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Abstract

A new method is presented for the visualization of hier-
archical information, such asdirectory structuresand orga-
nization structures. Cushion treemaps inherit the elegance
of standard treemaps: compact, space-filling displays of hi-
erarchical information, based on recursive subdivision of a
rectangular image space. Intuitive shading is used to pro-
vide insight in the hierarchical structure. During the subdi-
vision ridges are added per rectangle, which are rendered
with a simple shading model. The result is a surface that
consists of recursive cushions. The method is efficient, ef-
fective, easy to use and implement, and has a wide applica-
bility.

1 Introduction

Hierarchical structures of information are ubiquitous:
family trees, directory structures, organization structures,
catalogues, computer programs, etcetera. Small hierarchi-
cal structuresarevery effectiveto locateinformation, but the
content and organization of large structures is much harder
to grasp.

We present anew visualization method for such large hi-
erarchical structures: Cushion Treemaps. The method is
based on treemaps, devel oped by Shneiderman and Johnson
[11, 8]. Treemaps are efficient and compact displays, which
are particularly effective to show the size of the final ele-
ments in the structure. Cushion Treemaps provide shading
asastrong extracue to emphasize the hierarchical structure.
For aquick impression, figure 2 and 3 show treemaps, figure
5 and 6 show the corresponding cushion treemaps.

In section 2 we discuss existing methods to visualize hi-
erarchical structures. The new method is presented in sec-
tion 3. The embedding of the method in an interactive sys-
tem for tree visualization is described in section 4. Finaly,
we discuss extensions and alternatives in section 5, and we
summarize the results in section 6.

2 Background

Many methods exist to display and browse through hi-
erarchical information structures, or, for short, trees. File
browsers are the best known example. Usually alisting of
the files and directories is used, where the levelsin the hi-
erarchy are shown by means of indentation. The number of
filesand directoriesthat can be shown simultaneoudly islim-
ited, which is no problem if one knows what to search for.
However, if we want to get an overview, or want to answer
a more global question, such as: "Why is my disk full?’,
scrolling, and opening and closing of subdirectories haveto
be used intensively. During this processit is hard to form a
mental image of the overall structure [3].
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Figure 1. Tree representations

Many techniques have been proposed to show such struc-
tures more effectively. An important category are node and
link diagrams (fig. 1). Elements are shown as nodes, re-
lations are shown as links from parent to child nodes. So-
phisticated techniques have been presented to improve the
efficiency and aesthetic qualities of such diagrams, both in
2Dandin3D[9, 7, 1, 2, 10]. Such diagrams are very effec-
tive for small trees, but usually fall short when more than a
couple of hundred elements have to be visualized simulta-
neously. The main reason for this limitation is simply that
node and link diagrams use the display space inefficiently:
Most of the pixels are used as background.

Treemaps[11, 8] were devel oped to remedy this problem.
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Figure 2. Treemap of file system

Thefull display spaceisused to visualizethe contents of the
tree. Herewe present an overview of the concept, anin depth
treatment isgivenin the original references. Figure 1 shows
an example.

Each node (as shown in the node and link diagram) hasa
name (a letter) and an associated size (a number). Thesize
of leaves may represent for instance the size of individual
files, the size of non-leavenodesisthe sum of thesizes of its
children. The treemap is constructed via recursive subdivi-
sion of theinitial rectangle. Thesize of each sub-rectangleis
proportional to the size of the node. The direction of subdi-
vision alternates per level: first horizontally, next vertically,
etcetera. Asaresult, theinitial rectangle is partitioned into
smaller rectangles, such that the size of each rectangle re-
flectsthe size of theleaf. The structure of thetreeisalso re-
flected in the treemap, as a result of its construction. Color
and annotation can be used to give extra information about
the leaves.

Treemaps are very effective when sizeisthe most impor-
tant feature to be displayed. Figure 2 shows an overview of
afile system: 1400 files are shown and one can effortlessly
determine the largest ones. Labels are not shown here, but
can be shown interactively by pointing at the areas of inter-
est.

However, treemaps have limitations [4]. The problem
addressed here is that treemaps often fall short to visual-
ize the structure of the tree. The worst case is a balanced
tree, where each parent hasthe same number of childrenand
each leaf hasthe same size. The tree-map degenerates here
into aregular grid. Indeed, leaves that are close in the tree
are also close on the screen, but the reverse is not aways
true. Asan example, figure 3 shows an (artificial) organiza-
tion chart, modeled after the structure of our university. The
university has seven faculties, subdivided into departments,
which in turn are divided into sections. Each section is di-

Figure 3. Treemap of organization

vided into units. Each unit contains four different types of
staff members (full, associate, and assistant professor, PhD-
student). The final 3060 rectangles denote individual em-
ployees. Questions such as "What is the largest section?”’
or "Isthe division into units balanced?’ are hard to answer
from such an image.

Nested treemaps [8] are a partial remedy. During the
subdivision processinstead of theinitial rectangleadightly
smaller rectangleis used, such that each group of siblingsis
enclosed by amargin. However, this consumes screen space
and the visual interpretation, especially for deeply nested
trees, requireseffort from the viewer. The variation of prop-
erties of the surrounding lines is another option. However,
the number of stepsin linewidth or intensity that can be dis-
cerned without effort is small, and also here the user isre-
quiredto tracelinesin amaze-likeimage. Coloring the rect-
angles would not work either. Color does not provide a nat-
ural hierarchical structure, and furthermore, we want to use
color to show other attributes of the elements.

One alternative has not been exploited yet: The use of
shading to visualize the structure. In the remainder of this
paper we will show how this can be done.

3 Cushion treemaps
3.1 Method

How can we use shading to show the tree structure? The
human visual system is trained to interpret variations in
shade asilluminated surfaces[6]. Hence, we can answer the
guestion by constructing a surface which shape encodesthe
tree structure.

Weintroduce our solution with asimple one-dimensional
example: binary subdivision of an interval. First, we sub-
divide the interval and add a bump to each of the two sub-



Figure 4. Binary subdivision of interval

intervals. Next, we repeat this step recursively. To each new
sub-interval we add a bump again, with the same shape but
half of the size of the previous one. If we do this for three
levels, the results are eight segments and the top-most curve
infigured4. If weinterpret this curve asaside view of abent
strip, and render it as viewed from above, the bumps trans-
form into a sequence of ridges. The separate segments are
clearly visible, each is bounded by the sharp discontinuities
inthe shading. Furthermore, also the binary tree structureis
clearly visible, because the depth of the valleys between the
segments is proportional to the distance between segments
inthetree.

We can generalize thisideato the two-dimensional case.
Suppose that the x-axis is horizontal, the y-axisis vertical,
and that the z-axis points towards the viewer. If we subdi-
vide the rectangle in the x-direction, we add ridges aligned
with the y-direction, and vice versa for subdivision in the
y-direction. Asaresult, cushions are generated: The sum-
mation of orthogonal ridges givesa cushion-like shape. Nu-
merically, the simplest bump that can be used is a parabola,
hencefor each rectangle of the treemap we use a segment of
aparabolic surface. The height z of such a surfaceis given
by

z(x,y) = ax’> + by’ + cx +dy + e. (1)
Initialy, the surface is flat: al coefficients are zero. Con-
sider now a new rectangle which results from subdivision
along the x-axis. Theridge Azweadd is:

AZ(X,y) =

X — X1 (X = X1) (X2 — X), 2
where x; and x, are the bounds of the rectangle in the x-
direction. The height of this ridge is O for x = x; and
X = Xp, and equal to (Xxa—X3)h inthecenter (x;+X2)/2. The
parameter h denotes the height proportional to the width,
hence it controls only the shape of theridge. Theridge Az
in (2) does not depend on y, the bump has the same shape at

each cross section y = C. Subdivision along the y-axisis
done similarly, heretheridge Az that isadded is:

AzZ(x )—i( —Yy(y2—Y) ©)
,y—yz_yly yo(y2 —y).

Thesamevaluefor h for eachlevel of thetreegivesaself-
similar surface. A decreasingvaluefor hisuseful to empha-
sizetheglobal structureof thetree. A convenient solutionis
to use:

hi = f'h (4

whereh; istheactual valueof h at level i, and f ascalefac-
tor between 0 and 1.
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Figure 5. Cushion treemap, h=0.5, f =1

For the shading of the geometry asimple model, i.e. dif-
fuse reflection, suffices[5]. The normal n follows from:

n

[1,0,0z/0x] x [0, 1, 3z/ay]
[—0z/0x, —0z/3y, 1] (5)
[—(2ax + ¢), —(2by + d), 1].

Theintensity | isthen given by:

| = 1y + 1o max(0, 1) 6)
(1]
where |, istheintensity of ambient light, |5 isthe intensity
of adirectional light source, and 1 is a vector that points to-
wards this light source.

Results of this method are shown in figure 5 and figure 6:
acushion treemap of thefile system, and three cushion tree-
maps of the organization, with different valuesfor the scale
factor f. All imageshavearesolution of 640x480 pixels. If
we compare these with the treemap versions, it is clear that
the shading provides a strong cue for the hierarchical struc-
ture: substructures can be identified effortlessly. With the
scale factor f acontinuoustrade off between the visualiza-
tion of global and detailed information can be made.
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Figure 6. Cushion treemaps of organization

3.2 Algorithm

With the ingredients supplied in the previous section, the
complete algorithm can be derived. We present it herein full
detail, not because of its complexity, but to show its sim-
plicity. First, we define a few data types. The directions
X and Y are encoded via array-indexing to enable a com-
pact algorithm. The surface is described by its linear and
quadratic coefficientsfor the X- and Y-direction. For a Sur-
face s the coefficients a, b, ¢, and d of eguation (1) corre-
spond to §X,2], 9Y,2], §X,1], and §Y,1] respectively. The
constant coefficient e can be ignored here, because it is not
used in the shading calculation.

Each tree record has an associated size, and a pointer to
its parent, to itsfirst child, and to the next sibling.

type Dir = (X,Y);
Bound = (Min, Max);
Degree = (1, 2);
Rectangle = array[Dir, Bound)] of real;
Surface = array[Dir, Degree] of red;
TreeRecord = record
red size;
Tree parent, child, next;
end;
Tree = pointer to TreeRecord;

The procedure CTM generates the cushion treemap recur-
sively, following the same lines as the original treemap al-
gorithm. The main extension is that during the generation
of the rectangles the surface sis constructed. The surfaceis
bent in the direction d. If the tree is a leaf, the cushion is
rendered, else the direction is changed and its children are
visited. The height his updated according to equation (4).

procedure CTM(Treet; Rectangler; real h, f; Dir d; Surface s)
var Treetc; real w;
begin
if t.parent # nil then
AddRidge(r[d, Min], r[d, Max], h, §d,1], §d,2]);

if t.child = nil then RenderCushion(r, s)
else
begin
ifd=Xthend:=Y esed:=X;
w = (rf[d, Max] —r[d, Min])/t.size;
tc :=t.child;
whiletc # nil do
begin
r[d, Max] :=r[d, Min] + w*tc.size;
CTM(tc, r, h*f, f, d, 9);
r[d, Min] :=r[d, Max];
tc:=tc.next
end
end
end{CTM};



Themaininput for CTM consists of the root of thetreeto be
rendered, the initial rectangle to be used, and settings for h
and f. A simpledriver routine;

procedur e MakeCushionTreeMap(Tree root; integer width, height)
var Rectangler; Surface s;
begin
r[X, Min] :=0; r[X, Max] := width;
Y, Min] :=0; rTY, Max] := height;
9X, 1] :=0; 94X, 2] :=0;
9qY,1] =0; 9Y, 2] :=0;
CTM(roat, r, 0.5, 0.75, X, s)
end; {MakeCushionTreeMap}

The procedure AddRidge takes care of the update of the co-
efficients of the parabolic surface according to equation (2)
and (3):

procedure AddRidge(real x1, x2, h; var redl sl, s2)
begin

sl := sl + 4*h* (x2+x1)/(x2—x1);

S2 := 82 — 4*h/(x2—x1)
end;{AddRidge}

If in CTM aleaf node has to be rendered, RenderCushion
is caled. The rectangle, defined in continuous space, is
scan converted via sampling the centers of the pixels that
fall within the rectangle. The intensity of a pixel is calcu-
lated according to equation (5) and (6). A straightforward
implementation is given below. For clarity, no optimization
is applied here. Early outs (if the rectangle does not cover
the center of any pixel), apriori calculation of common sub-
expressions, removal of constant sub-expressions out of the
loopsand incremental evaluation of the quadratic expression
can easily be added. Other extensions are the rendering of
lines that separate the rectangles and the use of color to vi-
sualize some property of the leaf. The fixed settings used
herefor the light source give good results. The frontal light
isdightly offset to theright and to above: 1 = [1, 2, 10].

procedur e RenderCushion(Rectangle r; Surface s)
const la= 40;
Is=215;
Lx = 0.09759; Ly = 0.19518; Lz = 0.9759;
var integer ix, iy; real nx, ny, cosa;
begin
for iy := trunc(r[Y, Min]+0.5) to trunc(r[Y, Max]-0.5) do
for ix := trunc(r[X, Min]+0.5) to trunc(r[X, Max]-0.5) do
begin
nx := —2*9X,2]*(ix+0.5) + §X,1]);
ny :=—2*9Y,2]*(iy+0.5) +9Y,1]);
cosa:= (nx*Lx + ny*Ly + Lz)/ sgrt(nx*nx + ny*ny + 1.0);
SetPixel(ix, iy, la+ max(0, Is*cosa))
end
end;{RenderCushion}

This concludes the presentation of the complete algorithm.
It showsthat cushion treemaps can be easily implementedin
acompact way.

4 |Interaction

Presentation of hierarchical structuresis only one aspect,
for effective visualization of such structures interaction is
equally important. We have embedded cushion treemapsin
SEQUOIAVIEW, our interactive system for the analysis and
visualization of large tree structures. The cushion treemaps
are generated with a dightly extended version of the pre-
vious algorithm. This takes less than a second on an SGlI
02, even for larger images and trees. Upon each interaction
theimageis copied to the screen, annotation is overlaid, se-
lected rectangles are colored by superimposing transparent
rectangles. Various coloring options are available, to show
the size, thelevel, and other attributes of the leaves. Regen-
eration of theimageisdoneonly if the tree or one of theim-
age parameters change.

Many options are provided for navigation and selection.
The user can click on rectangles, upon which the properties
of the |leaf are displayed in a separate window. The current
node is highlighted with ared outline. The arrow keys can
be used to select siblings (I€ft, right), the parent (up) and
the first child (down). The selected elements are continu-
ously updated and highlighted, which enablesfast and accu-
rate navigation. Elements within a user-defined size range
can be selected, and elements can be selected by matching
their name with regular expressions. The user can zoom in
on sub-trees, and zoom out again.

SEQUOIAVIEW has been used for various applications:
file systems, tries, organization charts, lexical parse trees,
and software structures. The cushion treemaps, supported
by multiple options for navigation and selection, turned out
to be highly effective.

5 Discussion

Both simpler and more complex variants of the cushion
treemap presented here are conceivable. We consider both
here to show that the version presented is optimal, in the
sense that these variants are no improvements.

We have chosen to use a geometric model, which is
shown as a shaded surface viewed from above. We could
also have used a direct, 2D model for the shading. This
could |ead to amore efficient algorithm, without the normal -
ization of the normal per pixel. For instance, the value of
Z(X, y) as defined before could directly denote an intensity.
However, such asimple model does not work satisfactorily.
The result is that each rectangle is filled with an ellipse-
shaped spot. More sophisticated 2D models could work, but
their control iscumbersome, when compared to theintuitive
model with two parameters (h, f) presented here. The use
of ageometrically based shading leads automatically to an
image that is easy to interpret.



Another optionisto view the surface from an oblique an-
gleasa3D surface. However, 3D views do not pay off. The
3D view ismore expensiveto generate, the height itself does
not provide a direct cue on the structure, and the only view
whereall rectangles can be viewed simultaneously isthetop
view.

Rather, we will spend effort in other areas. Some open
guestions are:

— How can anti-aliasing be provided, to handle rectangles
that fall between pixels?

— How can we effectively present multi-dimensional at-
tributes per leaf?

— How can graph-information (e.g. symbolic links in file
systems) be included?

— Does the combination of this representation with other
types of presentations pay off?

— Can the presentation of size be improved, such that per-
ceptual characteristics are taken into account?

Summarizing, still much work hasto be donein the area of
tree visualization.

6 Conclusions

We have presented anew method to visualize hierarchical
information. Cushion treemapsinherit the elegance of stan-
dard treemaps, and add intuitive shading to provide insight
in the hierarchical structure. Their features can be summa-
rized asfollows:

— efficient: generation of an image typically takes less than
a second;

— effective: the structure is visualized much more effective
compared with standard treemaps. Thisis obviousif we
compare for instance figure 3 with figure 6;

— compact: the display areais used very efficiently, more
than 3000 leaves can be displayed easily in animagewith
640x480 resolution. As a result, no scrolling or open-
ing/closing of nodes is needed to view the whole struc-
ture;

— easy to implement: the complete algorithm fits on one
page;

— easy to control: the appearance can be controlled with a
few intuitive parameters, for which default values often
suffice.

Finally, cushion treemaps address one of the most important
topicsin visualization. Their wide applicability is probably
what has struck us most during our research.
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