
To be presented at the IEEE Symposium on Information Visualization (INFOVIS’99), San Francisco, October 25-26, 1999

Cushion Treemaps: Visualization of Hierarchical Information

Jarke J. van Wijk Huub van de Wetering
Eindhoven University of Technology

Dept. of Mathematics and Computing Science
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

fvanwijk, wstahwg@win.tue.nl

Abstract

A new method is presented for the visualization of hier-
archical information, such as directory structures and orga-
nization structures. Cushion treemaps inherit the elegance
of standard treemaps: compact, space-filling displays of hi-
erarchical information, based on recursive subdivision of a
rectangular image space. Intuitive shading is used to pro-
vide insight in the hierarchical structure. During the subdi-
vision ridges are added per rectangle, which are rendered
with a simple shading model. The result is a surface that
consists of recursive cushions. The method is efficient, ef-
fective, easy to use and implement, and has a wide applica-
bility.

1 Introduction

Hierarchical structures of information are ubiquitous:
family trees, directory structures, organization structures,
catalogues, computer programs, etcetera. Small hierarchi-
cal structures are very effective to locate information, but the
content and organization of large structures is much harder
to grasp.

We present a new visualization method for such large hi-
erarchical structures: Cushion Treemaps. The method is
based on treemaps, developed by Shneiderman and Johnson
[11, 8]. Treemaps are efficient and compact displays, which
are particularly effective to show the size of the final ele-
ments in the structure. Cushion Treemaps provide shading
as a strong extra cue to emphasize the hierarchical structure.
For a quick impression, figure 2 and 3 show treemaps, figure
5 and 6 show the corresponding cushion treemaps.

In section 2 we discuss existing methods to visualize hi-
erarchical structures. The new method is presented in sec-
tion 3. The embedding of the method in an interactive sys-
tem for tree visualization is described in section 4. Finally,
we discuss extensions and alternatives in section 5, and we
summarize the results in section 6.

2 Background

Many methods exist to display and browse through hi-
erarchical information structures, or, for short, trees. File
browsers are the best known example. Usually a listing of
the files and directories is used, where the levels in the hi-
erarchy are shown by means of indentation. The number of
files and directories that can be shown simultaneously is lim-
ited, which is no problem if one knows what to search for.
However, if we want to get an overview, or want to answer
a more global question, such as: ”Why is my disk full?”,
scrolling, and opening and closing of subdirectories have to
be used intensively. During this process it is hard to form a
mental image of the overall structure [3].

E1

F2

C3
H4

J1 K1

L1 M1 N1 O1

A16

E1 F2 G2 H4 I4

B3 C3 D10

J1 K1 L1 M1 N1 O1

Node and link diagram Treemap

Figure 1. Tree representations

Many techniques have been proposed to show such struc-
tures more effectively. An important category are node and
link diagrams (fig. 1). Elements are shown as nodes, re-
lations are shown as links from parent to child nodes. So-
phisticated techniques have been presented to improve the
efficiency and aesthetic qualities of such diagrams, both in
2D and in 3D [9, 7, 1, 2, 10]. Such diagrams are very effec-
tive for small trees, but usually fall short when more than a
couple of hundred elements have to be visualized simulta-
neously. The main reason for this limitation is simply that
node and link diagrams use the display space inefficiently:
Most of the pixels are used as background.

Treemaps [11, 8] were developed to remedy this problem.

1

Figure 2. Treemap of file system

The full display space is used to visualize the contents of the
tree. Here we present an overview of the concept, an in depth
treatment is given in the original references. Figure 1 shows
an example.

Each node (as shown in the node and link diagram) has a
name (a letter) and an associated size (a number). The size
of leaves may represent for instance the size of individual
files, the size of non-leave nodes is the sum of the sizes of its
children. The treemap is constructed via recursive subdivi-
sion of the initial rectangle. The size of each sub-rectangle is
proportional to the size of the node. The direction of subdi-
vision alternates per level: first horizontally, next vertically,
etcetera. As a result, the initial rectangle is partitioned into
smaller rectangles, such that the size of each rectangle re-
flects the size of the leaf. The structure of the tree is also re-
flected in the treemap, as a result of its construction. Color
and annotation can be used to give extra information about
the leaves.

Treemaps are very effective when size is the most impor-
tant feature to be displayed. Figure 2 shows an overview of
a file system: 1400 files are shown and one can effortlessly
determine the largest ones. Labels are not shown here, but
can be shown interactively by pointing at the areas of inter-
est.

However, treemaps have limitations [4]. The problem
addressed here is that treemaps often fall short to visual-
ize the structure of the tree. The worst case is a balanced
tree, where each parent has the same number of children and
each leaf has the same size. The tree-map degenerates here
into a regular grid. Indeed, leaves that are close in the tree
are also close on the screen, but the reverse is not always
true. As an example, figure 3 shows an (artificial) organiza-
tion chart, modeled after the structure of our university. The
university has seven faculties, subdivided into departments,
which in turn are divided into sections. Each section is di-

Figure 3. Treemap of organization

vided into units. Each unit contains four different types of
staff members (full, associate, and assistant professor, PhD-
student). The final 3060 rectangles denote individual em-
ployees. Questions such as ”What is the largest section?”
or ”Is the division into units balanced?” are hard to answer
from such an image.

Nested treemaps [8] are a partial remedy. During the
subdivision process instead of the initial rectangle a slightly
smaller rectangle is used, such that each group of siblings is
enclosed by a margin. However, this consumes screen space
and the visual interpretation, especially for deeply nested
trees, requires effort from the viewer. The variation of prop-
erties of the surrounding lines is another option. However,
the number of steps in linewidth or intensity that can be dis-
cerned without effort is small, and also here the user is re-
quired to trace lines in a maze-like image. Coloring the rect-
angles would not work either. Color does not provide a nat-
ural hierarchical structure, and furthermore, we want to use
color to show other attributes of the elements.

One alternative has not been exploited yet: The use of
shading to visualize the structure. In the remainder of this
paper we will show how this can be done.

3 Cushion treemaps

3.1 Method

How can we use shading to show the tree structure? The
human visual system is trained to interpret variations in
shade as illuminated surfaces [6]. Hence, we can answer the
question by constructing a surface which shape encodes the
tree structure.

We introduce our solution with a simple one-dimensional
example: binary subdivision of an interval. First, we sub-
divide the interval and add a bump to each of the two sub-

2

Figure 4. Binary subdivision of interval

intervals. Next, we repeat this step recursively. To each new
sub-interval we add a bump again, with the same shape but
half of the size of the previous one. If we do this for three
levels, the results are eight segments and the top-most curve
in figure 4. If we interpret this curve as a side view of a bent
strip, and render it as viewed from above, the bumps trans-
form into a sequence of ridges. The separate segments are
clearly visible, each is bounded by the sharp discontinuities
in the shading. Furthermore, also the binary tree structure is
clearly visible, because the depth of the valleys between the
segments is proportional to the distance between segments
in the tree.

We can generalize this idea to the two-dimensional case.
Suppose that the x-axis is horizontal, the y-axis is vertical,
and that the z-axis points towards the viewer. If we subdi-
vide the rectangle in the x-direction, we add ridges aligned
with the y-direction, and vice versa for subdivision in the
y-direction. As a result, cushions are generated: The sum-
mation of orthogonal ridges gives a cushion-like shape. Nu-
merically, the simplest bump that can be used is a parabola,
hence for each rectangle of the treemap we use a segment of
a parabolic surface. The height z of such a surface is given
by

z(x, y) = ax2 + by2 + cx + dy + e. (1)

Initially, the surface is flat: all coefficients are zero. Con-
sider now a new rectangle which results from subdivision
along the x-axis. The ridge 1z we add is:

1z(x, y) = 4h

x2 − x1
(x − x1)(x2 − x), (2)

where x1 and x2 are the bounds of the rectangle in the x-
direction. The height of this ridge is 0 for x = x1 and
x = x2, and equal to (x2−x1)h in the center (x1+x2)/2. The
parameter h denotes the height proportional to the width,
hence it controls only the shape of the ridge. The ridge 1z
in (2) does not depend on y, the bump has the same shape at

each cross section y = C . Subdivision along the y-axis is
done similarly, here the ridge 1z that is added is:

1z(x, y) = 4h

y2 − y1
(y − y1)(y2 − y). (3)

The same value for h for each level of the tree gives a self-
similar surface. A decreasing value for h is useful to empha-
size the global structure of the tree. A convenient solution is
to use:

hi = f i h (4)

where hi is the actual value of h at level i , and f a scale fac-
tor between 0 and 1.

Figure 5. Cushion treemap, h = 0.5, f = 1

For the shading of the geometry a simple model, i.e. dif-
fuse reflection, suffices [5]. The normal n follows from:

n = [1, 0, ∂z/∂x]× [0, 1, ∂z/∂y]
= [−∂z/∂x,−∂z/∂y, 1]
= [−(2ax + c),−(2by + d), 1].

(5)

The intensity I is then given by:

I = Ia + Is max(0,
n·l
|n||l|) (6)

where Ia is the intensity of ambient light, Is is the intensity
of a directional light source, and l is a vector that points to-
wards this light source.

Results of this method are shown in figure 5 and figure 6:
a cushion treemap of the file system, and three cushion tree-
maps of the organization, with different values for the scale
factor f . All images have a resolution of 640×480 pixels. If
we compare these with the treemap versions, it is clear that
the shading provides a strong cue for the hierarchical struc-
ture: substructures can be identified effortlessly. With the
scale factor f a continuous trade off between the visualiza-
tion of global and detailed information can be made.

3

h = 0.5, f = 1

h = 0.5, f = 0.75

h = 0.5, f = 0.5

Figure 6. Cushion treemaps of organization

3.2 Algorithm

With the ingredients supplied in the previous section, the
complete algorithm can be derived. We present it here in full
detail, not because of its complexity, but to show its sim-
plicity. First, we define a few data types. The directions
X and Y are encoded via array-indexing to enable a com-
pact algorithm. The surface is described by its linear and
quadratic coefficients for the X- and Y-direction. For a Sur-
face s the coefficients a, b, c, and d of equation (1) corre-
spond to s[X,2], s[Y,2], s[X,1], and s[Y,1] respectively. The
constant coefficient e can be ignored here, because it is not
used in the shading calculation.

Each tree record has an associated size, and a pointer to
its parent, to its first child, and to the next sibling.

type Dir = (X,Y);
Bound = (Min, Max);
Degree = (1, 2);
Rectangle = array[Dir, Bound] of real;
Surface = array[Dir, Degree] of real;
TreeRecord = record

real size;
Tree parent, child, next;

end;
Tree = pointer to TreeRecord;

The procedure CTM generates the cushion treemap recur-
sively, following the same lines as the original treemap al-
gorithm. The main extension is that during the generation
of the rectangles the surface s is constructed. The surface is
bent in the direction d. If the tree is a leaf, the cushion is
rendered, else the direction is changed and its children are
visited. The height h is updated according to equation (4).

procedure CTM(Tree t; Rectangle r; real h, f; Dir d; Surface s)
var Tree tc; real w;
begin

if t.parent 6= nil then
AddRidge(r[d, Min], r[d, Max], h, s[d,1], s[d,2]);

if t.child = nil then RenderCushion(r, s)
else
begin

if d = X then d := Y else d := X;
w := (r[d, Max] – r[d, Min])/t.size;
tc := t.child;
while tc 6= nil do
begin

r[d, Max] := r[d, Min] + w*tc.size;
CTM(tc, r, h*f, f, d, s);
r[d, Min] := r[d, Max];
tc := tc.next

end
end

endfCTMg;

4

The main input for CTM consists of the root of the tree to be
rendered, the initial rectangle to be used, and settings for h
and f . A simple driver routine:

procedure MakeCushionTreeMap(Tree root; integer width, height)
var Rectangle r; Surface s;
begin

r[X, Min] := 0; r[X, Max] := width;
r[Y, Min] := 0; r[Y, Max] := height;
s[X, 1] := 0; s[X, 2] := 0;
s[Y, 1] := 0; s[Y, 2] := 0;
CTM(root, r, 0.5, 0.75, X, s)

end; fMakeCushionTreeMapg

The procedure AddRidge takes care of the update of the co-
efficients of the parabolic surface according to equation (2)
and (3):

procedure AddRidge(real x1, x2, h; var real s1, s2)
begin

s1 := s1 + 4*h*(x2+x1)/(x2–x1);
s2 := s2 – 4*h/(x2–x1)

end;fAddRidgeg

If in CTM a leaf node has to be rendered, RenderCushion
is called. The rectangle, defined in continuous space, is
scan converted via sampling the centers of the pixels that
fall within the rectangle. The intensity of a pixel is calcu-
lated according to equation (5) and (6). A straightforward
implementation is given below. For clarity, no optimization
is applied here. Early outs (if the rectangle does not cover
the center of any pixel), a priori calculation of common sub-
expressions, removal of constant sub-expressions out of the
loops and incremental evaluation of the quadratic expression
can easily be added. Other extensions are the rendering of
lines that separate the rectangles and the use of color to vi-
sualize some property of the leaf. The fixed settings used
here for the light source give good results. The frontal light
is slightly offset to the right and to above: l = [1, 2, 10].

procedure RenderCushion(Rectangle r; Surface s)
const Ia = 40;

Is = 215;
Lx = 0.09759; Ly = 0.19518; Lz = 0.9759;

var integer ix, iy; real nx, ny, cosa;
begin

for iy := trunc(r[Y, Min]+0.5) to trunc(r[Y, Max]–0.5) do
for ix := trunc(r[X, Min]+0.5) to trunc(r[X, Max]–0.5) do
begin

nx := –(2*s[X,2]*(ix+0.5) + s[X,1]);
ny := –(2*s[Y,2]*(iy+0.5) + s[Y,1]);
cosa := (nx*Lx + ny*Ly + Lz)/ sqrt(nx*nx + ny*ny + 1.0);
SetPixel(ix, iy, Ia + max(0, Is*cosa))

end
end;fRenderCushiong

This concludes the presentation of the complete algorithm.
It shows that cushion treemaps can be easily implemented in
a compact way.

4 Interaction

Presentation of hierarchical structures is only one aspect,
for effective visualization of such structures interaction is
equally important. We have embedded cushion treemaps in
SEQUOIAVIEW, our interactive system for the analysis and
visualization of large tree structures. The cushion treemaps
are generated with a slightly extended version of the pre-
vious algorithm. This takes less than a second on an SGI
O2, even for larger images and trees. Upon each interaction
the image is copied to the screen, annotation is overlaid, se-
lected rectangles are colored by superimposing transparent
rectangles. Various coloring options are available, to show
the size, the level, and other attributes of the leaves. Regen-
eration of the image is done only if the tree or one of the im-
age parameters change.

Many options are provided for navigation and selection.
The user can click on rectangles, upon which the properties
of the leaf are displayed in a separate window. The current
node is highlighted with a red outline. The arrow keys can
be used to select siblings (left, right), the parent (up) and
the first child (down). The selected elements are continu-
ously updated and highlighted, which enables fast and accu-
rate navigation. Elements within a user-defined size range
can be selected, and elements can be selected by matching
their name with regular expressions. The user can zoom in
on sub-trees, and zoom out again.

SEQUOIAVIEW has been used for various applications:
file systems, tries, organization charts, lexical parse trees,
and software structures. The cushion treemaps, supported
by multiple options for navigation and selection, turned out
to be highly effective.

5 Discussion

Both simpler and more complex variants of the cushion
treemap presented here are conceivable. We consider both
here to show that the version presented is optimal, in the
sense that these variants are no improvements.

We have chosen to use a geometric model, which is
shown as a shaded surface viewed from above. We could
also have used a direct, 2D model for the shading. This
could lead to a more efficient algorithm, without the normal-
ization of the normal per pixel. For instance, the value of
z(x, y) as defined before could directly denote an intensity.
However, such a simple model does not work satisfactorily.
The result is that each rectangle is filled with an ellipse-
shaped spot. More sophisticated 2D models could work, but
their control is cumbersome, when compared to the intuitive
model with two parameters (h, f) presented here. The use
of a geometrically based shading leads automatically to an
image that is easy to interpret.

5

Another option is to view the surface from an oblique an-
gle as a 3D surface. However, 3D views do not pay off. The
3D view is more expensive to generate, the height itself does
not provide a direct cue on the structure, and the only view
where all rectangles can be viewed simultaneously is the top
view.

Rather, we will spend effort in other areas. Some open
questions are:

– How can anti-aliasing be provided, to handle rectangles
that fall between pixels?

– How can we effectively present multi-dimensional at-
tributes per leaf?

– How can graph-information (e.g. symbolic links in file
systems) be included?

– Does the combination of this representation with other
types of presentations pay off?

– Can the presentation of size be improved, such that per-
ceptual characteristics are taken into account?

Summarizing, still much work has to be done in the area of
tree visualization.

6 Conclusions

We have presented a new method to visualize hierarchical
information. Cushion treemaps inherit the elegance of stan-
dard treemaps, and add intuitive shading to provide insight
in the hierarchical structure. Their features can be summa-
rized as follows:

– efficient: generation of an image typically takes less than
a second;

– effective: the structure is visualized much more effective
compared with standard treemaps. This is obvious if we
compare for instance figure 3 with figure 6;

– compact: the display area is used very efficiently, more
than 3000 leaves can be displayed easily in an image with
640×480 resolution. As a result, no scrolling or open-
ing/closing of nodes is needed to view the whole struc-
ture;

– easy to implement: the complete algorithm fits on one
page;

– easy to control: the appearance can be controlled with a
few intuitive parameters, for which default values often
suffice.

Finally, cushion treemaps address one of the most important
topics in visualization. Their wide applicability is probably
what has struck us most during our research.

References

[1] A. Bruggemann-Klein and D. Wood. Drawing trees
nicely with tex. Electronic Publishing, 2(2):101–115,
1989.

[2] S.K. Card, G.G. Robertson, and J.D. Mackinlay. The
information visualizer, an information workspace. In
Proc. of ACM CHI’91, Conference on Human Factors
in Computing Systems, pages 181–188, 1991.

[3] R. Chimera, K. Wolman, and B. Shneiderman. Eval-
uation of three interfaces for browsing hierarchical ta-
bles of contents. Technical Report Technical Report
CAR-TR-539, CS-TR-2620, University of Maryland,
February 1991.

[4] S.G. Eick. Visualization and interaction techniques.
In CHI97 Tutorial notes on Information Visualization.
ACM SIGCHI, March 1997.

[5] J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes.
Computer Graphics – Principles and practice, 2nd
edition. Addison-Wesley, Reading, MA, 1996.

[6] W. T. Freeman, E. H. Adelson, and A. P. Pent-
land. Shape-from-shading Analysis with Shadelets
and Bumplets. In Inv. Opth. and Vis. Sci. (supp), 31,
page 410. Association for Research in Vision and Oph-
thalmology, Spring 1990.

[7] G.W. Furnas. Generalized fisheye views. In Proc. of
ACM CHI’86, Conference on Human Factors in com-
puting systems, pages 16–23, 1986.

[8] B. Johnson and B. Shneiderman. Treemaps: a space-
filling approach to the visualization of hierarchical in-
formation structures. In Proc. of the 2nd International
IEEE Visualization Conference, pages 284–291, Octo-
ber 1991.

[9] D.E. Knuth. Fundamental algorithms, art of computer
programming, volume 1. Addison-Wesley, Reading,
MA, 1973.

[10] G.G. Robertson, J.D. Mackinlay, and S.K. Card. Cone
trees: animated 3d visualizations of hierarchical infor-
mation. In Proc. of ACM CHI’91, Conference on Hu-
man Factors in Computing Systems, pages 189–194,
1991.

[11] B. Shneiderman. Tree visualization with tree-maps:
a 2d space-filling approach. ACM Transactions on
Graphics, 11(1):92–99, September 1990.

6

