from the background point x0 in direction ~ω
we have:

x(s) = x0 + s~ω (18.1)
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Figure 18.1: The geometric setup for light transport equations.

The classic volume rendering model is then written as:

L(x1, ~ω) = T (0, l)L(x0, ~ω) +

∫ l

0

T (s, l)R(x(s))fs(x(s))Llds (18.2)

where R is the surface reflectivity color, fs is the Blinn-Phong surface
shading model evaluated using the normalized gradient of the scalar data
field at x(s), and Ll is the intensity of a point light source. L(x0, ~ω) is the
background intensity and T the amount the light is attenuated between
two points in the volume:

T (s, l) = exp

(
−

∫ l

s

τ(s′)ds′
)

(18.3)

and τ(s′) is the attenuation coefficient at the sample s′. This volume
shading model assumes external illumination from a point light source
that arrives at each sample unimpeded by the intervening volume. The
only optical properties required for this model are an achromatic attenu-
ation term and the surface reflectivity color, R(x). Naturally, this model
is well-suited for rendering surface-like structures in the volume, but per-
forms poorly when attempting to render more translucent materials such
as clouds and smoke. Often, the surface lighting terms are dropped and
the surface reflectivity color, R, is replaced with the emission term, E:

L(x1, ~ω) = T (0, l)L(x0, ~ω) +

∫ l

0

T (s, l)E(x(s))ds (18.4)
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This is often referred to as the emission/absorption model. As with
the classical volume rendering model, the emission/absorption model
only requires two optical properties, α and E. In general, R, from the
classical model, and E, from the emission/absorption model, are used
interchangeably. This model also ignores inscattering. This means that
although volume elements are emitting light in all directions, we only
need to consider how this emitted light is attenuated on its path toward
the eye. This model is well suited for rendering phenomena such as flame.

18.2 The Surface Scalar

While surface shading can dramatically enhance the visual quality of
the rendering, it cannot adequately light homogeneous regions. Since
the normalized gradient of the scalar field is used as the surface nor-
mal for shading, problems can arise when shading regions where the
normal cannot be measured. The gradient nears zero in homogeneous
regions where there is little or no local change in data value, making
the normal undefined. In practice, data sets contain noise that further
complicates the use of the gradient as a normal. This problem can be
easily handled, however, by introducing a surface scalar term S(s) to
the rendering equation. The role of this term is to interpolate between
shaded and unshaded. Here we modify the R term from the traditional
rendering equation:

R′(s) = R(s) ((1− S(s)) + fs(s)S(s)) (18.5)

S(s) can be acquired in a variety of ways. If the gradient magnitude
is available at each sample, we can use it to compute S(s). This usage
implies that only regions with a high enough gradient magnitudes should
be shaded. This is reasonable since homogeneous regions should have a
very low gradient magnitude. This term loosely correlates to the index
of refraction. In practice we use:

S(s) = 1− (1− ‖∇f(s)‖)2 (18.6)

Figure 18.2 demonstrates the use of the surface scalar (S(s)). The
image on the left is a volume rendering of the visible male with the soft
tissue (a relatively homogeneous material) surface shaded, illustrating
how this region is poorly illuminated. On the right, only samples with
high gradient magnitudes are surface shaded.
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Figure 18.2: Surface shading without (left) and with (right) the surface scalar.

18.3 Shadows

Surface shading improves the visual quality of volume renderings. How-
ever, the lighting model is unrealistic because it assumes that light arrives
at a sample without interacting with the portions of the volume between
the sample and the light source. To model such interaction, volumetric
shadows can be added to the volume rendering equation:

Ieye = IB ∗ Te(0) +

∫ eye

0

Te(s) ∗R(s) ∗ fs(s) ∗ Il(s)ds (18.7)

Il(s) = Il(0) ∗ exp

(
−

∫ light

s

τ(x)dx

)
(18.8)

where Il(0) is the light intensity, and Il(s) is the light intensity at sample
s. Notice that Il(s) is similar to Te(s) except that the integral is evaluated
from the sample toward the light rather than the eye, computing the light
intensity that arrives at the sample from the light source.

A hardware model for computing shadows was first presented by
Behrens and Ratering [4]. This model computes a second volume, the
volumetric shadow map, for storing the amount of light arriving at each
sample. At each sample, values from the second volume are multiplied by
the colors from the original volume after the transfer function has been
evaluated. This approach, however, suffers from an artifact referred to as
attenuation leakage. The attenuation at a given sample point is blurred
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Figure 18.3: Modified slice axis for light transport.

when light intensity is stored at a coarse resolution and interpolated
during the observer rendering phase. The visual consequences are blurry
shadows, and surfaces that appear too dark due to the image space high
frequencies introduced by the transfer function.

A simple and efficient alternative was proposed in [52]. First, rather
than creating a volumetric shadow map, an off screen render buffer is uti-
lized to accumulate the amount of light attenuated from the light’s point
of view. Second, the slice axis is modified to be the direction halfway
between the view and light directions. This allows the same slice to be
rendered from point of view of both the eye and light. Figure 18.3(a)
demonstrates computing shadows when the view and light directions are
the same. Since the slices for both the eye and light have a one to one
correspondence, it is not necessary to pre-compute a volumetric shadow
map. The amount of light arriving at a particular slice is equal to one
minus the accumulated opacity of the slices rendered before it. Naturally
if the projection matrices for the eye and light differ, we need to main-
tain a separate buffer for the attenuation from the light’s point of view.
When the eye and light directions differ, the volume is sliced along each
direction independently. The worst case scenario is when the view and
light directions are perpendicular, as seen in Figure 18.3(b). In the case,
it would seem necessary to save a full volumetric shadow map which can
be re-sliced with the data volume from the eye’s point of view providing
shadows. This approach also suffers from attenuation leakage resulting
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Figure 18.4: Two-pass shadows. Step 1 (left) render a slice for the eye, multiplying
it by the attenuation in the light buffer. Step 2 (right) render the slice into the light
buffer to update the attenuation for the next pass.

in blurry shadows and dark surfaces.
Rather than slice along the vector defined by the view or the light

directions, we can modify the slice axis to allow the same slice to be
rendered from both points of view. When the dot product of the light
and view directions is positive, we slice along the vector halfway between
the light and view directions, as demonstrated in Figure 18.3(c). In
this case, the volume is rendered in front to back order with respect
to the observer. When the dot product is negative, we slice along the
vector halfway between the light and the inverted view directions, as in
Figure 18.3(d). In this case, the volume is rendered in back to front
order with respect to the observer. In both cases the volume is rendered
in front to back order with respect to the light. Care must be taken
to insure that the slice spacings along the view and light directions are
maintained when the light or eye positions change. If the desired slice
spacing along the view direction is dv and the angle between v and l is
θ then the slice spacing along the slice direction is

ds = cos(
θ

2
)dv. (18.9)

This is a multi-pass approach. Each slice is rendered first from the
observer’s point of view using the results of the previous pass from the
light’s point of view, which modulates the brightness of samples in the
current slice. The same slice is then rendered from the light’s point of
view to calculate the intensity of the light arriving at the next layer.

Since we must keep track of the amount of light attenuated at each
slice, we utilize an off screen render buffer, known as the pixel buffer.
This buffer is initialized to 1− light intensity. It can also be initialized
using an arbitrary image to create effects such as spotlights. The pro-
jection matrix for the light’s point of view need not be orthographic; a
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perspective projection matrix can be used for point light sources. How-
ever, the entire volume must fit in the light’s view frustum, so that light
is transported through the entire volume. Light is attenuated by simply
accumulating the opacity for each sample using the over operator. The
results are then copied to a texture which is multiplied with the next slice
from the eye’s point of view before it is blended into the frame buffer.
While this copy to texture operation has been highly optimized on the
current generation of graphics hardware, we have achieved a dramatic
increase in performance using a hardware extension known as render to
texture. This extension allows us to directly bind a pixel buffer as a tex-
ture, avoiding the unnecessary copy operation. The two pass process is
illustrated in Figure 18.4.

18.4 Translucency

Shadows can add a valuable depth queue as well as dramatic effects to a
volume rendered scene. Even if the technique for rendering shadows can
avoid attenuation leakage, the images can still appear too dark. This
is not an artifact, it is an accurate rendering of materials which only
absorb light and do not scatter it. Volume rendering models that account
for scattering effects are too computationally expensive for interactive
hardware based approaches. This means that approximations are needed
to capture some of the effects of scattering. One such visual consequence
of scattering in volumes is translucency. Translucency is the effect of
light propagating deep into a material even though objects occluded
by it cannot be clearly distinguished. Figure 18.5(a) shows a common
translucent object, wax. Other translucent objects are skin, smoke, and
clouds. Several simplified optical models for hardware based rendering
of clouds have been proposed [38, 16]. These models are capable of
producing realistic images of clouds, but do not easily extend to general
volume rendering applications.

The previously presented model for computing shadows can easily be
extended to achieve the effect of translucency. Two modifications are
required. First, a second alpha value (αi) is added which represents the
amount of indirect attenuation. This value should be less than or equal
to the alpha value for the direct attenuation. Second, an additional light
buffer is needed for blurring the indirect attenuation. Thetranslucent
volume rendering model then becomes:
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(a) Wax (b) Translucent ren-
dering

(c) Different reflec-
tive color

(d) Just shadows

Figure 18.5: Translucent volume shading. (a) is a photograph of wax block illumi-
nated from above with a focused flashlight. (b) is a volume rendering with a white
reflective color and a desaturated orange transport color (1− indirect attenuation).
(c) has a bright blue reflective color and the same transport color as the upper right
image. (d) shows the effect of light transport that only takes into account direct
attenuation.

Ieye = I0 ∗ Te(0) +

∫ eye

0

Te(s) ∗ C(s) ∗ Il(s)ds (18.10)

Il(s) = Il(0) ∗ exp

(
−

∫ light

s

τ(x)dx

)
+

Il(0) ∗ exp

(
−

∫ light

s

τi(x)dx

)
Blur(θ) (18.11)

where τi(s) is the indirect light extinction term, C(s) is the reflective
color at the sample s, S(s) is a surface shading parameter, and Il is the
sum of the direct and indirect light contributions.

The indirect extinction term is spectral, meaning that it describes the
indirect attenuation of light for each of the R, G, and B color components.
Similar to the direct extinction, the indirect attenuation can be specified
in terms of an indirect alpha:

αi = exp(−τi(x)). (18.12)

While this is useful for computing the attenuation, it is non-intuitive for
user specification. Instead, specifying a transport color which is 1 − αi

is more intuitive since the transport color is the color the indirect light
will become as it is attenuated by the material.

In general, light transport in participating media must take into ac-
count the incoming light from all directions, as seen in Figure 18.6(a).
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(b) Translucency Approximation

Figure 18.6: On the left is the general case of direct illumination Id and scattered
indirect illumination Ii. On the right is a translucent shading model which includes
the direct illumination Id and approximates the indirect, Ii, by blurring within the
shaded region. Theta is the angle indicated by the shaded region.

However, the net effect of multiple scattering in volumes is a blurring of
light. The diffusion approximation [101, 24] models the light transport in
multiple scattering media as a random walk. This results in light being
diffused within the volume. The Blur(θ) operation in Equation 18.11
averages the incoming light within the cone with an apex angle θ in
the direction of the light (Figure 18.6(b)). The indirect lighting at a
particular sample is only dependent on a local neighborhood of samples
computed in the previous iteration and shown as the arrows between
slices in (b). This operation models light diffusion by convolving several
random sampling points with a Gaussian filter.

The process of rendering using translucency is essentially the same
as rendering shadows. In the first pass, a slice is rendered from the
point of view of the light. However, rather than simply multiplying the
sample’s color by one minus the direct attenuation, one minus the direct
and one minus the indirect attenuation is summed to compute the light
intensity at the sample. In the second pass, a slice is rendered into the
next light buffer from the light’s point of view to compute the lighting
for the next iteration. Two light buffers are maintained to accommodate
the blur operation required for the indirect attenuation, next is the
buffer being rendered to and current is the buffer bound as a texture.
Rather than blending slices using the standard OpenGL blend operation,
the blend is explicitly computed in the fragment shading stage. The
current light buffer is sampled once in the first pass, for the observer,
and multiple times in the second pass, for the light, using the render to
texture OpenGL extension. Whereas, the next light buffer, is rendered
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into only in the second pass. This relationship changes after the second
pass so that the next buffer becomes the current and vice versa. We
call this approach ping pong blending. In the fragment shading stage, the
texture coordinates for the current light buffer, in all but one texture
unit, are modified per-pixel using a random noise texture. The number
of samples used for the computation of the indirect light is limited by the
number of texture units. Randomizing the sample offsets masks some
artifacts caused by this coarse sampling. The amount of this offset is
bounded based on a user defined blur angle (θ) and the sample distance
(d):

offset ≤ d tan(
θ

2
) (18.13)

The current light buffer is then read using the new texture coordinates.
These values are weighted and summed to compute the blurred inward
flux at the sample. The transfer function is evaluated for the incoming
slice data to obtain the indirect attenuation (αi) and direct attenuation
(α) values for the current slice. The blurred inward flux is attenuated
using αi and written to the RGB components of the next light buffer.
The alpha value from the current light buffer with the unmodified tex-
ture coordinates is blended with the α value from the transfer function
to compute the direct attenuation and stored in the alpha component of
the next light buffer.

This process is enumerated below:

1. Clear color buffer.

2. Initialize pixel buffer with 1-light color (or light map).

3. Set slice direction to the halfway between light and observer view
directions.

4. For each slice:

(a) Determine the locations of slice vertices in the light buffer.

(b) Convert these light buffer vertex positions to texture coordi-
nates.

(c) Bind the light buffer as a texture using these texture coordi-
nates.

(d) In the Per-fragment blend stage:

i. Evaluate the transfer function for the Reflective color and
direct attenuation.
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ii. Evaluate surface shading model if desired (this replaces
the Reflective color).

iii. Evaluate the phase function, using a lookup of the dot of
the viewing and light directions.

iv. Multiply the reflective color by the 1-direct attenuation
from the light buffer.

v. Multiply the reflective*direct color by the phase function.

vi. Multiply the Reflective color by 1-(indirect) from the light
buffer.

vii. Sum the direct*reflective*phase and indirect*reflective to
get the final sample color.

viii. The alpha value is the direct attenuation from the transfer
function.

(e) Render and blend the slice into the frame buffer for the ob-
server’s point of view.

(f) Render the slice (from the light’s point of view) to the position
in the light buffer used for the observer slice.

(g) In the Per-fragment blend stage:

i. Evaluate the transfer function for the direct and indirect
attenuation.

ii. Sample the light buffer at multiple locations.

iii. Weight and sum the samples to compute the blurred in-
direct attenuation. The weight is the blur kernel.

iv. Blend the blurred indirect and un-blurred direct attenu-
ation with the values from the transfer function.

(h) Render the slice into the correct light buffer.

While this process my seem quite complicated, it is straightfor-
ward to implement. The render to texture extension is part of the
WGL ARB render texture OpenGL extensions. The key functions
are wglBindTexImageARB() which binds a P-Buffer as a texture,
and wglReleaseTexImageARB() which releases a bound P-Buffer so
that it may be rendered to again. The texture coordinates of a slice’s
light intensities from a light buffer are the 2D positions that the slice’s
vertices project to in the light buffer scaled and biased so that they are
in the range zero to one.

Computing volumetric light transport in screen space is advantageous
because the resolution of these calculations and the resolution of the
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volume rendering can match. This means that the resolution of the light
transport is decoupled from that of the data volume’s grid, permitting
procedural volumetric texturing.

18.5 Summary

Rendering and shading techniques are important for volume graphics,
but they would not be useful unless we had a way to transform inter-
polated data into optical properties. While the traditional volume ren-
dering model only takes into account a few basic optical properties, it is
important to consider additional optical properties. Even if these optical
properties imply a much more complicated rendering model than is pos-
sible with current rendering techniques, adequate approximations can be
developed which add considerably to the visual quality. We anticipate
that the development of multiple scattering volume shading models will
be an active area of research in the future.
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(a) Carp CT (b) Stanford Bunny

(c) Joseph the Convicted

Figure 18.7: Example volume renderings using an extended transfer function.



User Interface Tips

Figure 15.5 shows an example of an arbitrary transfer function. While
this figure shows RGBα varying as piece-wise linear ramps, the transfer
function can also be created using more continuous segments. The goal
in specifying a transfer function is to isolate the ranges of data values, in
the transfer function domain, that correspond to features, in the spatial
domain. Figure 19.1 shows an example transfer function that isolates
the bone in the Visible Male’s skull. On the left, we see the transfer
function. The alpha ramp is responsible for making the bone visible,
whereas the color is constant for all of the bone. The problem with
this type of visualization is that the shape and structure is not readily
visible, as seen on the right side of Figure 19.1.One solution to this
problem involves a simple modification of the transfer function, called
Faux shading. By forcing the color to ramp to black proportionally to
the alpha ramping to zero, we can effectively create silhouette edges in
the resulting volume rendering, as seen in Figure 19.2. On the left, we
see the modified transfer function. In the center, we see the resulting
volume rendered image. Notice how much more clear the features are

Figure 19.1: An example transfer function for the bone of the Visible Male (left),
and the resulting rendering (right).
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in this image. This approach works because the darker colors are only
applied at low opacities. This means that they will only accumulate
enough to be visible when a viewing ray grazes a classified feature, as
seen on the right side of Figure 19.2. While this approach may not
produce images as compelling as surface shaded or shadowed renderings
as seen in Figure 19.3, it is advantageous because it doesn’t require any
extra computation in the rendering phase.

Figure 19.2: Faux shading. Modify the transfer function to create silhouette edges.

Figure 19.3: Surface shading.
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Figure 19.4: Volume rendering pipeline. Each step in this pipeline can introduce
artifacts.

Today’s GPUs support high-quality volume rendering (see figures
48.2). However, a careful examination of the results of various visu-
alization packages reveals unpleasant artifacts in volumetric renderings.
Especially in the context of real-time performance, which requires certain
compromises to achieve high frame rates, errors seem to be inevitable.

To synthesize high-quality volume visualization results it is necessary
to identify possible sources of artifacts. Those artifacts are introduced in
various stages of the volume rendering pipeline. Generally speaking, the
volume rendering pipeline consists of five stages (see figure 19.4): First
of all, a sampling stage, which accesses the volume data along straight
rays through the volume. Secondly, a filtering stage, that interpolates
the voxel values. Thirdly, a classification step, which maps scalar values
from the volume to emission and absorption coefficients. The fourth
stage in this pipeline is optional and is only applied if external light
sources are taken into account for computing the shading of the volume
data. Finally, the integration of the volume data is performed. This
is achieved in graphics hardware by blending emission colors with their
associated alpha values into the frame buffer. This pipeline is repeated
until all samples along the rays through the volume have been processed.
Each of the stages of pipeline can be the source of artifacts.



116 Course 28: Real-Time Volume Graphics

Note that sampling and filtering are actually done in the same step
in graphics hardware, i.e., during volume rendering we set sample po-
sition using texture coordinates of slice polygons or by computing tex-
ture coordinates explicitly using ray-marching in a fragment program
for ray-casting-based approaches. The hardware automatically performs
filtering as soon as the volume is accessed with a texture fetch with a
position identifies using the corresponding a texture coordinate. The
type of filtering performed by the graphics hardware is specified by set-
ting the appropriate OpenGL state. Current graphics hardware only
supports nearest neighbor and linear filtering, i.e., linear, bilinear and
trilinear filtering. However, we will treat sampling and filtering as two
steps, because they become two separate operations once we implement
our own filtering method.

The goal of this chapter is to remove or at least suppress artifacts that
occur during volume rendering while maintaining real-time performance.
For this purpose, all proposed optimizations will be performed on the
GPU in order to avoid expensive readback of data from the GPU memory.
We will review the stages of the volume rendering pipeline step-by-step,
identify possible sources of errors introduced in the corresponding stage
and explain techniques to remove or suppress those errors while ensuring
interactive frame rates.



Sampling Artifacts

The first stage in the process of volume rendering consists of sampling
the discrete voxel data. Current GPU-based techniques employ explicit
proxy geometry to trace a large number of rays in parallel through the
volume (slice-based volume rendering) or directly sample the volume
along rays (ray-casting). The distance of those sampling points influences
how accurately we represent the data. A large distance between those
sampling points, i.e., a low sampling rate, will result in severe artifacts
(see figure 20.1). This effect is often referred to as under-sampling and
the associated artifacts are often referred to as wood grain artifacts.

The critical question is: How many samples do we have to take along
rays in the volume to accurately represent the volume data? The answer
to this question lies in the so-called Nyquist-Shannon sampling theorem
of information theory.

The theorem is one of the most important rules of sampling ([81, 92]).
It states that, when converting analog signals to digital, the sampling
frequency must be greater than twice the highest frequency of the in-
put signal to be able to later reconstruct the original signal from the
sampled version perfectly. Otherwise the signal will be aliased, i.e. lower
frequencies will be incorrectly reconstructed from the discrete signal. An
analog signal can contain arbitrary high frequencies, therefore an analog
low-pass filter is often applied before sampling the signal to ensure that
the input signal does not have those high frequencies. Such a signal is
called band-limited. For an audio signal this means, that if we want to
want to sample the audio signal with 22 kHz as the highest frequency, we
must at least sample the signal with twice the sampling rates; i.e., with
more than 44 kHz. As already stated, this rule applies if we want to dis-
cretize contiguous signals. But want does this rule mean for sampling an
already discretized signal? Well, in volume rendering we assume that the
data represents samples taken from a contiguous band-limited volumet-
ric field. During sampling we might already have lost some information
due to a too low sampling rate. This is certainly something we cannot
fix during rendering. However, the highest frequency in a discrete signal
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Figure 20.1: Wood grain artifact caused by a low sampling rate.

that is assumed to be contiguous is an abrupt change in the data from
one sampling position to an adjacent one. This means, that the highest
frequency is one divided by the distance between voxels of the volume
data. Thus, in order to accurately reconstruct the original signal from
the discrete data we need to take at least two samples per voxel.

There is actually no way to get around this theorem. We have to take
two samples per voxel to avoid artifacts. However, taking a lot of samples
along rays inside the volume has a direct impact on the performance.
We achieve this high sampling rate by either increasing the number of
slice polygons or by reducing the sampling distance during ray-casting.
Taking twice the number of samples inside the volume will typically
reduce the frame rate by a factor of two. However, volumetric data often
does not consist alone of regions with high variations in the data values.
In fact, volume data can be very homogeneous in certain regions while
other regions contain a lot of detail and thus high frequencies. We can
exploit this fact by using a technique called adaptive sampling.
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Adaptive sampling techniques causes more samples to be taken in in-
homogeneous regions of the volume as in homogeneous regions. In order
to know if we are inside a homogeneous or inhomogeneous region of the
volume during integration along our rays through the volume, we can use
a 3D texture containing the sampling rate for each region. This texture
will be called the importance-volume and must be computed in a pre-
processing step and can have smaller spacial dimensions than our volume
data texture. For volume ray-casting on the GPU it is easy to adapt the
sampling rate to the sampling rate obtained from this texture because
sampling positions are generated in the fragment stage. Slice-based vol-
ume rendering however, is more complicated because the sampling rate
is directly set by the number of slice polygons. This means that the
sampling rate is set in the vertex stage, while the sampling rate from
our importance-volume is obtained in the fragment stage. The texture
coordinates for sampling the volume interpolated on the slice polygons
can be considered as samples for a base sampling rate. We can take
additional samples along the ray direction at those sampling positions
in a fragment program, thus sampling higher in regions where the data
set is inhomogeneous. Note that such an implementation requires dy-
namic branching in a fragment program because we have to adapt the
number of samples in the fragment program to the desired sampling rate
at this position. Such dynamic branching is available on NVIDIA Nv40
hardware. Alternatively, computational masking using early-z or stencil
culls can be employed to accelerate the rendering for regions with lower
sampling rate. The slice polygon is rendered multiple times with differ-
ent fragment programs for the different sampling rates, and rays (pixels)
are selected by masking the corresponding pixels using the stencil- or
z-buffer.

Changing the sampling rate globally or locally requires opacity cor-
rection; which can be implemented globally by changing the alpha values
in the transfer function, or locally by adapting the alpha values before
blending in a fragment program. The corrected opacity is function of
the stored opacity αstored and the sample spacing ratio
∆x/∆x0: αcorrected = 1− [1− αstored]

∆x/∆x0

We can successfully remove artifacts in volume rendering (see figure
20.2) using adaptive sampling and sampling the volume at the Nyquist
frequency. However, this comes at the cost of high sampling rates that
can significantly reduce performance. Even worse, in most volumetric
renderings a non-linear transfer function is applied in the classification
stage. This can introduce high-frequencies into the sampled data, thus
increasing the required sampling rate well beyond the Nyquist frequency
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Figure 20.2: Comparison of a visualization of the inner ear with low (left) and high
(right) sampling rate.

of the volume data. We will discuss this effect in detail in chapter 22 and
provide a solution to the problems by using a technique that separates
those high frequencies from classification in a pre-processing step.



Filtering Artifacts

The next possible source for artifacts in volumetric computer graphics is
introduced during the filtering of the volume data. Basically, this phase
converts the discrete volume data back to a continuous signal. To recon-
struct the original continuous signal from the voxels, a reconstruction
filter is applied that calculates a scalar value for the continuous three-
dimensional domain (R3) by performing a convolution of the discrete
function with a filter kernel. It has been proven, that the perfect, or
ideal reconstruction kernel is provided by the sinc filter.
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Figure 21.1: Three reconstruction filters: (a) box, (b) tent and (c) sinc filters.

Unfortunatelty, the sinc filter has an unlimited extent. Therefore,
in practice simpler reconstruction filters like tent or box filters are ap-
plied (see Figure ...). Current graphics hardware supports pre-filtering
mechanisms like mip-mapping and anisotropic filtering for minification
and linear, bilinear, and tri-linear filters for magnification. The inter-
nal precision of the filtering on current graphics hardware is dependent
on the precision of the input texture; i.e., 8 bit textures will internally
only be filtered with 8 bit precision. To achieve higher quality filter-
ing results with the built-in filtering techniques of GPUs we can use a
higher-precision internal texture format when defining textures (i.e., the
LUMINANCE16 and HILO texture formats). Note that floating point
texture formats often do not support filtering.
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Figure 21.2: Comparison between trilinear filtering and cubic B-spline filtering.

However, the use of higher internal precision for filtering cannot on
its own provide satisfactory results with built-in linear reconstruction
filters (see left image in figure 21.2). Hadwiger et al.[34] have shown
that multi-textures and flexible rasterization hardware can be used to
evaluate arbitrary filter kernels during rendering.

The filtering of a signal can be described as the convolution of the
signal function s with a filter kernel function h:

g(t) = (s ∗ h)(t) =

∫ ∞

−∞
s(t− t′) · h(t′)dt′ (21.1)

The discretized form is:

gt =
+I∑

i=−I

st−ihi (21.2)

where the half width of the filter kernel is denoted by I. The impli-
cation is, that we have to collect the contribution of neighboring input
samples multiplied by the corresponding filter values to get a new fil-
tered output sample. Instead of this gathering approach, Hadwiger et
al. advocate a distributing approach for a hardware-accelerated imple-
mentation. That is, the contribution of an input sample is distributed to
its neighboring samples, instead of the other way. The order was cho-
sen, since this allows to collect the contribution of a single relative input
sample for all output samples simultaneously. The term relative input
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sample denotes the relative offset of an input sample to the position of
an output sample. The final result is obtained by adding the result of
multiple rendering passes, whereby the number of input samples that
contribute to an output sample determine the number of passes.

input samples

resampling points

input samples

resampling points

Figure 21.3: Distributing the contributions of all “left-hand” (a), and all “right-
hand” (b) neighbors, when using a tent filter.

Figure 21.3 demonstrates this in the example of a one-dimensional
tent filter. As one left-handed and one right-handed neighbor input sam-
ple contribute to each output sample, a two-pass approach is necessary.
In the first pass, the input samples are shifted right half a voxel distance
by means of texture coordinates. The input samples are stored in a
texture-map that uses nearest-neighbor interpolation and is bound to the
first texture stage of the multi-texture unit (see Figure 21.4). Nearest-
neighbor interpolation is needed to access the original input samples over
the complete half extent of the filter kernel. The filter kernel is divided
into two tiles. One filter tile is stored in a second texture map, mirrored
and repeated via the GL REPEAT texture environment. This texture is
bound to the second stage of the multi-texture unit. During rasteriza-
tion the values fetched by the first multi-texture unit are multiplied with
the result of the second multi-texture unit. The result is added into the
frame buffer. In the second pass, the input samples are shifted left half
a voxel distance by means of texture coordinates. The same unmirrored
filter tile is reused for a symmetric filter . The result is again added to
the frame buffer to obtain the final result.

The number of required passes can be reduced by n for hardware
architectures supporting 2n multi-textures. That is, two multi-texture
units calculate the result of a single pass. The method outlined above
does not consider area-averaging filters, since it is assumed that magni-
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(nearest−neighbor interpolation)

filter tile (texture 1)

shifted input samples (texture 0)

x

output samples

Figure 21.4: Tent filter (width two) used for reconstruction of a one-dimensional
function in two passes. Imagine the values of the output samples added together
from top to bottom.

fication is desired instead of minification. For minification, pre-filtering
approaches like mip-mapping are advantageous. Figure 21.2 demon-
strates the benefit of bi-cubic filtering using a B-spline filter kernel over
a standard bi-linear interpolation.

High quality filters implemented in fragment programs can consider-
ably improve image quality. However, it must be noted, that performing
higher quality filtering in fragment programs on current graphics hard-
ware is expensive. I.e., frame rates drop considerably. We recommend
higher quality filters only for final image quality renderings. During in-
teraction with volume data or during animations it is probably better
to use build-in reconstruction filters, as artifacts will not be too appar-
ent in motion. To prevent unnecessary calculations in transparent or
occluded regions of the volume, the optimizations techniques presented
in chapter 50 should be applied.



Classification Artifacts

Classification is the next crucial phase in the volume rendering pipeline
and yet another possible source of artifacts. Classification employs trans-
fer functions for color densities c̃(s) and extinction densities τ(s), which
map scalar values s = s(x) to colors and extinction coefficients. The
order of classification and filtering strongly influences the resulting im-
ages, as demonstrated in Figure 22.1. The image shows the results of
pre- and post-classification for a 163 voxel hydrogen orbital volume and
a high frequency transfer function for the green color channel.

classification-schemes

voxels

post-classification

filtering

filtering

pre-classification

classification

transfer-functions

classification

Figure 22.1: Comparison of pre-classification and post-classification. Al-
ternate orders of classification and filtering lead to completely differ-
ent results. For clarification a random transfer function is used for the
green color channel. Piecewise linear transfer functions are employed for
the other color channels. Note, in contrast to pre-classification, post-
classification reproduces the high frequencies contained within in the
transfer function.

It can be observed that pre-classification, i.e. classification before
filtering, does not reproduce high-frequencies in the transfer function.
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In contrast to this, post-classification, i.e. classification after filtering,
reproduces high frequencies in the transfer function. However, high fre-
quencies (e.g., iso-surface spikes) may not be reproduced in between two
adjacent sampling points along a ray through the volume. To capture
those details, oversampling (i.e., additional slice polygons or sampling
points) must be added which directly decreases performance. Further-
more, very high frequencies in the transfer function require very high
sampling rates to captured those details. It should be noted, that a high
frequency transfer function does not necessarily mean a random trans-
fer function. We only used random transfer functions to demonstrate
the differences between the classification methods. A high frequency in
the transfer function is easily introduced by using a simple step transfer
function with steep slope. Such transfer function are very common in
many application domains.

In order to overcome the limitations discussed above, the approxi-
mation of the volume rendering integral has to be improved. In fact,
many improvements have been proposed, e.g., higher-order integration
schemes, adaptive sampling, etc. However, these methods do not explic-
itly address the problem of high Nyquist frequencies of the color after
the classification c̃

(
s(x)

)
and an extinction coefficients after the classifi-

cation τ
(
s(x)

)
resulting from non-linear transfer functions. On the other

hand, the goal of pre-integrated classification[86] is to split the numerical
integration into two integrations: one for the continuous scalar field s(x)
and one for each of the transfer functions c̃(s) and τ(s) in order to avoid
the problematic product of Nyquist frequencies.

The first step is the sampling of the continuous scalar field s(x) along
a viewing ray. Note that the Nyquist frequency for this sampling is not
affected by the transfer functions. For the purpose of pre-integrated clas-
sification, the sampled values define a one-dimensional, piecewise linear
scalar field. The volume rendering integral for this piecewise linear scalar
field is efficiently computed by one table lookup for each linear segment.
The three arguments of the table lookup are the scalar value at the start
(front) of the segment sf := s

(
x(id)

)
, the scalar value the end (back) of

the segment sb := s
(
x((i + 1)d)

)
, and the length of the segment d. (See

Figure 22.2.) More precisely spoken, the opacity αi of the i-th segment
is approximated by

αi = 1− exp

(
−

∫ (i+1)d

i d

τ
(
s
(
x(λ)

))
dλ

)

≈ 1− exp

(
−

∫ 1

0

τ
(
(1− ω)sf + ωsb

)
d dω

)
. (22.1)
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s f = sHxHi dLL
sb = sHxHHi + 1L dLL

d

sHxHΛLL

Λi d Hi + 1L d

xHΛLxHi dL xHHi + 1L dL
Figure 22.2: Scheme for determining the color and opacity of the i-th ray segment.

Thus, αi is a function of sf , sb, and d. (Or of sf and sb, if the lengths
of the segments are equal.) The (associated) colors C̃i are approximated
correspondingly:

C̃i ≈
∫ 1

0

c̃
(
(1− ω)sf + ωsb

)

× exp
(
−

∫ ω

0

τ
(
(1− ω′)sf + ω′sb

)
d dω′

)
d dω. (22.2)

Analogous to αi, C̃i is a function of sf , sb, and d. Thus, pre-integrated
classification approximates the volume rendering integral by evaluating
the following Equation:

I ≈
n∑

i=0

C̃i

i−1∏
j=0

(1− αj)

with colors C̃i pre-computed according to Equation (22.2) and opacities
αi pre-computed according to Equation (22.1). For non-associated color
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transfer function, i.e., when substituting c̃(s) by τ(s)c(s), we will also
employ Equation (22.1) for the approximation of αi and the following
approximation of the associated color C̃τ

i :

C̃τ
i ≈

∫ 1

0

τ
(
(1− ω)sf + ωsb

)
c
(
(1− ω)sf + ωsb

)

× exp
(
−

∫ ω

0

τ
(
(1− ω′)sf + ω′sb

)
d dω′

)
d dω. (22.3)

Note that pre-integrated classification always computes associated col-
ors, whether a transfer function for associated colors c̃(s) or for non-
associated colors c(s) is employed.

In either case, pre-integrated classification allows us to sample a con-
tinuous scalar field s(x) without increasing the sampling rate for any
non-linear transfer function. Therefore, pre-integrated classification has
the potential to improve the accuracy (less undersampling) and the per-
formance (fewer samples) of a volume renderer at the same time.

One of the major disadvantages of the pre-integrated classification is
the need to integrate a large number of ray-segments for each new trans-
fer function dependent on the front and back scalar value and the ray-
segment length. Consequently, an interactive modification of the transfer
function is not possible. Therefore several modifications to the compu-
tation of the ray-segments were proposed[21], that lead to an enormous
speedup of the integration calculations. However, this requires neglecting
the attenuation within a ray segment. Yet, it is a common approximation
for post-classified volume rendering and well justified for small products
τ(s)d. The dimensionality of the lookup table can easily be reduced
by assuming constant ray segment lengths d. This assumption is cor-
rect for orthogonal projections and view-aligned proxy geometry. It is a
good approximation for perspective projections and view-aligned proxy
geometry, as long as extreme perspectives are avoided. This assumption
is correct for perspective projections and shell-based proxy geometry.
In the following hardware-accelerated implementation, two-dimensional
lookup tables for the pre-integrated ray-segments are employed, thus a
constant ray segment length is assumed.

For a hardware implementation of pre-integrated volume rendering,
texture coordinates for two adjacent sampling points along rays through
the volume must be computed. The following Cg vertex program com-
putes the second texture coordinates for sb from the texture coordinates
given for sf :

vertout main(vertexIn IN,
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s f
sb

front slice
back slice

Figure 22.3: A slab of the volume between two slices. The scalar value on the front
(back) slice for a particular viewing ray is called sf (sb).

uniform float SliceDistance,

uniform float4x4 ModelViewProj,

uniform float4x4 ModelViewI,

uniform float4x4 TexMatrix)

{

vertexOut OUT;

// transform texture coordinate for s_f

OUT.TCoords0 = mul(TexMatrix, IN.TCoords0);

// transform view pos vec and view dir to obj space

float4 vPosition = mul(ModelViewI,
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float4(0,0,0,1));

// compute view direction

float4 vDir = normalize(mul(ModelViewI, float4(0.f,0.f,-1.f,1.f)));

// compute vector from eye to vertex

float3 eyeToVert = normalize( IN.Position.xyz - vPosition.xyz);

// compute position of s_b

float4 backVert = {1,1,1,1};

backVert.xyz = IN.Position.xyz +

eyeToVert * (SliceDistance / dot(vDir.xyz,eyeToVert));

//compute texture coordinates for s_b

OUT.TCoords1 = mul(TexMatrix, backVert);

// transform vertex position into homogenous clip-space

OUT.HPosition = mul(ModelViewProj, IN.Position);

return OUT;

}

In the fragment stage, the texture coordinates for sf and sb are used
to lookup two adjacent samples along a ray. Those two samples are
then used as texture coordinates for a dependent texture lookup into a
2D texture containing the pre-integration table, as demonstrated in the
following Cg fragment shader code:

struct v2f_simple {

float3 TexCoord0 : TEXCOORD0;

float3 TexCoord1 : TEXCOORD1;

};

float4 main(v2f_simple IN, uniform sampler3D Volume,

uniform sampler2D PreIntegrationTable) : COLOR

{

fixed4 lookup;

//sample front scalar

lookup.x = tex3D(Volume, IN.TexCoord0.xyz).x;

//sample back scalar

lookup.y = tex3D(Volume, IN.TexCoord1.xyz).x;

//lookup and return pre-integrated value

return tex2D(PreIntegrationTable, lookup.yx);

}
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A comparison of the results of pre-classification, post-classification
and pre-integrated classification is shown in Figure 22.4. Obviously, pre-
integration produces the visually most pleasant results. However, this
comes at the cost of looking up an additional filtered sample from the
volume for each sampling position. This considerably reduces perfor-
mance due to the fact that memory access is always expensive. However,
using pre-integration, a substantially smaller sampling rate is required
when rendering volume with high frequency transfer functions. Another
advantage is that pre-integration can be performed as a pre-processing
step with the full precision of the CPU. This reduces artifacts introduced
during blending for a large number of integration steps (see section 24).

To overcome the problem of the additional sample that has to be
considered, we need a means of caching the sample from the previous
sampling position. The problem can be reduced by computing multi-
ple steps integration at once , i.e. if we compute five integrations at
once we need six samples from the volume instead of ten compared to
a single integration step. Current graphics hardware allows to perform
the complete integration along a ray in a single pass. In this case, pre-
integration does not introduce an significant performance loss compared
to the standard integration using post-classification.
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Figure 22.4: Comparison of the results of pre-, post- and pre-integrated classifi-
cation for a random transfer function. Pre-classification (top) does not reproduce
high frequencies of the transfer function. Post-classification reproduces the high
frequencies on the slice polygons (middle). Pre-integrated classification (bottom)
produces the best visual result due to the reconstruction of high frequencies from
the transfer function in the volume.



Shading Artifacts

It is common to interpret a volume as a self-illuminated gas that
absorbs light emitted by itself. If external light sources have to be taken
into account, a shading stage is inserted into the volume rendering
pipeline. Shading can greatly enhance depth perception and manifest
small features in the data; however, it is another common source of
artifacts (see figure 23.1, left). Shading requires a per-voxel gradient
to be computed that is determined directly from the volume data
by investigating the neighborhood of the voxel. Although the newest
generation of graphics hardware permits calculating of the gradient at
each voxel on-the-fly, in the majority of the cases the voxel gradient
is pre-computed in a pre-processing step. This is due to the limited
number of texture fetches and arithmetic instructions of older graphics
hardware in the fragment processing phase of the OpenGL graphics
pipeline and as well as of performance considerations. For scalar volume
data the gradient vector is defined by the first order derivative of the
scalar field I(x, y, z), which is defined as by the partial derivatives of I
in the x-, y- and z-direction:

~∇I = (Ix, Iy, Iz) =

(
∂

∂x
I,

∂

∂y
I,

∂

∂z
I

)
. (23.1)

The length of this vector defines the local variation of the scalar field
and is computed using the following equation:

∥∥∥~∇I
∥∥∥ =

√
Ix

2 + Iy
2 + Iz

2. (23.2)

Gradients are often computed in a pre-processing step. To access
those pre-computed gradient during rendering, gradients are usually nor-
malized, quantized to 8-bits and stored in the RGB channels of a separate
volume texture. For performance reasons, often the volume data is stored
together with the gradients in the alpha channel of that same textures,
so that a single texture lookup provides the volume data and gradients
at the same time.
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Figure 23.1: Comparison between pre-computed and quantized gradients (left) with
on-the-fly gradient computation (right).

Aside from the higher memory requirements for storing pre-computed
gradients and the pre-processing time, quantizing gradients to 8 bit pre-
cision can cause artifacts in the resulting images, especially if the original
volume data is available at a higher precision. Even worse, gradients are
interpolated in the filtering step of the volume rendering pipeline. Note,
that when interpolating two normalized gradients an unnormalized nor-
mal may be generated. Previous graphics hardware did not allow gra-
dients renormalized gradients in the fragment stage. Such unnormalized
and quantized gradients cause dark striped artifacts which are visible the
left image of figure 23.1.

One possible solution to this problem is to store the pre-computed
gradients at higher precision in a 16 bit fixed point or 32 bit floating point
3D texture and apply another normalization in the fragment processing
stage on interpolated gradients. Those high-precision texture formats are
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available on newer graphics hardware; however, the increased amount of
texture memory required to store such high-precision gradients does not
permit this solution for high-resolution volumetric data.

A significantly better solution is to compute high-precision gradi-
ents on-the-fly. For a central differences gradient we need to fetch the
six neighboring voxel values at the sampling position. For this purpose
we provide six additional texture coordinates to the fragment program,
each shifted by one voxel distance to the right, left, top, bottom, back
or front. Using this information, a central differences gradient can be
computed per fragment. The resulting gradient is normalized and used
for shading computations. The following Cg fragment program looks up
a sample along the rays, performs a classification, computes a gradient
from additional neighboring samples and finally computes the shading:

struct fragIn {

float4 Hposition : POSITION;

float3 TexCoord0 : TEXCOORD0;

float3 TexCoord1 : TEXCOORD1;

float3 TexCoord2 : TEXCOORD2;

float3 TexCoord3 : TEXCOORD3;

float3 TexCoord4 : TEXCOORD4;

float3 TexCoord5 : TEXCOORD5;

float3 TexCoord6 : TEXCOORD6;

float3 TexCoord7 : TEXCOORD7;

float3 VDir : COLOR0;

};

float4 main(fragIn IN, uniform sampler3D Volume,

uniform sampler2D TransferFunction,

uniform half3 lightdir,

uniform half3 halfway,

uniform fixed ambientParam,

uniform fixed diffuseParam,

uniform fixed shininessParam,

uniform fixed specularParam) : COLOR

{

fixed4 center;

// fetch scalar value at center

center.ar = (fixed)tex3D(Volume, IN.TexCoord0.xyz).x;

// classification

fixed4 classification = (fixed4)tex2D(TransferFunction, center.ar);
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// samples for forward differences

half3 normal;

half3 sample1;

sample1.x = (half)tex3D(Volume, IN.TexCoord2).x;

sample1.y = (half)tex3D(Volume, IN.TexCoord4).x;

sample1.z = (half)tex3D(Volume, IN.TexCoord6).x;

// additional samples for central differences

half3 sample2;

sample2.x = (half)tex3D(Volume, IN.TexCoord3).x;

sample2.y = (half)tex3D(Volume, IN.TexCoord5).x;

sample2.z = (half)tex3D(Volume, IN.TexCoord7).x;

// compute central differences gradient

normal = normalize(sample2.xyz sample1.xyz);

// compute diffuse lighting component

fixed diffuse = abs(dot(lightdir, normal.xyz));

// compute specular lighting component

fixed specular = pow(dot(halfway, normal.xyz),

shininessParam);

// compute output color

OUT.rgb =

ambientParam * classification.rgb

+ diffuseParam * diffuse * classification.rgb

+ specularParam * specular;

// use alpha from classification as output alpha

OUT.a = classification.a;

return OUT;

}

The resulting quality of on-the-fly gradient computation computation
is shown in the image on the right of figure 23.1. The enhanced better
quality compared to pre-computed gradients is due to the fact that we
used filtered scalar values to compute the gradients compared to filtered
gradients. This provide much nicer and smoother surface shading, which
even allows reflective surfaces to look smooth (see figure 23.2). Besides
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this advantage, no additional memory is wasted to store pre-computed
gradients. This is especially important for high-resolution volume data
that already consumes a huge amount of texture memory or must be
bricked to be rendered (see chapter 23.2). This approach allows even
higher quality gradients at the cost of additional texture fetches, e.g.
sobel gradients.

However, the improved quality comes at the cost of additional mem-
ory reads which considerably decrease performance due to memory la-
tency. It is important that those expensive gradient computations are
only performed when necessary. Several techniques, like space-leaping,
early-ray termination and deferred shading (which are discussed in chap-
ter 50) will allow real-time performance, even when computing gradients
on-the-fly.
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Figure 23.2: Reflective environment mapping computed with on-the-fly gradient
computation. Note the smoothness of the surface.



Blending Artifacts

The final step of the rendering pipeline involves combining color values
generated by previous stages of the pipeline with colors written into the
frame buffer during integration. As discussed in previous chapters, this is
achieved by blending RGB colors with their alpha values into the frame
buffer. A large number of samples along the rays through the volume
are blended into the frame buffer. Usually, color values in this stage are
quantized to 8-bit precision. Therefore, quantization errors are accumu-
lated very quickly when blending a large number of quantized colors into
the frame buffer, especially when low alpha values are used. This is due
to the fact, that the relative error for small 8 bit fixed point quantiza-
tion is much greater than for large numbers. Figure 24.1 demonstrates
blending artifacts for a radial distance volume renderer with low alpha
values. In contrast to fixed point formats, floating point number allow
higher precision for small numbers than for large numbers.

Floating point precision was introduced recently into the pixel
pipeline of graphics hardware. The first generation of graphics hard-
ware with floating-point support throughout the pipeline does not sup-
port blending with floating point precision. Therefore, blending must

Figure 24.1: Comparison between 8-bit (left), 16-bit (middle) and 32-bit blending
(right).
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be implemented in a fragment shader. As the on-screen frame buffer
still only supports 8-bit precision, off-screen pbuffers are required for
high-precision blending. The fragment shader has to read the current
contents of the floating-point pbuffer, blend the incoming color with the
frame buffer and write the result back into the pbuffer. To bind a pbuffer
as an input image to a fragment program, the pbuffer is defined as a so-
called rendertexture; i.e., a texture that can be rendered to. To read the
current contents of the pbuffer at the rasterization position, the window
position (WPOS) that is available in fragment programs can directly be
used as a texture coordinate for a rectangle texture fetch. Figure 24.2 il-
lustrates the approach while the following Cg source code demonstrates
the approach with a simple post-classification fragment program with
over-operator compositing:

struct v2f_simple {

float3 TexCoord0 : TEXCOORD0;

float2 Position : WPOS;

};

float4 main(v2f_simple IN,

uniform sampler3D Volume,

uniform sampler1D TransferFunction,

uniform samplerRECT RenderTex,

) : COLOR

{

// get volume sample

half4 sample = x4tex3D(Volume, IN.TexCoord0);

// perform classification to get source color

float4 src = tex1D(TransferFunction, sample.r);

// get destination color

float4 dest = texRECT(RenderTex, IN.Position);

// blend

return (src.rgba * src.aaaa) +

(float4(1.0, 1.0, 1.0, 1.0)-src.aaaa) * dest.rgba;

}

It should be noted, that the specification of the render texture ex-
tension explicitly states that the result is undefined when rendering to a
texture and reading from the texture at the same time. However, cur-
rent graphics hardware allows this operation and produces correct results
when reading from the same position that the new color value is written
to.
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Figure 24.2: Programmable blending with a pbuffer as input texture and render
target at the same time.
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If you feel uncomfortable with this solution, you can use ping-pong
blending as an alternative (see figure 24.3). Ping-pong blending alter-
nates the rendering target to prevent read-write race conditions. To avoid
context switching overhead when changing rendering targets a double-
buffered pbuffer can be employed, whose back and front buffer then are
used for ping-pong blending.

As demonstrated in the middle image of figure 24.1 even 16-bit float-
ing point precision might not be sufficient to accurately integrate colors
with low-alpha values into the frame buffer. However, as memory access
does not come for free, performance decreases as a function of precision.
Therefore, it is necessary to find a good balance between quality and per-
formance. For most applications and transfer functions 16-bit floating
point blending should produce acceptable results.
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Figure 24.3: Programmable blending with a pbuffer as input texture and render
target at the same time.



Summary

Artifacts are introduced in various stages of the volume rendering pro-
cess. However, the high precision texture formats and computations
in combination with the advanced programmability of today’s GPUs
allow artifacrs to be suppressed or even allow to remove them almost
completely. All of the techniques presented to prevent artifacts can be
implemented quite efficiently using programmable graphics hardware to
achieve real-time performance. However, those optimization do not come
for free - to maximize performance trade-offs between quality and per-
formance often have to be made.

The human visual system is mess sensitive to artifacts in moving
pictures that static images. This phenomena is evident by comparing a
still image with non-static images from a TV screen. Therefore, for some
applications it is acceptable to trade off quality for performance while
the volumetric object is moving, and use higher quality when the object
becomes stationary.
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Introduction to
Volume Clipping

Volume clipping plays an important role in understanding 3D volumetric
data sets because it allows the user to cut away selected parts of the
volume based on the position of voxels in the data set. Clipping often is
the only way to uncover important, otherwise hidden details of a data set.
The goal of this part of the course notes is to present several techniques
to efficiently implement complex clip geometries for volume visualization.
All methods are tailored to interactive texture-based volume rendering
on graphics hardware.

We discuss two basic approaches to volume clipping for slice-based
volume rendering. In the first approach (Chapter 27), a clip object is
represented by a tessellated boundary surface. The basic idea is to store
the depth structure of the clip geometry in 2D textures. This depth
structure of the clip object can be used by fragment operations to clip
away parts of the volume. In the second approach (Chapter 28), a clip
object is voxelized and represented by an additional volume data set.
Clip regions are specified by marking corresponding voxels in this volume.

Issues related to volume shading are considered in Chapter 29. The
combination of volume shading and volume clipping introduces issues of
how illumination is computed in the vicinity of the clipping object. On
the one hand, the orientation of the clipping surface should be repre-
sented. One the other hand, properties of the scalar field should still
influence the appearance of the clipping surface.

Finally, Chapter 30 shows how GPU clipping techniques can be com-
bined with pre-integrated volume rendering (see Part VII on “Pre-Inte-
gration” for details on basic pre-integrated volume rendering).



Depth-Based Clipping

This chapter is focused on algorithms for volume clipping that rely on
the depth structure of the clip geometry. It is assumed that clip objects
are defined by boundary surface representations via triangle meshes. For
each fragment of a slice, fragment operations and tests decide whether the
fragment should be rendered or not. Detailed background information
on this approach can be found in [105, 106].

Generic Description

Figure 27.1 illustrates the depth structure of a typical clip object. The
problem is reduced to a 1D geometry along a single light ray that orig-
inates from the eye point. There is a one-to-one mapping between light
rays and pixels on the image plane. Therefore, the following descriptions
can be mapped to operations on the fragments that correspond to the
respective position of the pixel in the frame buffer.

We start with an algorithm for clip objects of arbitrary topology and
geometry. First, the depth structure of the clip geometry is constructed
for the current pixel. This structure holds the depth values for each

depth
structure

z value

outsideoutside outside

inside inside

plane
image

ray

object

eye

Figure 27.1: Depth structure of a clip geometry.
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intersection between eye ray and object. Second, the rendering of each
fragment of a volume slice has to check if the fragment is visible or not.
Based on the visibility, the fragment is blended into the frame buffer or
rejected. We use the term volume probing when the volume is clipped
away outside the clip geometry. Conversely, a volume cutting approach
inverts the role of the visibility property—only the volume outside the
clip object remains visible.

Clipping against a Single Depth Layer

A straightforward approach uses the depth buffer to store the depth
structure. Unfortunately, the depth buffer can hold only one depth value
per pixel. Therefore, just a single depth layer can be represented. The
implementation of this approach begins with rendering the clip geometry
to the depth buffer. Then, writing to the depth buffer is disabled and
depth testing is enabled. Finally, the slices through the volume data
set are rendered, while the depth test implements the evaluation of the
visibility property of a fragment. The user can choose to clip away
the volume in front or behind the geometry, depending on the logical
operator for the depth test.

Convex Volume Probing

A convex object implies that the number of boundaries along the depth
structure is not larger than two because, regardless of the viewing pa-
rameter, an eye ray cannot intersect the object more than twice. The
special case of a convex clip objects allows us to use a rather simple
representation for the depth structure.

For a convex geometry, one algorithm for depth-based volume probing
is as follows. First, the depth values zfront for the first boundary are
determined and written to a texture by rendering the frontfaces of the
clip geometry. Then, a fragment program is used to shift the depth values
of all fragments in the following rendering passes by −zfront (where zfront

is read from the previously generated texture). Third, the depth buffer is
cleared and the backfaces are rendered into the depth buffer (with depth
shift enabled) to build the second boundary. Finally, slices through the
volume data set are rendered, without modifying the depth buffer. Depth
shift and depth testing, however, are still enabled.

Figure 27.2 illustrates this clipping algorithm. By rendering the back-
faces of the clip object with a shift by −zfront, entries in the depth buffer
are initialized to zback − zfront, where zback is the unmodified depth of
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Figure 27.2: Illustration of depth-based volume probing for a convex clip geometry.

the backface’s fragment. During the actual volume rendering, fragments
that are behind the backface of the clip geometry are rejected by the
depth test, while fragments that are in front of the frontface of the clip
geometry are removed by clipping against the near plane of the view
frustum.

A shift of depth values by −zfront can be realized by a fragment pro-
gram. The current generation of GPUs (such as ATI Radeon 9600 or
higher, or NVidia GeForce FX) allows us to modify a fragment’s depth
value according to values from a texture and / or numerical operations.
The Pixel Shader 2.0 code (DirectX) for such an implementation is shown
in Figure 27.3.

The texture that holds the depth structure (here texture sampler
stage s0) should be a hires texture, such as 16 bit fixed-point or 16/32
bit floating point. This texture is efficiently filled with depth values by di-
rectly rendering into this 2D texture. DirectX supports such a render-to-
texture functionality; similarly, WGL ARB render texture is supported
for OpenGL under Windows.

In [105] a comparable implementation on an NVidia GeForce 3 GPU
is described. Due to a reduced flexibility of this previous generation of
GPUs, a complicated configuration of texture shaders is required. This
implementation is recommended when older GPUs have to be supported.
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ps.2.0 // Pixel Shader 2.0 code

dcl v0 // Vertex coordinates
dcl t0 // Position
dcl t1 // One-to-one mapping on image plane
dcl 2d s0 // Depth layer for front faces

... More declarations for standard volume rendering
(data set, transfer function, etc.)

// Get z values of front faces
texld r0, t1, s0

// Compute depth of the fragment in device coordinates
// (division by homogeneous w coordinate)
rcp r1,t0.w
mul r2,t0,r1

// Shift depth values
add r3,r2.z,-r0.x
mov oDepth,r3.z

... Compute color according to standard volume rendering

Figure 27.3: Pixel Shader 2.0 code for depth shift.

Convex Volume Clipping Based on Texkill

An alternative approach exploits a conditional removal of fragments (i.e.,
a texkill operation) to achieve comparable results. Compared to the
algorithm from the previous section, texkill-based clipping introduces the
following modifications. First, the depth structures for frontfacing and
backfacing parts of the clip geometry are both stored in hires textures,
i.e., the depth buffer is not used to clip away volume regions. Second,
the fragment program accesses both hires textures and compares the
depth of a fragment with the stored depth structure. This comparison
leads to a conditional texkill when the fragment lies outside of the visible
region. Probing and cutting modes can easily be exchanged by negating
the Boolean expression for the comparison.
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Multi-Pass Rendering for Concave Clip Objects

If concave clip geometries have to be represented, the management of the
depth structure has to be extended to take into account a larger number
of possible intersections between the clipping geometry and an eye ray.
Concave clipping needs a larger number of textures to store the depth
structure, and can be implemented by using multiple render passes.

In the first step of this approach, the depth structure of the clip
object is analyzed and neighboring pairs of depth layers are combined.
These pairs are organized in a way that ensures that each pair represents
one visible segment of the viewing ray, i.e., the volume remains visible
within the interval defined by such a pair of z values. Note that single,
unpaired depth entries are produced at the front and back parts of the
depth structure in the case of volume cutting.

The depth structure can be determined by an algorithm reminiscent
of the depth-peeling algorithm [22]: The depth structure is constructed
by peeling off the geometry in a depth-layer by depth-layer fashion. In
a back-to-front scheme, the first depth layer (i.e., the geometry furthest
away from the camera) is initialized by rendering with a depth test set to
“greater”. This depth layer is stored in a hires texture. Subsequent (i.e.,
closer) layers are extracted by rendering only those objects that are closer
than the depth structure of the current hires texture. This behavior
is ensured by a fragment program that kills fragments that lie behind
the depth value of the current hires texture. The depth values of the
rendered fragments are written to the next hires texture—and the same
process is continued for the next closer depth layer. The algorithm stops
when no fragments pass the fragment program, which can be checked
by performing an occlusion query that provides the number of rendered
fragments.

The second step comprises the actual multi-pass rendering of the
volume. For each pair of depth values from the depth structure, the
corresponding region of the volume is rendered. Each depth pair leads to
a local volume probing against two boundaries; therefore, rendering can
make use of the previously described method for convex volume probing.
Employing multiple render passes, the complete volume is reconstructed
in a layer-by-layer fashion by processing the depth structure pair-by-
pair. The case of volume cutting (with single depth values at the front
and back of the depth structure) can be handled by clipping only at
a single boundary, as described in the Section on “Clipping against a
Single Boundary”.
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Summary

Depth-based clipping is an image-space approach with a one-to-one map-
ping between pixels on the image plane and texels in the 2D depth layers.
Therefore, clipping has a per-pixel accuracy and provides high-quality
images. Another advantage of depth-based clipping is its built-in sup-
port for dynamic clip objects because the depth structure is re-built from
the clip geometry for each frame. The main disadvantage is the complex
treatment required for non-convex clip objects. Multi-pass rendering can
become very slow, especially if many depth layers are present.



Clipping via Tagged Volumes

In contrast to the depth-based clipping algorithms from the previous
chapter, volumetric clipping approaches model the visibility information
by means of a second volume texture whose voxels provide the clipping
information. Here, the clip geometry has to be voxelized and stored as a
binary volume. Background information on this approach can be found
in [105, 106].

Conceptually, the clipping texture and the volume data set are com-
bined to determine the visibility, i.e., the clipping texture is tagged to the
volume data set. During rendering, a fragment program multiplies the
entries from the data set by the entries from the clip texture—all the vox-
els to be clipped are multiplied by zero. Clipped fragments be removed
by a conditional texkill within a fragment program or, alternatively,
discarded by an alpha test.

When a 3D texture is used for the voxelized clip object, any affine
transformation of the clip geometry can be represented by a correspond-
ing transformation of texture coordinates. Switching between volume
probing and volume cutting is achieved by inverting the values from the
clipping texture. All these operations can be performed very efficiently
because they only require the change of texture coordinates or a re-
configuration of the fragment program. However, a complete change of
the shape of the clip geometry requires a revoxelization and a reload of
the clipping texture.

The above method is based on a binary representation and requires a
nearest-neighbor sampling of the clipping texture. If a trilinear (for a 3D
texture) interpolation was applied, intermediate values between zero and
one would result from a texture fetch in the clipping texture. Therefore,
a clearly defined surface of the clip geometry would be replaced by a
gradual and rather diffuse transition between visible and clipped parts of
the volume. Unfortunately, a missing interpolation within the clipping
texture introduces jaggy artifacts. This problem can be overcome by
replacing the binary data set by a distance volume: Each voxel of the
clipping texture stores the (signed) Euclidean distance to the closest
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point on the clip object. The surface of the clip object is represented
by the isosurface for the isovalue 0. A trilinear interpolation in the 3D
clipping texture is applied during rendering. Based on the comparison
of the value from the clipping texture with 0, the clipped fragments can
be removed (by texkill or an alpha test in combination with setting
alpha to zero).

A voxelized clipping representation can be extended to more generic
tagged volumes that allow for a space-variant modification of the visual
representation. For example, Hastreiter et al. [39] modify texture-based
volume rendering with pre-classification by applying different transfer
functions to different regions of the segmented data set. Tiede et al.
[98] use a similar approach for the visualization of attributed volumes
by ray casting. And OpenGL Volumizer [5] uses a clipping mechanism
based on a volumetric description of clipping objects. More details on
an advanced use of an additional volumetric representation can be found
in Part XI on “Non-Photorealistic Volume Rendering” and Part XII on
“Segmented Volumes”.

The advantages of the voxelized clipping approach are the support for
arbitrary clip objects (with unrestricted choice of topology and geome-
try), and an extensibility towards generic tagged volumes. Disadvantages
are a potentially large memory footprint for the voxelized clip geometry
and additional texture fetch operations to access the voxelized repre-
sentation. Furthermore, dynamic clip geometries need a re-voxelization
with a subsequent download of the modified texture to the GPU, which
can be very time-consuming.



Clipping and
Consistent Shading

Volume shading extends volume rendering by adding illumination terms
based on gradients of the scalar field. The combination of volume shad-
ing and volume clipping introduces issues of how illumination should be
computed in the vicinity of the clip object. Illumination should not only
be based on the properties of the scalar field, but should also represent
the orientation of the clipping surface itself.

Figure 29.1 (b) demonstrates how illuminating the volume and the
clipping surface improves the perception of the spatial structure of the
clip object. Figure 29.1 (a) shows the same data set without specific
lighting on the clipping surface. Here, the spherical clip surface is hard
to recognize due to the inappropriate lighting.

In this chapter, depth-based and volumetric clipping techniques from
the two previous chapters are extended to take into account a consistent
shading of the clipping surface. These extensions make use of a modified
optical model for volume rendering [106].

An Optical Model for Clipping in Illuminated Vol-
umes

The volume rendering integral,

I(D) = I0 T (s0) +

D∫

s0

g(s)T (s) ds , (29.1)

along with the definition of transparency,

T (s) = e
−

D∫
s

τ(t) dt
,

is the widely used optical model for volume rendering (see Part II on
“GPU-Based Volume Rendering”). The term I0 represents the light en-
tering the volume from the background at the position s = s0; I(D)
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(a) (b)

Figure 29.1: Combining volume clipping and volume shading. A spherical clip ob-
ject cuts into an engine data set. No specific illumination computation is used in (a);
(b) reveals lighting on the clip surface by combining surface-based and volumetric
shading.

is the radiance leaving the volume at s = D and finally reaching the
camera.

Slice-based volume rendering approximates the integral in Eq. (29.1)
by a Riemann sum over n equidistant segments of length ∆x = (D −
s0)/n:

I(D) ≈ I0

n∏
i=1

ti +
n∑

i=1

gi

n∏
j=i+1

ti , (29.2)

where
ti = e−τ(i∆x+s0)∆x (29.3)

is the transparency of the ith segment and

gi = g(i∆x + s0)∆x (29.4)

is the source term for the ith segment. Note that both the discretized
transparency ti and source term gi depend on the sampling distance ∆x,
i.e., the transparency and source terms have to be modified whenever
∆x is changed. In texture-based volume rendering, fragments on slice i
are assigned opacities αi = 1− ti and gray values or colors gi.
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Figure 29.2: Combining volume shading for a volumetric data set with surface-
based shading on the boundary of the clip geometry: an infinitesimally thin “skin”
around the clip object in (a), a thick “impregnating” layer in (b).

In a first approach to combining clipping and volume shading, un-
modified clipping techniques (from the two previous chapters) are first
applied the shaded volume. Volume illumination is based on the gradi-
ent of the scalar field and the transfer function. In a second step, the
illuminated clipping surface is layered around the volume. The lighting
of the clipping surface is based on the normal vector of the surface. The
surface of the clip object can be pictured as a “skin” surrounding the
actual volume, as illustrated in Figure 29.2 (a).

Unfortunately, this first approach is not invariant if the sampling rate
∆x changes. In the discretized form of Eq. (29.4), the source term gi

converges to zero for ∆x → 0, i.e., the color contribution of a 2D surface
(of infinitely small thickness) goes to zero. Analogously, the transparency
ti from Eq. (29.3) goes to one for ∆x → 0.

This problem can be overcome by modifying the first approach in
a way that the “skin” is widened to a finite thickness, i.e., the volume
is covered by a thick layer whose illumination is based on the normal
vectors of the clipping surface. The influence of the illuminated surface
reaches into the volume for some distance, which can be illustrated as
“impregnating” the shaded volume. Figures 29.2 (a) and (b) compare
both the original “skin” approach and the modified “impregnation” ap-
proach.
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Combining Clipping and Volume Shading in an
Object-Space Approach

The “impregnation” approach leads to the following object-space algo-
rithm for combining clipping and volume shading. The clipping object
is defined as the isosurface for the isovalue zero on a signed distance vol-
ume (as already used for volumetric clipping with tagged volumes). The
transition between surface-oriented and volume-oriented shading (in the
“impregnation” layer) is based on the values from the distance field.

Surface-based illumination makes used of the gradients of the dis-
tance volume and the optical properties of the scalar field. The gradient
is identical to the normal vector of a respective isosurface and, thus,
represents the normal vector on the clipping surface.

Depth-Based Clipping and Volume Shading

The above object-space approach needs some modifications before it can
be applied to depth-based clipping. Now, the clipping boundary is not
modeled as a thick layer but as a 2D surface. Surface-based shading on
the clip geometry yields modified contributions to transparency tsrf =
e−τ(ssrf)∆xsrf and source term gsrf = g(ssrf)∆srf, where ssrf describes the
location of the clipping surface and ∆srf represents the thickness of the
original “impregnation” layer, which is not dependent on the sampling
rate. The optical properties are determined by the volume data set and
the transfer function. In other words, the geometry of the clip boundary
is treated as 2D surface, while the contribution to the rendering integral
comes from a thick virtual layer.

To achieve consistent shading for depth-based clipping techniques,
the original slice-based volume rendering is extended to hybrid volume
and surface rendering. The volume and the surface parts are interleaved
according to the depth structure of the clip geometry. A multi-pass
rendering approach is used to combine the surface and volumetric con-
tributions: Clipped volumetric regions (clipping is based on “Multi-Pass
Rendering for Concave Clip Objects” from Chapter 27) and shaded sur-
faces are alternatingly rendered in a back-to-front fashion.

Example Images

Figures 29.3 and 29.4 demonstrate the consistent combination of clipping
and volume shading. Depth-based clipping is applied to a medical CT
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data set in Figure 29.3. The transfer function is chosen in a way to
achieve opaque material boundaries.

The visualization of the orbital data set in Figure 29.4 reveals both
transparent and opaque structures. Figure 29.4 (a) shows the original
data set, Figure 29.4 (b) demonstrates depth-based clipping.
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Figure 29.3: Depth-based clipping in an illuminated CT data set.
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(a) (b)

Figure 29.4: Clipping in an illuminated orbital data set. Image (a) is without
clipping, image (b) is with depth-based clipping.



Clipping and Pre-Integration

The aforementioned clipping approaches are based on a slice-by-slice rep-
resentation of the volume data set. Therefore, the visibility computation
can be reduced to checking whether a fragment on a slice is visible or not.
Pre-integrated volume rendering (see Part VII on “Pre-Integration”) is a
modification of this slice-by-slice rendering. Pre-integration makes use of
slabs between two neighboring slices, i.e., the basic building blocks have
a finite thickness. To combine pre-integration with volumetric clipping
three steps are necessary [84]:

• Modify the scalar data values within a clipped slab

• Adapt the length of a ray segment

In what follows, we use a volumetric description of the clip geometry via
a signed distance field (as in Chapter 28 on “Clipping via Tagged Vol-
umes”). By shifting the distance values, the clipping surface is assumed
to be located at isovalue 0.5. Let df and db be the distance values of the
clip volume at the entry and exit points of the ray segment (i.e., of the
slab). If both distance values are below or above 0.5, the complete slab
is either invisible or visible and no special treatment is necessary. Con-
sidering the case df < 0.5 and db > 0.5 (as in Figure 30.1), only the dark
gray part of the volume has to be rendered. In this case we first have to
set the front scalar data value sf to the data value s′f at entry point into
the clipped region. Then we perform a look-up into the pre-integration
table with the parameters (s′f , sb) rather than with (sf , sb). In general,
the parameter s′f is obtained by

r =

[
[0.5− df ]

db − df

]
, s′f = (1− r)sf + r sb .

The brackets denote clamping to the range [0, 1]. Similarly, the param-
eter sb is replaced by s′b

g = 1−
[
[0.5− db]

df − db

]
, s′b = (1− g)sf + r sb .
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Figure 30.1: Using slabs instead of slices for pre-integrated volume clipping. The
scalar data values at the entry and the exit point of the viewing ray are denoted
by sf and sb, respectively. The corresponding distance values from the clip texture
are df and db. The thickness of the slab is denoted by L; L′ is the length of the
visible part of the slab. The dark gray region remains after volumetric clipping.

If both clip values are below 0.5, the slab is completely invisible and the
scalar values do not matter.

The second issue is the reduced length L of the clipped ray segment.
The numerical integration depends on the parameters sf , sb, and L. The
volume rendering integral (see Equation 29.1) can be re-written, based on
the chromaticity vector κ and the scalar optical density ρ in the optical
model of William and Max [109], to obtain the ray integral for a ray
segment,

sL(x) = sf +
x

L
(sb − sf )

c(sf , sb, L) =

L∫

0

e
−

t∫
0

ρ(sL(τ) dτ
κ(sL(t))ρ(sL(t)) dt

θ(sf , sb, L) = e
−

L∫
0

ρ(sL(τ) dτ

α = 1− θ .

The reduced ray segment length L′ can be taken into account in the
following way. The pre-integration table is still based on a constant ray
segment length L. The visible fraction of the slab is denoted by b = L′/L.
Then the transparency θ′ of the clipped ray segment is the pre-integrated
transparency θ (associated with the original segment length L) raised to
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the bth power because

L′∫

0

ρ(sL′(t
′)) dt′ = b

L∫

0

ρ(sL(t)) dt ,

θ′ = e
−b

L∫
0

ρ(sL(t)) dt
=


e

−
L∫
0

ρ(sL(t)) dt




b

= θb .

A first order approximation is sufficient if the thickness of the slabs
is reasonable small. Furthermore, if self-attenuation is neglected, the
emission of the clipped ray segment is given by c′ = bc.

Instead of calculating the factors for the adjustment of the scalar
values, the emission, and the opacity in the fragment program, the factors
for all combinations of the clip values df and db can be pre-computed
and stored in a 2D dependent texture.

A comparison of the rendering quality between the slab-based ap-
proach and the slice-based method from the previous chapters is depicted
in Figure 30.2. A sphere has been cut out of the Bucky Ball data set
so that the holes of the carbon rings are visible as green spots. Both
images have been rendered with only 32 slices / slabs. While the slices
are clearly visible on the left, the slab-oriented method reproduces the
clipped volume accurately, i.e., it is per-pixel accurate along the viewing
direction.
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(a) (b)

Figure 30.2: Comparison of volumetric clipping approaches: (a) slice-based, (b)
slab-based.
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Introduction

Non-photorealistic rendering techniques, e.g., rendering styles imitating
artistic illustration, have established themselves as a very powerful tool
for conveying a specific meaning in rendered images, especially in render-
ings of surfaces [30, 95]. In recent years, the interest in adapting existing
NPR techniques to volumes and creating new entirely volumetric NPR
models has increased significantly [20, 15, 71].

This chapter first shows two examples of integrating simple non-
photorealistic techniques into real-time volume rendering by evaluat-
ing the corresponding shading equations directly in the hardware frag-
ment shader. It then focuses on real-time rendering of isosurfaces with
more sophisticated NPR techniques based on implicit curvature infor-
mation, which has previously been demonstrated for off-line volume ren-
dering [48].



Basic Non-Photorealistic
Rendering Modes

This chapter outlines two simple examples of non-photorealistic volume
rendering modes. First, the concept of shading surfaces with tone shad-
ing [29] can be adapted to volume shading by incorporating color and
opacity retrieved from the transfer function. Second, we outline a simple
model for rendering the silhouettes of material boundaries in volumes
that does not use an explicit notion of surfaces but modulates a contour
intensity depending on the angle between view and gradient direction by
the gradient magnitude [15].

Tone shading

In contrast to Blinn-Phong shading, which determines a single light in-
tensity depending on the dot product between the view vector and the
surface normal, tone shading [29] (sometimes also called Gooch shading)
interpolates between two user-specified colors over the full [−1, 1] range
of this dot product. Traditionally, one of these colors is set to a warm
tone, e.g., orange or yellow, and the other one to a cool tone, e.g., purple
or blue. Cool colors are perceived by human observers as receding into
the background, whereas warm colors are seen as being closer to the fore-
ground. Tone shading uses this observation to improve depth perception
of shaded images.

Although originally developed for surface shading, tone shading can
easily be adapted to direct volume rendering by mixing the color from
the transfer function with the color obtained via tone shading. One of
the possibilities to do this is the following:

I =

(
1 + l · n

2

)
ka +

(
1− 1 + l · n

2

)
kb, (32.1)

where l denotes the light vector, and n = ∇f/|∇f | is the normalized
gradient of the scalar field f that is used as normal vector.
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Figure 32.1: Comparison of standard volume shading (left) and tone
shading (center) with an isosurface-like transfer function. Incorporating
opacity from a transfer function reveals the volumetric structure of the
rendered model (right).

The two colors to interpolate, ka and kb, are derived from two con-
stant colors kcool and kwarm and the color from the transfer function
kt, using two user-specified factors α and β that determine the additive
contribution of kt:

ka = kcool + αkt (32.2)

kb = kwarm + βkt (32.3)

The opacity of the shaded fragment is determined directly from the trans-
fer function lookup, i.e., the alpha portion of kt.

These tone shading equations can easily be evaluated in the hard-
ware fragment shader on a per-fragment basis for high-quality results.
Figure 32.1 shows example images.

Contour enhancement

Even without an explicit notion of surfaces, or isosurfaces, a very simple
model based on gradient magnitude and the angle between the view and
gradient direction can visualize the silhouettes of material boundaries
in volumes quite effectively [15]. This model can be used in real-time
volume rendering for obtaining a contour intensity I by procedural eval-
uation of the following equation in the hardware fragment shader:

I = g
(|∇f |) · (1− |v · n|)8

, (32.4)

where v is the viewing vector, ∇f denotes the gradient of a given voxel,
n = ∇f/|∇f | is the normalized gradient, and g(·) is a windowing func-
tion for the gradient magnitude.
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Figure 32.2: Simple contour enhancement based on gradient magnitude
and angle between view and local gradient direction. The gradient mag-
nitude windowing function g(·) is an easy way to control contour appear-
ance. These images simply use three different window settings.

The windowing function g(·) is illustrated in figure 32.3, and fig-
ure 32.2 shows three example results of using different window settings.
The window can be specified directly via its center and width. Alter-
natively, it can also be specified through a standard transfer function
interface, where the alpha component is the weighting factor for the
view-dependent part, and the RGB components are simply neglected.

The obtained fragment intensity I can be multiplied by a constant
contour color in order to render colored contours. If alpha blending is
used as compositing mode, the fragment alpha can simply be set to the
intensity I. However, a very useful compositing mode for contours ob-
tained via this technique is maximum intensity projection (MIP), instead
of using alpha blending.

Figure 32.3: Windowing of gradient magnitude in order to restrict the
detection of contours to the interfaces, i.e., boundary surfaces, between
different materials. From [15].
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Combination with segmented data

Using the two non-photorealistic rendering modes outlined above for
rendering segmented data with per-object rendering modes is a very
powerful approach to emphasizing specific object structures in volume
data.

Rendering of contours, for example, is a good way to provide context
for focus regions rendered with more traditional volume rendering tech-
niques. Tone shading is naturally suited as shading mode for rendering
isosurfaces or structures with high opacity, whereas objects rendered with
lower opacity could be rendered with standard direct volume rendering,
for example.

See chapter X for examples of combining traditional and non-
photorealistic techniques in a single volume rendering in order to en-
hance perception of individual objects of interest and separate context
from focus regions.



Rendering from
Implicit Curvature

Computing implicit surface curvature is a powerful tool for isosurface
investigation and non-photorealistic rendering of isosurfaces.

This section assumes that an isosurface is shaded using deferred shad-
ing in image space, as described in chapter IV.

When differential isosurface properties have been computed in pre-
ceding deferred shading passes (see section 13), this information can be
used for performing a variety of mappings to shaded images in a final
shading pass.

Curvature-based transfer functions

Principal curvature magnitudes can be visualized on an isosurface by
mapping them to colors via one-dimensional or two-dimensional transfer
function lookup textures.

One-dimensional curvature transfer functions. Simple color
mappings of first or second principal curvature magnitude via 1D transfer
function lookup tables can easily be computed during shading. The same
approach can be used to depict additional curvature measures directly
derived from the principal magnitudes, such as mean curvature (κ1 +
κ2)/2 or Gaussian curvature κ1κ2 See figures 33.1(left), 33.5(top, left),
and 33.7(top, left) for examples.

Two-dimensional curvature transfer functions. Transfer func-
tions in the 2D domain of both principal curvature magnitudes (κ1, κ2)
are especially powerful, since color specification in this domain allows to
highlight different structures on the surface [42], including ridge and val-
ley lines [43, 48]. Curvature magnitude information can also be used to
implement silhouette outlining with constant screen space thickness [48].
See figures 33.1, 33.3, 33.5, 33.6, and 33.7 for examples.
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Curvature-aligned flow advection

Direct mappings of principle curvature directions to RGB colors are hard
to interpret.

However, principal curvature directions on an isosurface can be vi-
sualized using image-based flow visualization [100]. In particular, flow
can be advected on the surface entirely in image space [66]. These meth-
ods can easily be used in real-time, complementing the capability to
generate high-quality curvature information on-the-fly, which also yields
the underlying, potentially unsteady, ”flow” field in real-time. See fig-
ure 11.2(f). In this case, it is natural to perform per-pixel advection
guided by the floating point image containing principal direction vectors
instead of warping mesh vertex or texture coordinates.

A problem with advecting flow along curvature directions is that their
orientation is not uniquely defined and thus seams in the flow cannot be
entirely avoided [100].

See figures 33.2 and 33.3(top, left) for examples.

Figure 33.1: Two examples of implicit curvature-based isosurface rendering. (left)
CT scan (256x128x256) with color mapping from a 1D transfer function depicting√

κ2
1 + κ2

2; (right) CT scan (256x256x333) with contours, ridges and valleys, tone
shading, and flow advection to generate a noise pattern on the surface.
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Figure 33.2: Changing the iso-value of a torus isosurface represented by a signed
distance field. Maximum principal curvature magnitude color mapping and flow
advection.

Figure 33.3: Curvature-based NPR. (top, left) contours, curvature magnitude col-
ors, and flow in curvature direction; (top, right) tone shading and contours; (bottom,
left) contours, ridges, and valleys; (bottom, right) flow in curvature direction with
Phong shading.
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Figure 33.4: CT scan (512x512x333) with tone shading and curvature-controlled
contours with ridge and valley lines specified in the (κ1, κ2) domain via a 2D transfer
function.

Figure 33.5: Dragon distance field (128x128x128) with colors from curvature mag-
nitude (top, left); with Phong shading (top, right); with contours (bottom, left);
with ridge and valley lines (bottom, right).
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Figure 33.6: CT scan (256x256x333) with contours, ridges and valleys, tone shad-
ing, and image space flow advection to generate a noise pattern on the surface.

Figure 33.7: Happy Buddha distance field (128x128x128) with colors from curva-
ture magnitude (top, left); only ridge and valley lines (top, right); with contours
(bottom, left); with contours, and ridge and valley lines (bottom, right).
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Introduction

One of the most important goals in volume rendering, especially when
dealing with medical data, is to be able to visually separate and selec-
tively enable specific objects of interest contained in a single volumetric
data set. A very powerful approach to facilitate the perception of in-
dividual objects is to create explicit object membership information via
segmentation [99]. The process of segmentation determines a set of vox-
els that belong to a given object of interest, usually in the form of one or
several segmentation masks. There are two major ways of representing
segmentation information in masks. First, each object can be repre-
sented by a single binary segmentation mask, which determines for each
voxel whether it belongs to the given object or not. Second, an object
ID volume can specify segmentation information for all objects in a sin-
gle volume, where each voxel contains the ID of the object it belongs
to. These masks can then be used to selectively render only some of the
objects contained in a single data set, or render different objects with
different optical properties such as transfer functions, for example.

Other approaches for achieving visual distinction of objects are for ex-
ample rendering multiple semi-transparent isosurfaces, or direct volume
rendering with an appropriate transfer function. In the latter approach,
multi-dimensional transfer functions [47, 51] have proven to be especially
powerful in facilitating the perception of different objects. However, it
is often the case that a single rendering method or transfer function
does not suffice in order to distinguish multiple objects of interest ac-
cording to a user’s specific needs, especially when spatial information
needs to be taken into account. Non-photorealistic volume rendering
methods [20, 15, 71] have also proven to be promising approaches for
achieving better perception of individual objects.

An especially powerful approach is to combine different non-
photorealistic and traditional volume rendering methods in a single vol-
ume rendering. When segmentation information is available, different
objects can be rendered with individual per-object rendering modes,
which allows to use specific modes for structures they are well suited
for, as well as separating focus from context.
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Figure 34.1: Segmented hand data set (256x128x256) with three objects: skin,
blood vessels, and bone. Two-level volume rendering integrates different trans-
fer functions, rendering and compositing modes: (left) all objects rendered with
shaded DVR; the skin partially obscures the bone; (center) skin rendered with non-
photorealistic contour rendering and MIP compositing, bones rendered with DVR,
vessels with tone shading; (right) skin rendered with MIP, bones with tone shading,
and vessels with shaded isosurfacing; the skin merely provides context.

This Chapter

Integrating segmentation information and multiple rendering modes with
different sets of parameters into a fast high-quality volume renderer is
not a trivial problem, especially in the case of consumer hardware vol-
ume rendering, which tends to only be fast when all or most voxels can
be treated identically. On such hardware, one would also like to use a
single segmentation mask volume in order to use a minimal amount of
texture memory. Graphics hardware cannot easily interpolate between
voxels belonging to different objects, however, and using the segmenta-
tion mask without filtering gives rise to artifacts. Thus, one of the major
obstacles in such a scenario is filtering object boundaries in order to at-
tain high quality in conjunction with consistent fragment assignment and
without introducing non-existent object IDs. In this chapter, we show
how segmented volumetric data sets can be rendered efficiently and with
high quality on current consumer graphics hardware. The segmentation
information for object distinction can be used at multiple levels of sophis-
tication, and we describe how all of these different possibilities can be
integrated into a single coherent hardware volume rendering framework.

First, different objects can be rendered with the same rendering tech-
nique (e.g., DVR), but with different transfer functions. Separate per-
object transfer functions can be applied in a single rendering pass even
when object boundaries are filtered during rendering. On an ATI Radeon
9700, up to eight transfer functions can be folded into a single rendering
pass with linear boundary filtering. If boundaries are only point-sampled,
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e.g., during interaction, an arbitrary number of transfer functions can
be used in a single pass. However, the number of transfer functions
with boundary filtering in a single pass is no conceptual limitation and
increases trivially on architectures that allow more instructions in the
fragment shader.

Second, different objects can be rendered using different hardware
fragment shaders. This allows easy integration of methods as diverse as
non-photorealistic and direct volume rendering, for instance. Although
each distinct fragment shader requires a separate rendering pass, multiple
objects using the same fragment shader with different rendering parame-
ters can effectively be combined into a single pass. When multiple passes
cannot be avoided, the cost of individual passes is reduced drastically by
executing expensive fragment shaders only for those fragments active in
a given pass. These two properties allow highly interactive rendering of
segmented data sets, since even for data sets with many objects usually
only a couple of different rendering modes are employed. We have imple-
mented direct volume rendering with post-classification, pre-integrated
classification [21], different shading modes, non-polygonal isosurfaces,
and maximum intensity projection. See figures 34.1 and 34.2 for exam-
ple images. In addition to non-photorealistic contour enhancement [15]
(figure 34.1, center; figure 34.2, skull), we have also used a volumetric
adaptation of tone shading [29] (figure 34.1, right), which improves depth
perception in contrast to standard shading.

Finally, different objects can also be rendered with different com-
positing modes, e.g., alpha blending and maximum intensity projection
(MIP), for their contribution to a given pixel. These per-object com-
positing modes are object-local and can be specified independently for
each object. The individual contributions of different objects to a single
pixel can be combined via a separate global compositing mode. This two-
level approach to object compositing [40] has proven to be very useful in
order to improve perception of individual objects.

In summary, this chapter presents the following:

• A systematic approach to minimizing both the number of rendering
passes and the performance cost of individual passes when render-
ing segmented volume data with high quality on current GPUs.
Both filtering of object boundaries and the use of different ren-
dering parameters such as transfer functions do not prevent using
a single rendering pass for multiple objects. Even so, each pass
avoids execution of the corresponding potentially expensive frag-
ment shader for irrelevant fragments by exploiting the early z-test.
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This reduces the performance impact of the number of rendering
passes drastically.

• An efficient method for mapping a single object ID volume to and
from a domain where filtering produces correct results even when
three or more objects are present in the volume. The method is
based on simple 1D texture lookups and able to map and filter
blocks of four objects simultaneously.

• An efficient object-order algorithm based on simple depth and
stencil buffer operations that achieves correct compositing of ob-
jects with different per-object compositing modes and an additional
global compositing mode. The result is conceptually identical to
being able to switch compositing modes for any given group of
samples along the ray for any given pixel.

Figure 34.2: Segmented head and neck data set (256x256x333) with six different
enabled objects. The skin and teeth are rendered as MIP with different intensity
ramps, the blood vessels and eyes are rendered as shaded DVR, the skull uses
contour rendering, and the vertebrae use a gradient magnitude-weighted transfer
function with shaded DVR. A clipping plane has been applied to the skin object.



Segmented Data Representation

For rendering purposes, we simply assume that in addition to the usual
data such as a density and an optional gradient volume, a segmentation
mask volume is also available. If embedded objects are represented as
separate masks, we combine all of these masks into a single volume that
contains a single object ID for each voxel in a pre-process. Hence we
will also be calling this segmentation mask volume the object ID volume.
IDs are simply enumerated consecutively starting with one, i.e., we do
not assign individual bits to specific objects. ID zero is reserved (see
later sections). The object ID volume consumes one byte per voxel and
is either stored in its own 3D texture in the case of view-aligned slicing,
or in additional 2D slice textures for all three slice stacks in the case
of object-aligned slicing. With respect to resolution, we have used the
same resolution as the original volume data, but all of the approaches
we describe could easily be used for volume and segmentation data of
different resolutions.

Figure 35.1: CT scan of a human hand (256x128x256) with three segmented objects
(skin, blood vessels, and bone structure).



Rendering Segmented Data

In order to render a segmented data set, we determine object member-
ship of individual fragments by filtering object boundaries in the hard-
ware fragment shader (section 37). Object membership determines which
transfer function, rendering, and compositing modes should be used for
a given fragment.

We render the volume in a number of rendering passes that is basically
independent of the number of contained objects. It most of all depends on
the required number of different hardware configurations that cannot be
changed during a single pass, i.e., the fragment shader and compositing
mode. Objects that can share a given configuration can be rendered in
a single pass. This also extends to the application of multiple per-object
transfer functions (section 37) and thus the actual number of rendering
passes is usually much lower than the number of objects or transfer
functions. It depends on several major factors:

Enabled objects. If all the objects rendered in a given pass have
been disabled by the user, the entire rendering pass can be skipped. If
only some of the objects are disabled, the number of passes stays the
same, independent of the order of object IDs. Objects are disabled by
changing a single entry of a 1D lookup texture. Additionally, per-object
clipping planes can be enabled. In this case, all objects rendered in the
same pass are clipped identically, however.

Rendering modes. The rendering mode, implemented as an ac-
tual hardware fragment shader, determines what and how volume data
is re-sampled and shaded. Since it cannot be changed during a single
rendering pass, another pass must be used if a different fragment shader
is required. However, many objects often use the same basic rendering
mode and thus fragment shader, e.g., DVR and isosurfacing are usually
used for a large number of objects.

Transfer functions. Much more often than the basic rendering
mode, a change of the transfer function is required. For instance, all
objects rendered with DVR usually have their own individual transfer
functions. In order to avoid an excessive number of rendering passes
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due to simple transfer function changes, we apply multiple transfer func-
tions to different objects in a single rendering pass while still retaining
adequate filtering quality (section 37).

Compositing modes. Although usually considered a part of the
rendering mode, compositing is a totally separate operation in graphics
hardware. Where the basic rendering mode is determined by the frag-
ment shader, the compositing mode is specified as blend function and
equation in OpenGL, for instance. It determines how already shaded
fragments are combined with pixels stored in the frame buffer. Chang-
ing the compositing mode happens even more infrequently than changing
the basic rendering mode, e.g., alpha blending is used in conjunction with
both DVR and tone shading.

Different compositing modes per object also imply that the (concep-
tual) ray corresponding to a single pixel must be able to combine the con-
tribution of these different modes (figure 38.1). Especially in the context
of texture-based hardware volume rendering, where no actual rays exist
and we want to obtain the same result with an object-order approach
instead, we have to use special care when compositing. The contribu-
tions of individual objects to a given pixel should not interfere with each
other, and are combined with a single global compositing mode.

In order to ensure correct compositing, we are using two render
buffers and track the current compositing mode for each pixel. Whenever
the compositing mode changes for a given pixel, the already compos-
ited part is transferred from the local compositing buffer into the global
compositing buffer. Section 38 shows that this can actually be done
very efficiently without explicitly considering individual pixels, while still
achieving the same compositing behavior as a ray-oriented image-order
approach, which is crucial for achieving high quality. For faster render-
ing we allow falling back to single-buffer compositing during interaction
(figure 38.2).

Basic rendering loop

We will now outline the basic rendering loop that we are using for each
frame. Table 36.1 gives a high-level overview.

Although the user is dealing with individual objects, we automatically
collect all objects that can be processed in the same rendering pass into
an object set at the beginning of each frame. For each object set, we
generate an object set membership texture, which is a 1D lookup table
that determines the objects belonging to the set. In order to further
distinguish different transfer functions in a single object set, we also
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generate 1D transfer function assignment textures. Both of these types
of textures are shown in figure 36.2 and described in sections 36 and 37.

After this setup, the entire slice stack is rendered. Each slice must
be rendered for every object set containing an object that intersects the
slice, which is determined in a pre-process. In the case of 3D volume
textures, all slices are always assumed to be intersected by all objects,
since they are allowed to cut through the volume at arbitrary angles. If
there is more than a single object set for the current slice, we optionally
render all object set IDs of the slice into the depth buffer before ren-
dering any actual slice data. This enables us to exploit the early z-test
during all subsequent passes for each object set, see below. For perfor-
mance reasons, we never use object ID filtering in this pass, which allows
only conservative fragment culling via the depth test. Exact fragment
rejection is done in the fragment shader.

We proceed by rendering actual slice data. Before a slice can be
rendered for any object set, the fragment shader and compositing mode
corresponding to this set must be activated. Using the two types of
textures mentioned above, the fragment shader filters boundaries, rejects
fragments not corresponding to the current pass, and applies the correct
transfer function.

In order to attain two compositing levels, slices are rendered into a
local buffer, as already outlined above. Before rendering the current slice,

DetermineObjectSets();

CreateObjectSetMembershipTextures();

CreateTFAssignmentTextures();

FOR each slice DO

TransferLocalBufferIntoGlobalBuffer();

ClearTransferredPixelsInLocalBuffer();

RenderObjectIdDepthImageForEarlyZTest();

FOR each object set with an object in slice DO

SetupObjectSetFragmentRejection();

SetupObjectSetTFAssignment();

ActivateObjectSetFragmentShader();

ActivateObjectSetCompositingMode();

RenderSliceIntoLocalBuffer();

Table 36.1: The basic rendering loop that we are using. Object set
membership can change every time an object’s rendering or compositing
mode is changed, or an object is enabled or disabled.
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Figure 36.1: In order to render the bone structure shown on the left, many voxels
need to be culled. The early z-test allows to avoid evaluating shading equations
for culled voxels. If it is not employed, performance will correspond to shading all
voxels, shown on the right.

those pixels where the local compositing mode differs from the previous
slice are transferred from the local into the global buffer using the global
compositing mode. After this transfer, the transferred pixels are cleared
in the local buffer to ensure correct local compositing for subsequent
pixels. In the case when only a single compositing buffer is used for
approximate compositing, the local to global buffer transfer and clear
are not executed.

Finally, if the global compositing buffer is separate from the viewing
window, it has to be transferred once after the entire volume has been
rendered.

Conservative fragment culling via early z-test

On current graphics hardware, it is possible to avoid execution of the
fragment shader for fragments where the depth test fails as long as the
shader does not modify the depth value of the fragment. This early z-
test is crucial to improving performance when multiple rendering passes
have to be performed for each slice.

If the current slice’s object set IDs have been written into the depth
buffer before, see above, we conservatively reject fragments not belonging
to the current object set even before the corresponding fragment shader
is started. In order to do this, we use a depth test of GL EQUAL and
configure the vertex shader to generate a constant depth value for each
fragment that exactly matches the current object set ID.
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Fragment shader operations

Most of the work in volume renderers for consumer graphics hardware is
done in the fragment shader, i.e., at the granularity of individual frag-
ments and, ultimately, pixels. In contrast to approaches using lookup
tables, i.e., paletted textures, we are performing all shading operations
procedurally in the fragment shader. However, we are most of all inter-
ested in the operations that are required for rendering segmented data.
The two basic operations in the fragment shader with respect to the seg-
mentation mask are fragment rejection and per-fragment application of
transfer functions:

Fragment rejection. Fragments corresponding to object IDs that
cannot be rendered in the current rendering pass, e.g., because they need
a different fragment shader or compositing mode, have to be rejected.
They, in turn, will be rendered in another pass, which uses an appropri-
ately adjusted rejection comparison.

For fragment rejection, we do not compare object IDs individually,
but use 1D lookup textures that contain a binary membership status for
each object (figure 36.2, left). All objects that can be rendered in the
same pass belong to the same object set, and the corresponding object set
membership texture contains ones at exactly those texture coordinates
corresponding to the IDs of these objects, and zeros everywhere else. The
re-generation of these textures at the beginning of each frame, which is
negligible in terms of performance, also makes turning individual objects
on and off trivial. Exactly one object set membership texture is active for

Figure 36.2: Object set membership textures (left; three 1D intensity textures for
three sets containing three, two, and one object, respectively) contain a binary
membership status for each object in a set that can be used for filtering object
IDs and culling fragments. Transfer function assignment textures (right; one 1D
RGBA texture for distinction of four transfer functions) are used to filter four object
boundaries simultaneously and determine the corresponding transfer function via a
simple dot product.
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a given rendering pass and makes the task of fragment rejection trivial
if the object ID volume is point-sampled.

When object IDs are filtered, it is also crucial to map individual
IDs to zero or one before actually filtering them. Details are given in
section 37, but basically we are using object set membership textures to
do a binary classification of input IDs to the filter, and interpolate after
this mapping. The result can then be mapped back to zero or one for
fragment rejection.

Per-fragment transfer function application. Since we apply dif-
ferent transfer functions to multiple objects in a single rendering pass, the
transfer function must be applied to individual fragments based on their
density value and corresponding object ID. Instead of sampling multi-
ple one-dimensional transfer function textures, we sample a single global
two-dimensional transfer function texture (figure 36.3). This texture is
not only shared between all objects of an object set, but also between
all object sets. It is indexed with one texture coordinate corresponding
to the object ID, the other one to the actual density.

Because we would like to filter linearly along the axis of the actual
transfer function, but use point-sampling along the axis of object IDs,
we store each transfer function twice at adjacent locations in order to
guarantee point-sampling for IDs, while we are using linear interpolation
for the entire texture. We have applied this scheme only to 1D transfer
functions, but general 2D transfer functions could also be implemented
via 3D textures of just a few layers in depth, i.e., the number of different
transfer functions.

We are using an extended version of the pixel-resolution filter that
we employ for fragment rejection in order to determine which of multiple
transfer functions in the same rendering pass a fragment should actually

Figure 36.3: Instead of multiple one-dimensional transfer functions for different
objects, we are using a single global two-dimensional transfer function texture. After
determining the object ID for the current fragment via filtering, the fragment shader
appropriately samples this texture with (density, object id) texture coordinates.
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use. Basically, the fragment shader uses multiple RGBA transfer func-
tion assignment textures (figure 36.2, right) for both determining the
transfer function and rejecting fragments, instead of a single object set
membership texture with only a single color channel. Each one of these
textures allows filtering the object ID volume with respect to four object
boundaries simultaneously. A single lookup yields binary membership
classification of a fragment with respect to four objects. The resulting
RGBA membership vectors can then be interpolated directly. The main
operation for mapping back the result to an object ID is a simple dot
product with a constant vector of object IDs. If the result is the non-
existent object ID of zero, the fragment needs to be rejected. The details
are described in section 37.

This concept can be extended trivially to objects sharing transfer
functions by using transfer function IDs instead of object IDs. The
following two sections will now describe filtering of object boundaries
at sub-voxel precision in more detail.



Boundary Filtering

One of the most crucial parts of rendering segmented volumes with high
quality is that the object boundaries must be calculated during rendering
at the pixel resolution of the output image, instead of the voxel resolution
of the segmentation volume. Figure 37.1 (left) shows that simply point-
sampling the object ID texture leads to object boundaries that are easily
discernible as individual voxels. That is, simply retrieving the object ID
for a given fragment from the segmentation volume is trivial, but causes
artifacts. Instead, the object ID must be determined via filtering for
each fragment individually, thus achieving pixel-resolution boundaries.

Unfortunately, filtering of object boundaries cannot be done directly
using the hardware-native linear interpolation, since direct interpolation
of numerical object IDs leads to incorrectly interpolated intermediate
values when more than two different objects are present. When filtering
object IDs, a threshold value st must be chosen that determines which
object a given fragment belongs to, which is essentially an iso-surfacing
problem.

However, this cannot be done if three or more objects are contained
in the volume, which is illustrated in the top row of figure 37.2. In that
case, it is not possible to choose a single st for the entire volume. The
crucial observation to make in order to solve this problem is that the
segmentation volume must be filtered as a successive series of binary

Figure 37.1: Object boundaries with voxel resolution (left) vs. object boundaries
determined per-fragment with linear filtering (right).
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volumes in order to achieve proper filtering [97], which is shown in the
second row of figure 37.2. Mapping all object IDs of the current object
set to 1.0 and all other IDs to 0.0 allows using a global threshold value
st of 0.5. We of course do not want to store these binary volumes ex-
plicitly, but perform this mapping on-the-fly in the fragment shader by
indexing the object set membership texture that is active in the current
rendering pass. Filtering in the other passes simply uses an alternate
binary mapping, i.e., other object set membership textures.

One problem with respect to a hardware implementation of this ap-
proach is that texture filtering happens before the sampled values can
be altered in the fragment shader. Therefore, we perform filtering of ob-
ject IDs directly in the fragment shader. Note that our approach could
in part also be implemented using texture palettes and hardware-native
linear interpolation, with the restriction that not more than four transfer
functions can be applied in a single rendering pass (section 37). However,
we have chosen to perform all filtering in the fragment shader in order
to create a coherent framework with a potentially unlimited number of
transfer functions in a single rendering pass and prepare for the possible
use of cubic boundary filtering in the future.

After filtering yields values in the range [0.0, 1.0], we once again come
to a binary decision whether a given fragment belongs to the current

Figure 37.2: Each fragment must be assigned an exactly defined object ID after
filtering. Here, IDs 3, 4, and 5 are interpolated, yielding the values shown in blue.
Top row: choosing a single threshold value st that works everywhere is not possible
for three or more objects. Second row: object IDs must be converted to 0.0 or
1.0 in the fragment shader before interpolation, which allows using a global st of
0.5. After thresholding, fragments can be culled accordingly (third row), or mapped
back to an object ID in order to apply the corresponding transfer function (fourth
row).
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object set by comparing with a threshold value of 0.5 and rejecting frag-
ments with an interpolated value below this threshold (figure 37.2, third
row).

Actual rejection of fragments is done using the KIL instruction of the
hardware fragment shader that is available in the ARB fragment program

OpenGL extension, for instance. It can also be done by mapping the
fragment to RGBA values constituting the identity with respect to the
current compositing mode (e.g., an alpha of zero for alpha blending), in
order to not alter the frame buffer pixel corresponding to this fragment.

Linear boundary filtering. For object-aligned volume slices, bi-
linear interpolation is done by setting the hardware filtering mode for the
object ID texture to nearest-neighbor and sampling it four times with
offsets of whole texels in order to get access to the four ID values needed
for interpolation. Before actual interpolation takes place, the four object
IDs are individually mapped to 0.0 or 1.0, respectively, using the current
object set membership texture.

We perform the actual interpolation using a variant of texture-based
filtering [34], which proved to be both faster and use fewer instructions
than using LRP instructions. With this approach, bi-linear weight calcu-
lation and interpolation can be reduced to just one texture fetch and one
dot product. When intermediate slices are interpolated on-the-fly [83],
or view-aligned slices are used, eight instead of four input IDs have to
be used in order to perform tri-linear interpolation.

Combination with pre-integration. The combination of pre-
integration [21] and high-quality clipping has been described re-
cently [85]. Since our filtering method effectively reduces the segmen-
tation problem to a clipping problem on-the-fly, we are using the same
approach after we have mapped object IDs to 0.0 or 1.0, respectively. In
this case, the interpolated binary values must be used for adjusting the
pre-integration lookup.

Multiple per-object transfer functions in a single ren-
dering pass

In addition to simply determining whether a given fragment belongs to
a currently active object or not, which has been described in the previ-
ous section, this filtering approach can be extended to the application of
multiple transfer functions in a single rendering pass without sacrificing
filtering quality. Figure 37.3 shows the difference in quality for two ob-
jects with different transfer functions (one entirely red, the other entirely
yellow for illustration purposes).
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Figure 37.3: Selecting the transfer function on a per-fragment basis. In the left
image, point-sampling of the object ID volume has been used, whereas in the right
image procedural linear interpolation in the fragment shader achieves results of
much better quality.

In general hardware-accelerated volume rendering, the easiest way
to apply multiple transfer functions in a single rendering pass would
be to use the original volume texture with linear interpolation, and an
additional separate point-sampled object ID texture. Although actual
volume and ID textures could be combined into a single texture, the
use of a separate texture to store the IDs is mandatory in order to pre-
vent that filtering of the actual volume data also reverts back to point-
sampling, since a single texture cannot use different filtering modes for
different channels and point-sampling is mandatory for the ID texture.
The hardware-native linear interpolation cannot be turned on in order
to filter object IDs, and thus the resolution of the ID volume is easily
discernible if the transfer functions are sufficiently different.

In order to avoid the artifacts related to point-sampling the ID tex-
ture, we perform several almost identical filtering steps in the fragment
shader, where each of these steps simultaneously filters the object bound-
aries of four different objects. After the fragment’s object ID has been
determined via filtering, it can be used to access the global transfer func-
tion table as described in section 36 and illustrated in figure 36.3. For
multiple simultaneous transfer functions, we do not use object set mem-
bership textures but the similar extended concept of transfer function
assignment textures, which is illustrated in the right image of figure 36.2.

Each of these textures can be used for filtering the object ID volume
with respect to four different object IDs at the same time by using the
four channels of an RGBA texture in order to perform four simultaneous
binary classification operations. In order to create these textures, each
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object set membership texture is converted into
⌈
#objects/4

⌉
transfer

function assignment textures, where #objects denotes the number of
objects with different transfer functions in a given object set. All values
of 1.0 corresponding to the first transfer function are stored into the
red channel of this texture, those corresponding to the second transfer
function into the green channel, and so on.

In the fragment shader, bi-linear interpolation must index this tex-
ture at four different locations given by the object IDs of the four input
values to interpolate. This classifies the four input object IDs with re-
spect to four objects with just four 1D texture sampling operations. A
single linear interpolation step yields the linear interpolation of these
four object classifications, which can then be compared against a thresh-
old of (0.5, 0.5, 0.5, 0.5), also requiring only a single operation for four
objects. Interpolation and thresholding yields a vector with at most one
component of 1.0, the other components set to 0.0. In order for this to
be true, we require that interpolated and thresholded repeated binary
classifications never overlap, which is not guaranteed for all types of fil-
ter kernels. In the case of bi-linear or tri-linear interpolation, however,
overlaps can never occur [97].

The final step that has to be performed is mapping the binary clas-
sification to the desired object ID. We do this via a single dot product
with a vector containing the four object IDs corresponding to the four
channels of the transfer function assignment texture (figure 36.2, right).
By calculating this dot product, we multiply exactly the object ID that
should be assigned to the final fragment by 1.0. The other object IDs are
multiplied by 0.0 and thus do not change the result. If the result of the
dot product is 0.0, the fragment does not belong to any of the objects
under consideration and can be culled. Note that exactly for this reason,
we do not use object IDs of zero.

For the application of more than four transfer functions in a single
rendering pass, the steps outlined above can be executed multiple times
in the fragment shader. The results of the individual dot products are
simply summed up, once again yielding the ID of the object that the
current fragment belongs to.

Note that the calculation of filter weights is only required once, irre-
spective of the number of simultaneous transfer functions, which is also
true for sampling the original object ID textures.

Equation 37.1 gives the major fragment shader resource requirements
of our filtering and binary classification approach for the case of bi-linear
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interpolation with LRP instructions:

4TEX 2D + 4
⌈#objects

4

⌉
TEX 1D + 3

⌈#objects

4

⌉
LRP, (37.1)

in addition to one dot product and one thresholding operation (e.g.,
DP4 and SGE instructions, respectively) for every

⌈
#objects/4

⌉
transfer

functions evaluated in a single pass.
Similarly to the alternative linear interpolation using texture-based

filtering that we have outlined in section 37, procedural weight calcu-
lation and the LRP instructions can once again also be substituted by
texture fetches and a few cheaper ALU instructions. On the Radeon
9700, we are currently able to combine high-quality shading with up to
eight transfer functions in the same fragment shader, i.e., we are using up
to two transfer function assignment textures in a single rendering pass.



Two-Level Volume Rendering

The final component of the framework presented in this chapter with re-
spect to the separation of different objects is the possibility to use individ-
ual object-local compositing modes, as well as a single global compositing
mode, i.e., two-level volume rendering [40]. The local compositing modes
that can currently be selected are alpha blending (e.g., for DVR or tone
shading), maximum intensity projection (e.g., for MIP or contour en-
hancement), and isosurface rendering. Global compositing can either be
done by alpha blending, MIP, or a simple add of all contributions.

Although the basic concept is best explained using an image-order
approach, i.e., individual rays (figure 38.1), in the context of texture-
based volume rendering we have to implement it in object-order. As
described in section 36, we are using two separate rendering buffers, a
local and a global compositing buffer, respectively. Actual volume slices

Figure 38.1: A single ray corresponding to a given image pixel is allowed to pierce
objects that use their own object-local compositing mode. The contributions of
different objects along a ray are combined with a single global compositing mode.
Rendering a segmented data set with these two conceptual levels of compositing
(local and global) is known as two-level volume rendering.
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Figure 38.2: Detecting changes in compositing mode for each individual sample
along a ray can be done exactly using two rendering buffers (left), or approximately
using only a single buffer (right).

are only rendered into the local buffer, using the appropriate local com-
positing mode. When a new fragment has a different local compositing
mode than the pixel that is currently stored in the local buffer, that pixel
has to be transferred into the global buffer using the global compositing
mode. Afterward, these transferred pixels have to be cleared in the local
buffer before the corresponding new fragment is rendered. Naturally, it
is important that both the detection of a change in compositing mode
and the transfer and clear of pixels is done for all pixels simultaneously.

In order to do this, we are using the depth buffer of both the local

TransferLocalBufferIntoGlobalBuffer() {
ActivateContextGlobalBuffer();

DepthTest( NOT EQUAL );

StencilTest( RENDER ALWAYS, SET ONE );

RenderSliceCompositingIds( DEPTH BUFFER );

DepthTest( DISABLE );

StencilTest( RENDER WHERE ONE, SET ZERO );

RenderLocalBufferImage( COLOR BUFFER );

}

Table 38.1: Detecting for all pixels simultaneously where the compositing
mode changes from one slice to the next, and transferring those pixels
from the local into the global compositing buffer.
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and the global compositing buffer to track the current local compositing
mode of each pixel, and the stencil buffer to selectively enable pixels
where the mode changes from one slice to the next. Before actually
rendering a slice (see table 36.1), we render IDs corresponding to the
local compositing mode into both the local and the global buffer’s depth
buffer. During these passes, the stencil buffer is set to one where the
ID already stored in the depth buffer (from previous passes) differs from
the ID that is currently being rendered. This gives us both an updated
ID image in the depth buffer, and a stencil buffer that identifies exactly
those pixels where a change in compositing mode has been detected.

We then render the image of the local buffer into the global buffer.
Due to the stencil test, pixels will only be rendered where the compositing
mode has actually changed. Table 38.1 gives pseudo code for what is
happening in the global buffer. Clearing the just transferred pixels in

Figure 38.3: Segmented head and neck data set (256x256x333) with eight different
enabled objects – brain: tone shading; skin: contour enhancement with clipping
plane; eyes and spine: shaded DVR; skull, teeth, and vertebrae: unshaded DVR;
trachea: MIP.



ACM SIGGRAPH 2004 199

the local buffer works almost identically. The only difference is that in
this case we do not render the image of another buffer, but simply a
quad with all pixels set to zero. Due to the stencil test, pixels will only
be cleared where the compositing mode has actually changed.

Note that all these additional rendering passes are much faster than
the passes actually rendering and shading volume slices. They are in-
dependent of the number of objects and use extremely simple fragment
shaders. However, the buffer/context switching overhead is quite notice-
able, and thus correct separation of compositing modes can be turned
off during interaction. Figure 38.2 shows a comparison between approx-
imate and correct compositing with one and two compositing buffers,
respectively. Performance numbers can be found in table 39.1. When
only a single buffer is used, the compositing mode is simply switched
according to each new fragment without avoiding interference with the
previous contents of the frame buffer.

The visual difference depends highly on the combination of composit-
ing modes and spatial locations of objects. The example in figure 38.2
uses MIP and DVR compositing in order to highlight the potential differ-
ences. However, using approximate compositing is very useful for faster
rendering, and often exhibits little or no loss in quality. Also, it is pos-
sible to get an almost seamless performance/quality trade-off between
the two, by performing the buffer transfer only every n slices instead of
every slice.

See figures 39.1 and 39.2 for additional two-level volume renderings
of segmented volume data.



Performance

Actual rendering performance depends on a lot of different factors, so
table 39.1 shows only some example figures. In order to concentrate on
performance of rendering segmented data, all rates have been measured
with unshaded DVR. Slices were object-aligned; objects were rendered
all in a single pass (single) or in one pass per object (multi+ztest).

Compositing performance is independent of the rendering mode, i.e.,
can also be measured with DVR for all objects. Frame rates in paren-
theses are with linear boundary filtering enabled, other rates are for
point-sampling during interaction. Note that in the unfiltered case with
a single rendering pass for all objects, the performance is independent of
the number of objects.

If more complex fragment shaders than unshaded DVR are used, the
relative performance speed-up of multi+ztest versus multi increases fur-
ther toward single performance, i.e., the additional overhead of writing
object set IDs into the depth buffer becomes negligible.

#slices #objects compositing single multi+ztest multi
128 3 one buffer 48 (16.2) 29.2 (15.4) 19.3 (6.8)
128 3 two buffers 7 (3.9) 6.2 (3.2) 5 (1.9)
128 8 one buffer 48 (11.3) 15.5 (10) 7 (2.1)
128 8 two buffers 7 (3.2) 5.4 (3) 2.5 (0.7)
256 3 one buffer 29 (9.1) 15.6 (8.2) 11 (3.4)
256 3 two buffers 3.5 (2) 3.2 (1.8) 2.5 (1.1)
256 8 one buffer 29 (5.3) 8.2 (5.2) 3.7 (1.1)
256 8 two buffers 3.5 (1.7) 3.1 (1.6) 1.2 (0.4)

Table 39.1: Performance on an ATI Radeon 9700; 512x512 viewport
size; 256x128x256 data set; three and eight enabled objects, respectively.
Numbers are in frames per second. Compositing is done with either one
or two buffers, respectively. The multi column with early z-testing turned
off is only shown for comparison purposes.
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Figure 39.1: Hand data set (256x128x256) examples of different rendering and
compositing modes. (top, left) skin with unshaded DVR, vessels and bones with
shaded DVR; (top, right) skin with contour rendering, vessels with shaded DVR,
bones with tone shading; (bottom, left) skin with MIP, vessels with shaded DVR,
bones with tone shading; (bottom, right) skin with isosurfacing, occluded vessels
and bones with shaded DVR.
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Figure 39.2: Head and neck data set (256x256x333) examples of different render-
ing and compositing modes. (top, left) skin disabled, skull with shaded DVR; (top,
right) skin with MIP, skull with isosurfacing; (bottom, left) skin with contour ren-
dering, skull with tone shading; (bottom, right) skin with contour rendering, skull
with isosurfacing.
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Introduction

In scientific visualization volumetric objects often need to be deformed
to account for non-linear distortions of the underlying object. A promi-
nent example is computer assisted surgery, where tomography data from
therapy planning must be deformed to match non-rigid patient motion
during the intervention.

With the evolution of hardware-accelerated volume rendering tech-
niques, volumetric objects are also becoming more and more important
as supplement to traditional surface models in computer animation.

Before we examine volumetric deformation in detail, let us reconsider
how deformation is performed with surface descriptions.

41.1 Modeling Paradigms

In traditional modeling the shape of an object is described by means of
an explicit surface while its appearance is defined by material proper-
ties and texture maps, that form a complex shading model. If we are
animating such objects we usually want to deform the shape, but not
the appearance. In consequence, we are displacing vertices (or control
points), while maintaining the original texture coordinate binding. As
an example, if we displace one vertex of a triangle (modifying its position
without changing the texture coordinate), the assigned texture map will
stretch to fit onto the modified area of the triangle.

It is important to notice, that texture coordinates are interpolated in
barycentric coordinates within triangles, while texture samples are ob-
tained with bilinear interpolation from a 2D texture map (or trilinear
interpolation in case of 3D textures). This is the reason that a rectangu-
lar texture image does not map evenly onto a deformed quadrangle (see
Figure 41.1). For polygonal surfaces, this is an imperfection that we can
either simply neglect or alleviate by adjusting the texture coordinates
for different animation poses.
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Figure 41.1: Far left: A texture mapped quadrangle is deformed by displacing
one vertex. Left: Bilinear interpolation of texture coordinates within the
quadrangle would result in an evenly mapped texture. Right and far right:
Splitting the quadrangle into two triangles with barycentric interpolation
results in different distortions depending on the actual tessellation (white
dotted line).

41.2 Volumetric Deformation

Apart of the large variety of deformable surface models [90, 14, 72, 12],
only few approaches exist on volume deformation [63, 108, 23]. If we want
to adapt surface deformation techniques to volumetric objects, we first
notice that the strict separation of shape from appearance does not fit in
properly. The drawn proxy geometry is usually not related to the shape
of the object contained in the volume data. Both shape and appearance
of the object are defined by the 3D texture map in combination with an
appropriate transfer function. The shape of the volumetric object can
then be thought of as an implicit surface or isosurface.

As a result there are two ways of deforming volumetric objects in
general: Modifying either the proxy geometry in model coordinates (the
shape in traditional modeling) or distorting the mapping of the 3D tex-
ture in texture space (the appearance). Both methods will result in a
deformation of the shape of the volumetric object. We will examine
them in the following sections.



Deformation in Model Space

As we have seen in the previous chapters, texture based approaches de-
compose the volume data set into a proxy geometry by slicing the bound-
ing box into a stack of planar polygons. Unfortunately, applying a de-
formation by simply displacing the vertices of the volume bounding box
before the slice decomposition does not lead to consistent visual results
after the slice decomposition (not even if we ensure that the faces remain
planar). This is due to the same interpolation problems as outlined in
Figure 41.1.

In order to achieve a consistent mapping of a 3D texture image to a
deformed hexahedron, the hexahedron must be tessellated into several
tetrahedra before computing the proxy geometry. Subdivision into tetra-

Figure 42.1: A hexahedron (A) is split into 5 tetrahedra. The first two tetrahedra
are created by cutting away the foremost (B) and the rearmost vertex (C) of the
top face. The remaining trunk (D) is divided into three tetrahedra (E) by splitting
the bottom face along its diagonal.
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hedra also ensures consistent results for slice intersection if the faces of
the hexahedron become non-planar due to the deformation.

The easiest way of subdividing a hexahedron is to split it into 5
tetrahedra as outlined in Figure 42.1. The first tetrahedron is created
by removing the foremost vertex of the top face and the three edges
connected to it (B). The second tetrahedron is calculated the same way
for the rearmost vertex (C) on the top face. The remaining simplex (D)
can then be divided similarly into three tetrahedra by cutting away the
leftmost and the rightmost vertex of the bottom face(E).

The deformation of a single tetrahedron can be described as a simple
affine transformation

Φ(~x) = A~x (42.1)

in homogenous coordinates. The deformation matrix A ∈ IR4×4 is fully
determined by specifying four translation vectors at the tetrahedron’s
vertices. The deformation of the entire volumetric object is then
composed from piecewise linear transformation. The deformed tetra-
hedra are finally decomposed into an view-aligned slices and rendered
back-to-front via alpha blending. Approaches for performing the slicing
of tetrahedra cells completely in a vertex shader do exist, but have not
yet been published by the respective research groups, unfortunately.

42.1 Depth Sorting

Back-to-front compositing of tetrahedral data usually requires depth-
sorting to obtain the correct visibility order of the cells. Cell sorting
of tetrahedra data in general is not a trivial task, especially not for
non-convex data or meshes that contain visibility cycle [58] for certain
viewpoints. Possible solutions can be found in [75, 13, 45, 111] Most of
the complex sorting algorithms can be circumvented if the tetrahedra
cells are generated by splitting hexahedra as outlined above. In this case
only the hexahedra must be depth sorted using the distance from the eye
point. For each hexahedron, the respective tetrahedra are finally sorted
separately. This however only works properly if the common faces of
adjacent hexahedra are kept planar and if the cells do not intersect each
other (a condition that is required by most sorting algorithms).



Deformation in Texture Space

The other alternative for volumetric deformation is keeping the vertices
of the geometry static and modifying the texture coordinates only. Since
the shape of the object is defined as an implicit surface in the 3D texture,
distorting the texture space results in a deformation of the object.

To achieve higher flexibility for the deformation, we first subdivide
the original cuboid into a fixed set of sub-cubes by inserting additional
vertices (Figure 43.1left). A deformation is specified in this refined
model by displacing only the texture coordinates for each vertex. The
displacement of the texture coordinate ~u for a point ~x in the interior
of a patch is determined by trilinear interpolation of the translation
vectors ~tijk given at the vertices. The result is a trilinear mapping

Φ(~u) = ~u +
∑

i,j,k∈{0,1}
aijk(~x) · ~tijk, (43.1)

with the interpolation weights aijk(~x) determined by the position ~x in
(undeformed) model space.

If we now setup the proxy geometry, we want to preserve the benefit
of our model being based on a static geometry, because the intersec-
tion calculation for all the small sub-cubes contributes a considerable
computational load. We use object-aligned slices (see Figure 43.1 right),
which keeps us from having to recompute all the cross-sections for each
frame. Object-aligned slices can also be easily computed in a simple
vertex shader.

Again, the straight-forward approach of slicing each sub-cube and
assign texture coordinates at the resulting polygon vertices will not lead
to a correct trilinear mapping as specified in Equation 43.1. There are
consistency problems similar to the ones described in Section 41.1. In
Figure 43.2 the texture coordinate of the upper right vertex of the quad is
displaced. The correct trilinear mapping (far left) is poorly approximated
by the internal triangulation of the graphics API (middle left and right).
As a solution to this problem, inserting one additional vertex in the
middle of the polygon usually results in a sufficiently close approximation
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to the original trilinear deformation with respect to screen resolution. If
higher accuracy is required, more additional vertices can be inserted.
Such a manual tessellation also provides a consistent triangulation of the
non-planar texture map, which is result of an arbitrary deformation of
3D texture space.

Figure 43.1: Model Space(left) : The volume is subdivided into a fixed set of
sub-cubes. The geometry remains undeformed. Texture Space (middle): The de-
formation is modelled by displacing texture coordinates. Right: Such a deformation
model allows the extraction of object aligned slices at low computational cost.

43.1 Practical Aspects

In an intuitive modelling application, the artist most likely does not
want to specify texture coordinate deformation manually. Instead, the
user should be provided with a mechanism which allows him to pick and
drag a vertex to an arbitrary position. Such a manipulation, however,
requires the inverse transformation Φ−1 of our trilinear mapping. The
caveat here is that the inverse of a trilinear mapping in general is not
again a trilinear mapping, but a function of higher complexity.

For the purpose of modeling, however, the exact inverse transforma-
tion is not necessarily required. In the usual case an intuitive modeling
mechanism similar to placing control points of a NURBS patch should
suffice. An approximate inverse Φ−1 that allows intuitive dragging of
vertices can be calculated simply by negating the original translation
vectors at the vertices,

Φ̃−1(~u) = ~u +
∑

i,j,k∈{0,1}
aijk(~x) · (−~tijk), (43.2)
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Figure 43.2: The trilinear deformation in texture space (far left: is poorly ap-
proximated if of the graphics API internally tessellates the textured quad into two
triangles with barycentric interpolation (middle left and right). Inserting an addi-
tional vertex (far right) usually approximates the trilinear interpolation sufficiently
close.

It is easy to verify, that the approximation error for a maximum dis-
placement vector of magnitude γ amounts to

Φ̃−1(Φ(~u)) = ~u + o(γ2), (43.3)

which turns out to be accurate enough for modeling purposes.
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43.2 Non-uniform Subdivision

Using such a model as a basis, it is easy to increase flexibility adaptively
by further subdividing single patches as required. This results in a hier-
archical octree-structure as illustrated in Figure 43.3 (left). In order to
maintain a consistent texture map at the boundary between patches with
different subdivision level, additional constraints are required. Such con-
straints must be setup for all vertices which are located on edges or faces,
that are shared by patches of different levels. Without these constraints
undesired gaps and discontinuities would emerge in texture space. In
3D, we must further differentiate between face and edge constraints.

Figure 43.3: Left: Non-uniform subdivision is used to increase flexibility for the
deformation. Edge (middle:) constraints and face constraints (right) are necessary
to prevent gaps in texture space.

43.2.1 Edge Constraints

At common edges between patches with different subdivision levels,
a simple constraint is necessary to ensure that the two half-edges of
the higher level stay collinear. The inner vertex1 in Figure 43.3middle,
which was inserted by the higher subdivision level must stay at its fixed
position relative to the two neighboring vertices. Note that this vertex
is not even allowed to move in direction along the edge, as this would
also result in discontinuities in texture space.

~VC = (1− α) ~V0 + α · ~V1 (43.4)

1Note that the constraints are setup in texture space only. If we are referring to
vertices we actually mean texture coordinates (= vertices in texture space).
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43.2.2 Face Constraints

At faces, which are shared by different subdivision levels, another type
of constraint is required to ensure coplanarity. The middle vertex in
Figure 43.3(right), must stay at a fixed position relative to the four
vertices, which formed the original face.

~VC =
∑

i=0...3

ai
~Vi with

∑
i=0...3

ai = 1; (43.5)

To circumvent recursive constraints, we additionally follow a gen-
eral rule, known from surface modeling, that says that two neighboring
patches must not differ by more than one subdivision level. This means
that any patch can only be further subdivided if all neighboring patches
have at least the same subdivision level.

43.3 Deformation via Fragment Shaders

The texture-space deformation model can be efficiently implemented us-
ing dependent textures or offset textures. The basic idea of an offset
texture is to use the RGB triplet obtained from one texture as texture
coordinate offset for a second texture. On a graphics board with support
for 3D dependent textures, the computation of the texture-space defor-
mation model can be performed completely within the graphics hard-
ware. Have a look at the code for the fragment shader:

// Cg fragment shader for

// texture-space volume deformation

half4 main (float3 texcoords : TEXCOORD0,

uniform sampler3D offsetTexture,

uniform sampler3D volumeTexture) : COLOR0

{
float3 offset = tex3D(offsetTexture, uvw);

uvw = uvw + offset;

return tex3D(volumeTexture, uvw);

}

The idea here is to store the deformation vectors in the RGB channels
of a 3D offset texture and to use the dependent texture lookup to obtain



ACM SIGGRAPH 2004 215

the deformed volumetric information from a second 3D texture map,
which stores the undeformed volume. Note that there is no need for
the first texture to have equal size as the original volume, so it should
be possible to keep it small enough to allow an interactive update of
the deformation field. This technique also allows the rendering of view-
aligned slices instead of object aligned slices, since a uniform trilinear
mapping of voxels to transformation vectors is guaranteed by the first
3D texture.

Such a fragment shader can also be easily modified to handle linear
keyframe interpolation. The following fragment shader takes two off-
set textures as input and interpolates the offset vectors using the lerp

command.

// Cg fragment shader for texture-space volume

// deformation with blending of two keyframes

half4 main (float3 texcoords : TEXCOORD0,

uniform sampler3D offsetTexture1,

uniform sampler3D offsetTexture2,

uniform sampler3D volumeTexture,

uniform float time) : COLOR0

{
float3 offset1 = tex3D(offsetTexture1, uvw);

float3 offset2 = tex3D(offsetTexture2, uvw);

uvw = uvw + lerp(offset1, offset2, time);

return tex3D(volumeTexture, uvw);

}



Local Illumination

Local illumination techniques as described in Part 4 cannot directly be
used with the described deformation models. Due to the deformation
pre-calculated gradient vectors become invalid. In this section we want
to examine possibilities to adapt pre-calculated vectors to the applied
deformation.

For the deformation in model space described in Chapter 42 such an
adaptation is easy, because we know the exact affine deformation matrix
for each tetrahedron. We also know that if an object is transformed
with a linear matrix M, its normal vectors must be transformed with
the transposed inverse matrix (M−1)T . All we have to do is multiply
the precalculated normal vectors with the transposed inverse of matrix
A from Equation 42.1, which is constant for each tetrahedron. The local
illumination term can then be computed as usual.

The texture-space deformation model, however, is based on a trilin-
ear mapping (Equation 43.1), whose inverse is a rather complex function.
Calculating the exact deformation of the normal vectors becomes expen-
sive. One working alternative is to use on-the-fly gradient estimation as
described in the Illumination Part.

Another alternative is to approximate the inverse of the trilinear func-
tion using a linear transformation. The idea is to find an affine mapping,
which approximates the original trilinear mapping Φ(~x) and then use the
transposed inverse matrix to transform the pre-computed Normal vec-
tors. The affine transformation is simply a 4× 4-matrix in homogenous
coordinates, denoted

Φ(~x) = A~x, with A =

(
A ~b

0 0 0 1

)
∈ IR4×4. (44.1)

The optimal approximation Φ is determined by minimizing the quadratic
difference between the transformation of the eight static corner vertices
Φ(~xi) and their real transformed positions ~yi = Φ(~xi), according to

δ

δA

8∑
i=1

‖Φ(~xi)− ~yi‖2 = 0, (44.2)
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which leads to
8∑

i=1

(~xi~x
T
i AT − ~xi~y

T
i ) = 0. (44.3)

Solving this equation for AT , results in

AT = M−1

8∑
i=1

~xi~y
T
i , with M =

8∑
i=1

~xi~x
T
i ∈ IR4×4. (44.4)

It is easy to verify that the inverse of matrix M always exists. One
important fact is that matrix M is constant for each patch, because the
undeformed corner vertices ~xi are static in this model. Matrix M can
thus be pre-computed for efficiency. Taking also into consideration that
the corner vertices are located on an axis-aligned grid, the computation
can be further simplified, such that calculating each entry aij of the affine
matrix A will require only eight multiplications.

The performance benefit of this approximation should become clear,
if we consider the dot products that are involved in the diffuse term of
the Phong illumination model

Idiff = IL · (~n •~l). (44.5)

In this context, ~n is the surface normal, which coincides with the voxel
gradient in our model. IL denotes the color of the light source, weighted
by a material dependent diffuse reflection coefficient. As we have seen

Figure 44.1: Diffuse illumination of an undeformed sphere (left). Extremely de-
formed sphere with discontinuities at the patch boundaries (center). Correct illu-
mination by smoothing the deformed light vectors (right) at the vertices.
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in the Illumination Part, the per-pixel dot product computation can be
efficiently performed in hardware using fragment shaders.

For the undeformed volume the gradient vectors are pre-calculated
and stored within a 3D normal map. In order to achieve realistic illumi-
nation results for deformable volumetric data as focused here, we have
to adapt the gradient vectors to the actual deformation. According to
our linear approximation, the new diffuse term after the transformation
is determined by

Ĩdiff = IL · ( ((A−1)T~n) •~l). (44.6)

Note that since the gradients ~n are obtained from a texture, this cal-
culation requires a per-pixel matrix multiplication, which can easily be
computed using fragment shaders. If we further assuming directional
light, the light vector ~l is constant for the whole scene and there is an
easy way for illumination, which circumvents these per-pixel matrix mul-
tiplication. Consider that the dot product in Equation 44.6 can also be
written as

((A−1)T ~n) •~l = ~n • (A−1~l). (44.7)

In relation to our method, this means that all the pre-computed nor-
mal vectors can be left untouched. The only thing we have to do is to
calculate a new light vector to obtain an equivalent visual result.

Regardless of whether the normal deformation is exact or approxi-
mative, using a light vector constant within each patch, but different

Figure 44.2: Animated tail fin of a carp demonstrates realistic illumination effects
during real-time deformation.
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for neighboring patches, will inevitably result in visible discontinuities
as depicted in Figure 44.1 (center). To tackle this problem, there should
be smooth transitions for the diffuse illumination term of neighboring
patches. This can be easily achieved by assigning light vectors to the
vertices instead of the patches. To each vertex a light vector is assigned,
which is averaged from the light vectors of all the patches, which share
this vertex. Analogously to the translation vectors, the light vectors
given at the vertices are tri-linearly interpolated within each patch. To
achieve this during rasterization, the light vectors must be assigned as
color values to the vertices of each rendered polygon, thus allowing the
interpolation to be performed by hardware Gouraud shading. As dis-
played in Figure 44.2, this method will lead to approximate illumination
without any discontinuities.



Volume Animation

The two different approaches for volumetric deformation in model space
(Chapter 42) and texture space (Chapter 43) can be utilized for volu-
metric animation in the same way as surface deformation approaches are
used. The model space approach is well suited for large-scale motions
usually modelled by skeleton animation. After subdivision of the hexa-
hedra into tetrahedra for deformation, the free vertices can be attached
to existing skeletons using smooth or rigid skin binding.

The texture based deformation approach is well suited for deforma-
tions which are small with respect to the size of the volume object itself.
As described in Chapter 43, the deformation in texture space is modelled
by shifting texture coordinates. The deformation can be modelled intu-
itively by approximating the inverse transformation for each hexahedron
by negating the shift vectors. For animating these shift vectors, they
can either be bound to small-scale skeleton rigs or be weighted and con-
trolled independently, similar to blend shapes commonly used for facial
animation. Example animations can be found on the course web-site.
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Figure 45.1: Long-leg study of a bypass operation (512x512x1800@16bit).

In recent years there has been a explosive increase in size of volumetric
data from many application areas. For example, in medical visualization
we now routinely acquire long-leg studies with around 2000 slices (see
figure 45.1). The resolution of each slice is 512 by 512 pixels with 16
bit precision, resulting in almost a gigabyte of data. Rendering such a
data set at interactive rates is a challenging task, especially considering
that the typical amount of memory available on GPUs is currently 256
megabytes. 4D sequences from cardiology, which allow visualization of
a beating heart, quickly approach or even surpass the virtual address
limit of current PC hardware. Other application areas like geology even
produce data sets exceeding a terabyte. In entertainment applications,
a high level of detail is often required when adding volumetric effects to
computer games or movies. To add those effects, procedural techniques
often circumvent high resolution volumes as we will show in section 49.
Analysis of the current architecture of PCs and consumer graphics hard-

ware reveals the major bottlenecks affecting the visualization of large
volumetric data sets. Obviously, as noted already in the previous para-
graph, the amount of memory available on today’s GPUs is very limited.
Therefore, other types of memory have to be employed for large volumes.
The bandwidth of these different types of memory play a key role in vol-
ume rendering.
Consider the different types of memory involved: Volume data is first
loaded into main memory. Current 32 bit CPUs support up to 4 gi-
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Figure 45.2: Single frame from a 4D sequence of a beating heart
(512x512x240@16bit, 20 time steps).
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gabytes of memory. Segments of system memory can be dynamically
reserved by the OS for the graphics controller. This memory is termed
AGP (accelerated graphics port) memory or non-local video memory. Be-
fore texture data can be transferred to the video memory of the GPU, the
data has to be copied to AGP memory. The current peak transfer band-
width of main memory is less than 5 gigabytes per second. Dual channel
DDR400 memory provides around 6.4 gigabytes per second. From AGP
memory, volume data can is transferred to video memory using AGP.
AGP3.0 delivers a maximum of 2.1 GB/s bandwidthl however, sustained
throughput in many applications is around 1 GB/sec, far away from the
theoretical limit. Furthermore, it should also be noted that the read
back performance of AGP is much smaller. Some of these restrictions
will disappear or at least will be reduced with upcoming PCI Express
technology.
Local video memory provides very high memory bandwidth with more
than 30 GB/sec using a 256 bit wide memory interface. Data is trans-
ferred to an internal texture cache on the GPU chip with this bandwidth.
Unfortunately, that GPU manufacturers do not provide any details about
the amount and bandwidth of the internal texture cache, however one
can assume that the memory bandwidth of the texture cache is several
times higher than that of the video memory.
Very similar to the situation with many levels of cache on CPUs, we can

interpret all those different types of memory at different levels of texture
cache. The local texture cache on the GPU chip can be considered be as
level 1 cache, local video memory as level 2 cache and AGP memory as
level 3 cache. It is desirable to keep texture data as close to the chip as
possible, i.e., in level 1 or level 2 of the texture caches.
We will now present different techniques that try to utilize the available
amount of memory to render large volumetric data sets. Those tech-
niques differ in how efficiently they utilize the levels of texture cache.
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Figure 45.3: Typical data transfer bandwidths of a PC from main memory to the
GPU. Different types of memory can be considered as different levels of cache.



Bricking

The most straightforward method to deal with a large volume is the
divide and conquer method, which is called bricking in the context of
volume rendering. The volume is subdivided into several blocks in such
a way that a single sub-block (brick) fits into video memory (see fig-
ure 46.1). Bricks are stored in main memory and sorted in a front-to-
back or back-to-front manner dependent on the rendering order.
Bricks are loaded into the local memory of the GPU board one at a time.

Each brick is rendered using standard volume rendering techniques, i.e.
by slicing or ray-casting. Note, that this technique can also be used for
rendering large volumes on multiple GPU boards. In the case of mul-
tiple GPUs, an additional composting step is required to assemble the
resulting images generated by the GPUs.
In order to avoid discontinuities on brick boundaries when using trilinear

Figure 46.1: Subdivision of a large volume into several smaller bricks.
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Figure 46.2: Brick boundaries without (a) and with (b) overlap.

filtering, bricks must overlap by at least on voxel size. Figure 46.2)(a)
demonstrates the result of rendering two bricks with linear filtering and
no overlap. By repeating one voxel of brick 1 at the brick boundary in
brick 2 as shown in figure 46.2(b) we can ensure a smooth transition
between bricks.
Note, that if we look-up neighboring voxels in a fragment shader it is
required to increase the overlap by the same factor as the distance to
the original voxel position from the neighbor voxel. Looking up neigh-
boring voxel is done when applying high-quality filtering as presented in
chapter 21 or computing gradients on-the-fly as presented in chapter 23.
Bricking does not reduce the amount of memory required to represent
the original volume data. Each brick has to be transferred to the lo-
cal memory on the GPU board before it can be rendered. Thus, the
performance of bricking is mainly limited by the AGP transfer rate. In
order to circumvent this problem, a very common technique is to use
a sub-sampled version of the volume data that is entirely stored in the
GPU memory during interaction and only render the full resolution vol-
ume using bricking for the final image quality. The following techniques
try to prevent transfer over AGP by making better use of the available
high-throughput texture caches closer to the GPU.



Multi-Resolution Volume
Rendering

A subdivision of the volume that adapts to the local properties of the
scalar field or some user defined criteria has many advantages to a static
subdivision as previously presented. This idea was first presented by
LaMar et al. [65]. They render a volume in a region-of-interest at a high
resolution and away from that region with progressively lower resolution.
Their algorithm is based on an octree hierarchy (see figure 47.1) where
the leaves of the tree represent the original data and the internal nodes
define lower-resolution versions. An octree representation of volumetric
data can be obtained by either a top-down subdivision or a bottom-up
merging strategy. The top-down subdivision strategy divides the volume
data into 8 blocks of equal size. Each block is further subdivided recur-
sively into smaller blocks until the block size reaches a minimum size or
the voxel dimension. The bottom-up strategy merges eight neighboring
voxels (or atom-blocks) into a larger block. Each block is again merged
with its neighboring blocks into a larger block until the complete volume
remains as a block. Each block is a down-sampled version of the volume
data represented by it’s child nodes. Given such a octree representation
of the volume data, one can traverse the tree in a top-down manner,
starting from the coarsest version of the data at the root node. At each
node one can decide whether the child nodes of the specific node need
to be traversed further based on some criteria. Possible criteria are the
distance of the node to the viewer position, detail contained within the
sub-tree, or the desired rendering resolution based on a global or local
parameter such as a focus point. The sampling rate can be adapted in
the levels of the hierarchy to the detail level.
The multi-representation allows memory to be saved for empty or uni-
form portions of the volume data by omitting sub-trees of the hierarchy.
Furthermore, rendering performance may increase due to lower sampling
rates for certain blocks or omitting of empty blocks.
Weiler et al. [103] further improved this algorithm by fixing artifacts that
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Figure 47.1: Octree decomposition of a volume.
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typically occur on boundaries of different levels of the multi-resolution
representation.



Compression Techniques

The multi-resolution techniques introduced in the last chapter already
introduce compression of volume data if the octree is not refined to
the maximum level in all branches. In this chapter we will examine
compression techniques for volumetric data sets that try to utilize the
available high-performance memory as efficiently as possible.
In fact, GPUs already have built-in texture compression schemes.
In OpenGL, texture compression is available using the S3
texture compression standard which is accessible using the
EXT texture compression s3tc extension. In this compression
method, 4x4 RGBA texels are grouped together. For each 4x4 pixel
group two colors are stored, two additional colors are obtained by
linear interpolation of the stored colors. For each pixel of the 4x4
block, two bits are used as lookup values to access these four colors.
The NV texture compression vtc OpenGL extension extends the S3
extension for 2D texture to the 3D texture domain.
S3 texture compression is implemented in hardware by several graphics

chips; e.g. the NVIDIA GeForce and ATI Radeon series. It provides a
fixed maximum compression scheme of 8:1. However, for compression
of volumetric data it has some severe disadvantages. First, block
artifacts can easily be observed for non-smooth data due to the block

Figure 48.1: S3 texture compression stores two colors for each 4x4 texel block, two
additional colors are derived by linear interpolation. The total of four colors are
accessed with 2 bits per texel.
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compression scheme. Secondly, this compression technique is only
available for RGB(A) data. As we are mainly interested in scalar
volume data, S3 texture compression can be applied. For compression
of pre-computed gradients that are stored in RGB textures, S3 texture
compression provides unsatisfactory quality.

48.1 Wavelet Compression

Wavelet transforms[28] provide an invaluable tool in computer graphics.
This is due to the fact that, in computer graphics, we often encounter
signals that are mostly smooth, but contain important regions with high
frequency content. The same applies to volumetric data sets, which (in
most cases) contain areas with rich detail while at the same time contain
other regions that are very homogeneous. A typical data set from CT
(computed tomography) for example, contains very fine detail for bone
structures while surrounding air and tissue is given as very smooth
and uniform areas. Figure 48.2 shows gradient-magnitude modulation
of a CT data set; i.e., areas where the data values change rapidly are
enhanced while homogeneous regions are suppressed. Note, that most
of the data is smooth while high frequency detail is most apparent at
certain material boundaries.
The wavelet transform is the projection of a signal onto a series of basis

functions called the wavelets. Wavelets form a hierarchy of signals that
allow to analyze and reconstruct an input signal at different resolutions
and frequency ranges. This provides a basis for multi-resolution volume
rendering. As wavelet transformed signals often contain many coefficient
that are nearly zero, wavelets form a natural technique for building a
compressed representation of a signal by omitting coefficients that are
smaller than a specified threshold. A very efficient compression scheme
for volumetric data has been proposed by Nguyen et al.[80]. Their
scheme splits the volume into several smaller blocks of equal size that
are compressed individually.
The real-time decompression and visualization of 4D volume data was
proposed by Guthe et al.[33]. However, each time step of the sequence
must be fully decompressed on the CPU before it can be rendered.
Thus, no bandwidth is saved when transferring a single time step of the
sequence over AGP therefore limiting the rendering performance to the
AGP bandwidth.
Guthe et al. circumvented the problem of transferring a fully
decompressed full resolution volume over AGP by introducing a multi-
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Figure 48.2: Gradient-magnitude modulation volume rendering of a large CT data
set.
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resolution hierarchy which provides fast access to each node of the
hierarchy. This allows storing very large data sets in main memory
and extracting the levels of detail on-the-fly that are necessary for an
interactive walk-through.
A pre-processing step is required to transform the volume data into
the hierarchical wavelet representation. For that purpose, the data is
divided into cubic blocks of (2k)3 voxels, where k = 16 is a good choice.
The wavelet filters are applied to each of the blocks, resulting in a
low-pass filtered block of size k3 voxels and (2k)3−k3 wavelet coefficients
representing high frequencies that are lost in the low-pass filtered signal.
This scheme is applied on hierarchically by grouping eight neighboring
low-pass-filtered blocks together to new blocks with (2k)3 voxels. This
process is repeated until only a single block remains(see figure 48.3).
The results of this process is an octree where each node contains high
frequency coefficients to reconstruct the volume at the given level (see
figure 48.4).

By defining a threshold to discard small wavelet coefficient, lossy
compression of the volume data is possible. For the encoding of the
wavelet coefficients, Guthe et al. implemented two compression schemes.
For details refer to their original paper.
The data is now given as a multi-resolution tree, with a very coarse
representation of the data in the root-node. Each descent in the octree
increases the resolution by a factor of two. To decide at which resolution
a block should be decompressed by the CPU during rendering, a
projective classification and a view-dependent priority schedule can be
applied. Projective classification projects the voxel spacing of a node
of the hierarchy to screen space. If the voxel spacing is above the
screen resolution then the node must be refined, else it is passed to the
renderer. The view-dependent classification scheme prioritizes nodes
that are nearer to the viewer. The error introduced by rendering a node
can also be used to determine if a node needs to be refined. To reduce
the amount of data transferred over AGP a caching strategy can be
applied that caches blocks that are frequently used in GPU memory.
Guthe et al. achieved compression rates of 40:1 for the visible female
and 30:1 for the visible male data sets. Interactive walk-throughs are
possible with 3 to 10 frames per second depending on quality settings.
The multi-resolution representation of volumetric in conjunction with
the wavelet transform allows for rendering of data sets far beyond
the virtual address limit of today’s PCs. However, in all presented
techniques compressed data is stored in main memory and decompressed
by the CPU before it can be rendered on the GPU. An ideal solution



ACM SIGGRAPH 2004 235

Figure 48.3: Construction of the wavelet tree.

would be to store the compressed data in the local memory of the
GPU and decompress it using the GPU before rendering. However,
no work has yet been published to do this and it is unclear so far
if a decompression of wavelet transformed data using a GPU can be
achieved in the near future.
The techniques presented in the following sections can easily be imple-
mented on GPUs by utilizing dependent texture fetch operations. That
is, the result of a previous texture fetch operation is used as a texture
coordinates for a subsequent texture fetch. This provides the basis
for indexed or indirect memory access required for certain packing or
compression techniques.
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Figure 48.4: The compressed wavelet tree.

48.2 Packing Techniques

Packing techniques try to make efficient use of GPU memory by packing
equal or similar blocks of an input volume into a smaller volume as
compact as possible. The original volume can then be represented by
an index volume referencing those packed blocks (see figure 48.5).

Kraus et al.[59] pack non-empty blocks of the input data into a
smaller packed volume representation. This packed representation is
then referenced using a index volume that stores the position of the
origin of the indexed block in the compact representation and a scaling
factor. The scaling factor accommodates non-uniform block sizes (see
figure 48.6). During rendering, the decompression is performed in a
fragment program. A relative coordinate to the origin of the index cell
is computed first. Then the coordinate and the scaling factor of the
packed data block are looked up from the texture. From the relative
coordinate, the position of the packed block and the scaling factor a
position in the packed data is computed which is used to lookup the
decoded voxel value. In order to support linear interpolation provided
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Figure 48.5: (a) Index data: scale factors and coordinates of packed data blocks
are stored for each cell of a 4 x 4 grid representing the whole texture map. (b)
Packed data: the data blocks packed into a uniform grid of 256 x 128 texels.

by the graphics hardware, texels on the boundaries of data blocks
are replicated. As the texture coordinate to lookup the data value in
the packed texture is computed based on the result of another texture
lookup, the complete decoding algorithm is implemented in the fragment
stage. The disadvantage is that dependent texture lookup introduce a
big performance penalty, as they result in non-linear memory access
patterns. In contrast to decoding the packed representation in the
fragment stage, Wei Li et al.[69] decode the packed representation in
the vertex stage by slicing axis aligned boxes. They allow arbitrary
sized sub-textures that are generated by a box growing algorithm that
determines boxes with similar densities and gradient magnitudes. Their
main purpose is to accelerate volume rendering by skipping blocks that
are empty after the transfer functions were applied. Furthermore, their
approach also allows to pack pre-computed gradients into a compact
representation (see figure 48.7).

All presented packing techniques support blocks with different sizes.
Using uniformly sized blocks brings us to the concept of vector quanti-
zation which is the topic of the following section.
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Figure 48.6: Volume rendering of a 512× 512× 360 CT scan with adaptive texture
mapping. (Left) Non-empty cells of the 323 index data grid. (Middle) Data blocks
packed into a 2563 texture. (Right) Resulting volume rendering.

Figure 48.7: Gradient sub-textures defined by the boxes enclose all the voxels of
non-zero gradient magnitude (left). The gradient sub-textures are are packed into
a single larger texture (middle). Resulting rendering of the foot with mixes boxes
and textures.
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48.3 Vector Quantization

Due to the availability of indirect memory access provided on GPUs
by means of dependent texture fetch operations, vector quantization is
an obvious choice for a compression scheme to make more efficient use
of available GPU memory resources. In general, a vector quantization
algorithm takes a n-dimensional input vector and maps it to a single
index that references a codebook containing vector of equal length as
the input vector. As the codebook should have a significantly smaller
size than the set of input vectors, a codebook should be capable of
reproducing an original input vector as close as possible. Hence, a
codebook must be generated from the set of input vectors.
Schneider and Westermann [88] introduced vector quantization to
GPU-based volume visualization. Vector quantization is applied on
two different frequency bands of the input volume data. For that
purpose, the data is partitioned into blocks with 43 voxels dimension.
Each block is down-sampled to a 23 block and a difference vector with
64 components is obtained by computing the difference between the
original and the down-sampled block. This process is repeated for the
23 blocks resulting in a single mean-value for the block and a second
8-component difference vector. Vector quantization is applied to two
difference vectors and the two resulting indices are stored together with
the mean-value into a RGB 3D-texture (see figure 48.8). The indices
and the mean value are fetched during rendering and used to reconstruct
the input value. Two dependent texture fetch operations lookup the 8-
and 64-component difference vectors from two 2D textures.
For a codebook with 256 entries they achieve a compression factor
of 64 : 3 neglecting the size of the codebooks; i.e., a 10243 volume is
compressed to 3 ∗ 2563=48 MBytes. Thus, it fits easily into the GPU
memory and no AGP transfer is required to swap in data during render-
ing. It should be noted, that despite the fact that the decoding stage
for vector quantized data is very simple, frame rates considerably drop
compared to uncompressed data due to texture cache misses produced
by dependent texture fetch operations. To improve performance a
deferred decompression based on early-z tests available on ATI R3xx
GPUs is employed. That is, every slice polygon is rendered twice, first
with a simple (and thus fast) shader and then with the full (and thus
slow) decoding shader. To prevent decoding of empty regions of the
data, the first pass evaluates the median value stored in the 3D texture.
If the median value is zero, the execution of the complex shader for this
fragment is prevented by masking the fragment with a z-value. For the
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Figure 48.8: Hierarchical decompression and quantization of volumetric data sets.
Blocks are first split into multiple frequency bands, which are quantized separately.
This generates three index values per block, which are used to reference the com-
puted codebook.

generation of the codebooks, Schneider and Westermann use a modified
LBG-Algorithm [70] based on an initial codebook generated by principle
component analysis (PCA). For details please refer to their paper [88].
Vector quantization is also applicable to 4D volume data. A shock wave
simulation sequence with 89 time steps can be compressed from 1.4
GB to 70 MB, thus it can be played back entirely from fast GPU memory.



Procedural Techniques

In order to capture the characteristics of many volumetric objects such
as clouds, smoke, trees, hair, and fur, high frequency details are essential.
A very high resolution of the volume data is required to store those high
frequency details. There is actually a much better approach to model vol-
umetric natural phenomena. Ebert’s[19] approach for modelling clouds
uses a coarse technique for modelling the macrostructure and uses pro-
cedural noise-based simulations for the microstructure (see Figure 49.1).
This technique was adapted by Kniss[53] for interactive volume render-
ing using a volume perturbation approach which is efficient on modern
graphics hardware. The approach perturbs texture coordinates and is
useful to perturb boundaries in the volume data, e.g. the cloud bound-
ary in figure 49.1.

The volume perturbation approach employs a small 3D-perturbation
volume with 323 voxels. Each texel is initialized with four random 8-bit
numbers, stored as RGBA components, and then blurred slightly to hide
the artifacts caused by trilinear interpolation. Texel access is then set to
repeat. An additional pass is required for both approaches due to limi-
tations imposed on the number of textures which can be simultaneously
applied to a polygon, and the number of sequential dependent texture
reads permitted. The additional pass occurs before the steps outlined in
the previous section. Multiple copies of the noise texture are applied to
each slice at different scales. They are then weighted and summed per
pixel. To animate the perturbation, they add a different offset to each
noise texture’s coordinates and update it each frame.

Procedural techniques can be applied to most volumetric natural
phenomena. Due to the fact that details can be represented a coarse
macrostructure volume and small noise textures, there is no requirement
to deal with large volumetric data.
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Figure 49.1: Procedural clouds. The image on the top shows the underlying data,
643. The center image shows the perturbed volume. The bottom image shows the
perturbed volume lit from behind with low frequency noise added to the indirect
attenuation to achieve subtle iridescence effects.
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Figure 49.2: An example of texture coordinate perturbation in 2D. A shows a
square polygon mapped with the original texture that is to be perturbed. B shows
a low resolution perturbation texture applied to the polygon multiple times at dif-
ferent scales. These offset vectors are weighted and summed to offset the original
texture coordinates as seen in C. The texture is then read using the modified texture
coordinates, producing the image seen in D.



Optimizations

Shading volumetric data requires computing a gradient based on the
scalar field at each position. One possible to option is to pre-compute
gradients and store the resulting vector per voxel into a texture. During
rendering interpolated gradients can be fetched from the texture and
used for shading calculations. However, this is impractical in the
context of large volumes because the volume data already consumes
too much memory to store additional information. In the following
section we show how to prevent storing additional gradient information
by calculating gradient information on-the-fly.
Computing gradients on-the-fly requires access to multiple interpolated
voxel values for each fragment. This increases the required memory
bandwidth. Even though today’s GPUs provide an enormous peak
memory bandwidth of more than 30 GB per second, the visualization of
large volume data requires optimization techniques to achieve satisfying
frame rates. Consider a 1 GB volume: in theory a 30 GB per second
memory bandwidth should allow to access the complete volume data
30 times per second; thus, neglecting rendering times, this should yield
30 frames per second frame rate. In practice however, there are several
reasons why this calculation is totally academic. Firstly, the peak
GPU memory bandwidth can only be achieved if memory is only access
sequentially. This is not typical in many cases, especially when using
3D textures. Thus, the actual sustained bandwidth is much lower.
Second, the same volume data value is accessed multiple times during
rendering; for example, for trilinear interpolation of two fragments may
access the same or voxels of the volume data. Third, some calculations
require accessing multiple interpolated data values at one position. For
example, for high-quality filtering the contribution of many voxels is
summed up. Therefore, we want to prevent unnecessary memory reads.
This can be achieved by leaping over empty space or termination rays
that have accumulated enough opacity.
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50.1 Shading

For shading large volumetric data it is impractical to store pre-computed
gradients in texture maps. Instead, as outlined in section 23, gradients
can be computed on-the-fly. The result of this are very high-quality
gradients with no memory overhead; however, many texture fetches
are required for the per fragment gradient calculation (6 for central
differences). A large number of texture fetches decrease performance
considerably, hence it is desirable to perform those expensive shading
computations only if they are actually required.
Often when using quite complex and expensive fragment programs,
a two pass approach can provide a huge benefit. Every slice polygon
is rendered twice. In a first pass, a simple fragment program is used
to mask those fragments that need to be processed by the complex
fragment program using a z- or stencil-value in a second pass. In this
second pass, only the fragments that passed the test in the first pass are
processed by the complex fragment program. This requires an early-z
or early-stencil test which is available on ATI R3xx and NVIDIA NV4x
class hardware. Such a test is performed by the graphics hardware
before the actual fragment program is run for a certain fragment, thus
providing a performance benefit.
A fragment program for on-the-fly gradient computation and shading
is quite complex in contrast to a simple post-classification shader. As
shading effects are only apparent if the transparency of a fragment is
not to small, it is sufficient to shade only fragments with a alpha value
above a certain threshold. First the slice polygon is rendered with a
post-classification shader to determine the opacity of the fragment.
By enabling an alpha-test that only allows fragments to pass with an
opacity over a certain threshold we can set a z- or stencil-value for those
fragments. In the second pass z- or stencil test is enabled to process
only fragments that had a opacity larger then the given threshold in the
first pass.
This optimization can provide a significant speedup when many frag-
ments are classified with a small or zero alpha value.

50.2 Empty Space Leaping

Volumetric data sets contain many features that are not required for the
final rendering. Typically, they are removed by setting zero alpha values
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in the transfer function. In order to not waste computation power on
features that have been removed by the transfer function, empty space
leaping can be employed to reduce memory access and save computation
power.
For that purpose, the volume is subdivided into smaller blocks. In
order to detect empty space, all blocks of the volume are classified in a
pre-processing step. For each block, the minimum and maximum scalar
values are stored in a separate data structure. Based on the transfer
function and the minimum and maximum density values, the visibility
of each block can quickly be determined after each change of the transfer
function. This allows us to slice only visible blocks (see figure 50.1), thus
increasing the number vertices but reducing the number of fragments.

Because the vertex processor is idle during volume rendering

Figure 50.1: Non-empty blocks of a CT volume for two different transfer functions.

in most of the cases anyway (the number of slice polygons is rather
small), this technique can provide significant performance improvements.

50.3 Ray Termination

Early ray-termination is another important optimization technique
known from ray-casting. When tracing rays through a volume in a
front-to-back fashion many rays quickly accumulate full opacity. This
means, that features in the data set in the back are occluded and
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must not be considered for rendering the image. Thus the ray can be
terminated.
This technique was recently introduced to hardware-accelerated volume
rendering algorithms [60, 84]. It requires front-to-back compositing and
is based on early-z or early-stencil operations; i.e., z- or stencil-tests
are performed by the graphics hardware for each fragment before the
fragment shader code is executed. In order to mask rays (pixels) that
can be terminated, every n integration steps an intermediate pass is
performed. By rendering to a texture, the frame buffer can be applied
as a texture map to a screen-filled quad that is rendered to the screen.
Only those pixels with an alpha-value above a certain threshold, a depth
or stencil values is written. Pixels with this stencil or depth value are
excluded during volume rendering by means of the stencil or depth-test.
Early-ray termination is a complementary acceleration technique to
empty-space skipping. If the volume contains a lot of empty space,
empty-space skipping performs quite well while early-ray termination
does not provide a big speedup. Vice versa, if the volume does not
contain much empty space and the transfer function is not too trans-
parent, early-ray termination provides a big speedup while empty-space
skipping does not perform well.



Summary

Despite the huge gap between volume data sizes from different applica-
tion areas and the amount of memory on today’s GPUs, it is possible to
render large volumes at acceptable frame rates. Many techniques were
introduced that either try to reduce the transfer of texture data over
AGP or try to make more efficient use of the available high-speed GPU
memory. As many traditional techniques, like pre-computed gradients,
are not feasible for large volumes, certain properties of the scalar field
must be computed on-the-fly. This however, introduces additional
computational cost which require optimization techniques to prevent
unnecessary memory access and calculations.
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Rendering From Difficult Data
Formats

52.1 Introduction

The previous chapters of this course have discussed numerous volume
rendering techniques for data stored in 3D texture memory. This chapter
describes how the previously described volume rendering techniques can
be applied to volumetric data stored in “difficult” formats. We define a
“difficult” format to be any data space that differs from the regular-grid,
3D volumetric space in which the rendering is defined. Example difficult
formats include compressed data and a stack of 2D slices.

The need to represent volumetric data in difficult formats arises in
two scenarios. The first case is when the data is stored on the GPU
in a compressed format. The second case arises when the 3D data
is generated by the GPU (i.e., dynamic volumes). Dynamic volumes
arise when performing General-Purpose Computation on Graphics Pro-
cessor (GPGPU) techniques for simulation, image processing, or seg-
mentation [10, 31, 37, 62, 67, 96, 87, 93]. Current GPU memory models
require that such dynamic volume data be stored in a collection of 2D
textures (or pixel buffers) [36]. As such, real-time visualization of these
data require a new variant of 2D-texture-based volume rendering that
uses only a single set of 2D slices.1.

This chapter describes the two main challenges of volume rendering
from difficult formats: reconstruction and filtering. The reconstruction
stage decompresses the data into the original 3D volume domain. The
filtering stage uses multiple samples of the reconstructed volume to recre-
ate a continuous representation from the discrete data. This is the same
filtering problem discussed earlier in these notes, but with the added
difficulty that the neighboring data elements required for filtering are

1The proposed Superbuffer [73] extension to OpenGL enables the GPU to render
to slices of a 3D texture. This extension has not yet been approved by the OpenGL
Architecture Review Board (ARB) as of April, 2004
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often not available (or are expensive to compute), due to the on-the-fly
volume decompression. We describe the deferred filtering [67] algorithm
as a solution to this problem.

52.2 Volume Domain Reconstruction

The process of reconstructing volume domain data on-the-fly at render
time is currently of great interest to the computer graphics and visual-
ization communities [3, 6, 57, 89]. Computer games can use these tech-
niques to save valuable texture memory, and visualization applications
can leverage compression strategies to interactively view data sets that
are too large to fit in GPU memory. Modern programmable fragment
processors make it possible to perform increasingly complex decompres-
sions at interactive rates.

There are two basic approaches to volume-domain reconstruction.
The first uses a fragment program to translate volume-domain texture
addresses to data-domain addresses before reading from the data texture.
The address translation occurs using fragment arithmetic operations and
one or more index textures [6, 57, 89]. The second method uses the
CPU and/or vertex processor to pre-compute the data-domain texture
addresses [67]. This technique is especially applicable when no index-
ing data is available, such as when volume rendering from a set of 2D
slices. Figure 52.1 shows an example of using pre-computed data-domain
texture addresses.

An example of volume reconstruction using pre-computed data-
domain addresses is the rendering technique described in Lefohn et
al. [67]. The algorithm reconstructs each slice of the volume domain at
render time using small texture mapped quadrilaterals or line primitives.
The geometric primitives represent contiguous regions in the data space,
and the texture coordinates of these primitives are the data-domain
addresses. Figure 52.1 shows an example of this reconstruction. This
technique is a modified form of 2D-texture-based volume rendering that
allows full volume rendering from only a single set of 2D slices. The
memory savings comes at the cost of processing a larger amount of small
geometry.

The new 2D-texture-based reconstruction algorithm is as follows.
When the preferred slice axis, based on the viewing angle, is orthogonal
to the 2D slice textures, no reconstruction is needed and a slice-sized
quadrilateral is drawn. If the preferred slice direction is parallel to the
2D slices, the algorithm renders a row or column from each slice using
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textured line primitives, as in Figure 52.1.
Note that although the description only allows for axis-aligned view

reconstructions, axis-aligned views can be interpolated to provide the
illusion of view-aligned volume rendering. Additionally, if the technique
is applied to compressed data stored in 3D textures, view-aligned slices
can be reconstructed using many small polytopes which each represent
contiguous regions of the data domain texture.

Figure 52.1: Reconstruction of a slice for volume rendering packed data (a) When
the preferred slicing direction is orthogonal to the 2D memory layout, the memory
tiles (shown in alternating colors) are draw into a pixel buffer as quadrilaterals. (b)
For slicing directions parallel to the 2D memory layout, the tiles are drawn onto
a pixel buffer as either vertical or horizontal lines. Note that the lines or quads
represent contiguous regions in the data domain.
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52.3 Filtering

As discussed in earlier chapters, the use of trilinear filtering (or bet-
ter) is generally required to reduce objectionable aliasing artifacts in the
volume rendering. Many compression-domain volume rendering tech-
niques, however, do not support filtering because the reconstruction step
precludes the use of the GPU’s native filtering hardware. In this section,
we describe a deferred-filtering technique that overcomes this problem
for a large class of difficult-data-format rendering algorithms. The al-
gorithm, originally published in Lefohn et al. [67], allows compression-
domain renderings to use achieve fast trilinear filtering by leveraging the
GPU’s native bilinear filtering engine.

A standard volume renderer leverages the GPU’s native trilinear fil-
tering engine to obtain a filtered data value from texture memory. A
brute force method for performing filtered, compression-domain volume
rendering is to reconstruct a data value for each element in the filter
kernel. Unfortunately, this approach is impractical on current GPUs
because of the very large number of fragment instructions and texture
accesses required (8 data reads, at least 8 index texture reads, and many
arithmetic operations). While it is possible to implement this method
with modern GPUs, the rendering performance is unacceptable for in-
teractive use. A significant problem with this brute force method is that
adjacent fragments perform many redundant data decompression opera-
tions.

The deferred filtering algorithm optimizes the brute-force approach
by separating the reconstruction and filtering stages of the data access.
The separation avoids the duplicate decompressions and leverage GPU
bilinear filtering hardware.

Deferred filtering is conceptually simple (Figure 52.2. Each slice of
the volume (that would normally be rendered in a single pass) is rendered
in two passes. The first pass performs the volume domain reconstruction
using the appropriate decompression/reconstruction algorithm for the
data format. This reconstruction is performed for two consecutive slices
in the volume, and the results are stored in temporary 2D textures. The
second (filtering) pass reads from the two reconstructed slices using the
GPU’s native bilinear filtering. The final, trilinearly filtered, result is
computed by linearly interpolating between the data values read from
the two reconstructed slices. Lighting and transfer functions are then
applied to the data in this second stage (see Figure 52.2).
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Figure 52.2: Deferred filtering algorithm for performing fast trilinear filtering when
volume rendering from difficult data formats (e.g., compression domain volume
rendering). The first stage reconstructs two consecutive volume-domain slices and
saves the results in textures. The second stage reads data values from these two
textures using the GPU’s native bilinear filtering engine. The final, trilinearly
filtered, result is computed by linearly interpolating between two reconstructed data
values in a fragment program. The lighting and transfer function computations are
applied as normal in this second stage.

52.4 Conclusions

This chapter discusses how the volume rendering algorithms presented
in previous chapters can be applied to data stored in compressed or
slice-based formats. Rendering from these complex formats requires sep-
arate volume reconstruction and filtering stages before the transfer func-
tion and lighting computations are applied. We discuss both fragment-
processor and vertex-processor volume reconstruction (i.e., decompres-
sions). We also describe a deferred filtering algorithm that enables fast
trilinear filtering for compression-domain/difficult-data-format volume
rendering.
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matrix solvers on the GPU: Conjugate gradients and multigrid. In
ACM Transactions on Graphics, volume 22, pages 917–924, July
2003.

[11] B. Cabral, N. Cam, and J. Foran. Accelerated volume rendering
and tomographic reconstruction using texture mapping hardware.
In Proc. of IEEE Symposium on Volume Visualization, pages 91–
98, 1994.

[12] C. Chua and U. Neumann. Hardware-Accelerated Free-Form
Deformations. In Proc. SIGGRAPH/Eurographics Workshop on
Graphics Hardware, 2000.

[13] P. Cignino, C. Montani, D. Sarti, and R. Scopigno. On the op-
timization of projective volume rendering. In R. Scateni, J. van
Wijk, and P. Zanarini, editors, Visualization in Scientific Comput-
ing, pages 58–71. Springer, 1995.

[14] S. Coquillart. Extended Free-Form Deformations. In Proc. SIG-
GRAPH, 1990.

[15] B. Csebfalvi, L. Mroz, H. Hauser, A. König, and M. E. Gröller.
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[86] S. Röttger, M. Kraus, and T. Ertl. Hardware-accelerated volume
and isosurface rendering based on cell-projection. In Proc. of IEEE
Visualization 2000, pages 109–116, 2000.

[87] M. Rumpf and R. Strzodka. Nonlinear diffusion in graphics hard-
ware. In Proceedings EG/IEEE TCVG Symposium on Visualiza-
tion, pages 75–84, 2001.

[88] J. Schneider and R. Westermann. Compression Domain Volume
Rendering. IEEE Visualization ’03 Proceedings (to appear), 2003.

[89] Jens Schneider and Rudiger Westermann. Compression domain
volume rendering. In IEEE Visualization, pages 293–300, October
2003.

[90] T. Sederberg and S. Parry. Free-Form Deformation of Solid Geo-
metric Models. In Proc. SIGGRAPH, 1986.

[91] M. Segal and K. Akeley. The OpenGL Graphics System: A Spec-
ification. http://www.opengl.org.

[92] C. E. Shannon. Communication in the presence of noise. In Proc.
Institute of Radio Engineers, vol. 37, no.1, pages 10–21, 1949.

[93] Anthony Sherbondy, Mike Houston, and Sandy Nepal. Fast volume
segmentation with simultaneous visualization using programmable
graphics hardware. In IEEE Visualization, pages 171–196, October
2003.

[94] Peter Shirley and Allan Tuchman. A Polygonal Approximation to
Direct Scalar Volume Rendering. Computer Graphics (San Diego
Workshop on Volume Visualization), 24(5):63–70, November 1990.

[95] T. Strothotte and S. Schlechtweg. Non-Photorealistic Computer
Graphics: Modeling, Rendering and Animation. Morgan Kauf-
mann, 2002.

[96] R. Strzodka and M. Rumpf. Using graphics cards for quantized
FEM computations. In Proceedings VIIP Conference on Visual-
ization and Image Processing, 2001.

[97] U. Tiede, T. Schiemann, and K. H. Höhne. High quality rendering
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