A Probe for Local Flow Field Visualization

Willem C. de Leeuw*

Jarke J. van Wijk!

“Delft University of Technology, Faculty of Technical Mathematics and Informatics,

Julianalaan 132, 2628 BL Delft, The Netherlands

tNetherlands Energy Research Foundation ECN, P.O.Box 1, 1755 ZG Petten, The Netherlands

Abstract

A probe for the interactive visualization of flow fields
is presented. The probe can be used to visualize many
characteristics of the flow in detail for a small region in
the data set. The velocity and the local change of velocity
(the velocity gradient tensor) are visualized by a set of geo-
metric primitives. To this end, the velocity gradient tensor
is transformed to a local coordinate frame, and decom-
posed into components parallel with and perpendicular to
the flow. These components are visualized as geometric
objects with an intuitively meaningful interpretation. An
implementation is presented which shows that this probe is
a useful tool for flow visualization.

1 Introduction

Flow visualization is an important topic for data visual-
ization research. Most of the recently published methods
are concerned with global visualization of the flow. Vol-
ume rendering [8], flow topology [6] etc. show structures in
flows, but do not allow a detailed look at a particular point
in the flow ficld. The probe described here is intended as
a complement to global visualization methods. The aim is
to provide detailed information at a point by visual means
and powerful user interaction.

A simple arrow only shows the magnitude and direction
of the flow velocity at a point, but often not just velocity but
changes in velocity are of interest. These velocity changes
can be described by a second order real tensor. Therefore
visualization of the local flow is in essence representation
of a vector (velocity) and a tensor (velocity changes) in a
point. To this end, meaningful values are extracted from
the tensor which are represented by geometric objects.

In section 2 a brief introduction to tensors and their
visualization is given. In section 3 a new method for the
decomposition of a second order real tensor is proposed.
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This decomposition is useful and intuitively clear in flow
fields. In section 4 the subsequent mapping on geometric
objects is presented. In section 5 an implementation is
described. Finally, in section 6 the results are discussed.

2 Tensor visualization

In a vector field the first order approximation of u(x)
near a point xgp is:

u(x) = u(xo) + J(x — x0) . (1

In three dimensions the velocity gradient or Jacobian matrix
(1, 7] of a velocity field u(x) = (u, v, w) is given by:
Uy Uy

J=Vu= vy U .
wy W

A subscript denotes a partial derivative, so u, means
Ou/dz. To show local flow characteristics in a point a
vector u and a tensor J must be visualized.

Uy
Uz
Wy

V3]

2.1 Decomposition

Decomposition is an important technique to achieve in-
sight in a tensor. An often used decomposition is to split
tensors in a symmetrical and an anti-symmetrical part {1]:

J o= JO 4@ Q)
where
J& = (J+JT)/2 and
J(@ (J=JT)/2

J7 is the transpose of J. The anti-symmetrical part has
three independent components which determine the rota-
tion of the velocity. The symmetrical part of the tensor
is called the stress-strain tensor. If the directions of the
orthogonal axes of reference are chosen such that the non-
diagonal elements of the stress-strain tensor are zero, as is



always possible, then the tensor represents a pure stretch-
ing motion. The axes of this frame are called the principal
directions of the tensor. The axis along which the largest
stretching occurs is called the major principal direction.
The values of a real tensor can be interpreted in terms
of the distortion of an infinitesimal fluid element around
a point where the tensor is defined. In this way the de-
composition of the tensor can be interpreted as imposing
certain restrictions on the possible distortions of the fluid
element. The tensor can be viewed as a superposition of
those distortions. Decomposition in a symmetrical and
anti-symmetrical part is the result of using a rigid object
that can only rotate and a second object that can change
shape but not rotate. This is not the only way the tensor
can be decomposed. Other ways of decomposition result
in other restrictions on the movement of the fluid element.
For example, the symmetric part can be further decomposed
into an isotropic expansion and two shearing motions[1].

2.2 Previous work

Several researchers have devised graphical representa-
tions of tensors. Haber [5] represented a symmetric stress
tensor by an object consisting of a shaft and a disc. The
direction of the shaft is the major principal direction of the
tensor. The axes of the elliptical disc correspond to the
other two principal directions. The length of the shaft and
the smallest and largest radius of the ellipse are proportional
to the magnitudes of the eigenvalues of the tensor.

The Stream Polygon by Schroeder et al. [11] is used to
visualize local deformation. It is a regular n-sided poly-
gon perpendicular to the velocity vector. Data is mapped
onto attributes of the polygon, such as the radius and the
relative length of the edges. Deformation can be visualized
by deforming the polygon accordingly. By sweeping the
polygon along a streamline a stream tube results. Scalar
values can be mapped on the surface of this tube by using
color.

Delmarcelle and Hesselink [4] show that a tensor field
can be decomposed in a symmetric-tensor field and a vector
field. To visualize the global structure of this symmetric-
tensor field they use hyperstreamlines. A hyperstreamline
is an ellipse swept along the line everywhere tangent to the
major principal direction of the tensor. The magnitude and
direction of the other two principal directions at each point
are reflected in the size of the swept ellipse. The resulting
surface can be colored according to the magnitude of the
principle direction.

The presented methods show a tensor field separated
from the velocity field, and are therefore not very useful to
visualize local flow. Further, they only show the symmetric
part of the tensor while the velocity gradient is in general
an asymmetrical tensor.
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3 Local flow

To visualize local flow via a probe, meaningful quanti-
ties must be derived from the raw data. In this section the
mathematical basis for the probe is presented. The con-
struction of a local coordinate frame is described, and next
the tensor is transformed to this local coordinate frame and
decomposed into primitives.

Because flow data usually are velocity vectors defined
at grid nodes, the velocities are known only at discrete
locations and must be interpolated in between. Tor this
we use trilinear interpolation. The gradients are calculated
by centered differences [10]. So far we limited ourselves
to rectilinear grids. Extension to curvilinear grids and ir-
regular meshes is possible, but requires a more complex
numerical evaluation of the Jacobian matrix.

3.1 Local coordinate frame

The definition of a tensor implies its invariance for co-
ordinate changes. In fluid flow, however, a distinction can
be made between velocity changes parallel with the flow
and perpendicular to the flow. This can be used to decom-
pose the tensor in components parallel with the flow and
components perpendicular to the flow. Instead of a fluid cl-
ement, a “fluid line”” and a “fluid plane” are used to map the
distortion. Together these two elements can represent the
same information as the fluid element mentioned before.
Therefore, the velocity gradient tensor is transformed to a
local coordinate frame (fig. 1). The origin of this frame is
the point where the tensor is calculated. For the frame we
use a Frenet frame [3, 2] with the r-axis parallel with the
velocity vector and the y-axis parallel with the curvature
vector.

particle
trace

Figure 1: Two local coordinate frames

In order to define a Frenet coordinate frame, the curva-
ture of a streamline through the origin has to be calculated.
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Figure 2: Decomposition of the probe

The curvature vector ¢ of a curve p(s) through the origin
is given by [3]:

d’p
c= =3 @
where s is the parameter of path length. Using the first order
approximation of the velocity of an imaginary particle that
moves along the streamline:

u(t) = ug + Jugt )
and using the fact that
dp _ u(t)
ds = Tu()]” ©

it can be shown that the curvature vector at a point in the
flow is given by:

Ju(u-u) —u(u- Ju)
c= .
luf®

%

With this vector and the velocity vector the Frenet frame
can be constructed. The base of the frame consists of the
normalized velocity vector, the normalized curvature vector
and the cross product of those two vectors:

(i < uxc)
[al” le|” Ju x ¢|

®
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If the curvature is zero the Frenet frame is not defined.
In this case any orthonormal frame with one axis aligned
with the velocity can be used.

3.2 Decomposition and mapping

In order to construct the probe, the tensor is decomposed
into components in the direction of and perpendicular to the
velocity (fig. 2). The components in the velocity direction
are both the derivatives with respect to = (uz, v, and w;)
and the velocity component in the u direction (u,., v, and
u,;). '

The components in the perpendicular direction (v, v,,
wy and w,) form the 2 x 2 lower-right submatrix of the
Jacobian matrix. This last matrix is split in a symmetric
and anti-symmetric part. Just like in the three-dimensional
case arotation and a stress-strain-tensor result. These relate
to torsion (rotation around the velocity vector) and conver-
gence of the flow.

The velocity parallel components are split as follows.
The left column contains the velocity change with respect
to r (us, vy, w;). The top row contains the change of
the velocity in the z-direction (v g, uy, u.). The top left
element of the matrix (u.) belongs to both the left column
and the top row and gives the acceleration. The remaining
elements in the top row (u, and u.) give the shear in the
flow, and the remaining elements in the first column (v,
and w_) give the curvature of the streamline.

4 The probe

The previous section covered the mathematics of the ten-
sor decomposition used for the probe. This section covers
the mapping of the derived quantities to geometric primi-



tives. The tensor is decomposed in five components: cur-
vature, shear, acceleration, torsion and convergence. The
acceleration and curvature are derived from the change in
the velocity of a particle in the flow. The other three prim-
itives show the velocity changes as seen from a ring or a
disc perpendicular to the velocity. Fig. 3 shows a graphical
representation of the probe.

Figure 3: Components of the probe

4.1 Requirements

If decomposition is used then care has to be taken that
the resulting components are independent. This is impor-
tant mathematically as well as visually. Mathematically an
orthogonal decomposition is desirable so that the different
components can each change their value without affecting
the other components. Also, the visualization of one com-
ponent should not interfere with the visualization of the
other. A primitive should for example not become arbitrar-
ily large if the corresponding value in the tensor increases,
Another requirement is that it must be clear if the value of
a certain variable is zero.

4.2 Velocity

The velocity is represented by an arrow in the form
of a cylinder and a cone. Its direction can be derived
from the shading of the arrow. The length of the shaft
of the arrow represents the magnitude of the velocity, its
direction represents the direction of the velocity. In the
local coordinate frame, velocity has only a component in
the z-direction, therefore the magnitude velocity can be
simply referred to as .

The length of the velocity arrow is determined by the
time scale At used. This also affects primitives related to
the velocity (curvature, shear and acceleration). The len gth
of the shaft is given by:

I = uAt. )

4.3 Curvature

The curvature of the streamline is given by equation (7).
In the local frame the center of the osculating circle of the
streamline is given by:

0
u/v,
0

q= (10)

Note that the first and third components of the vector are
always zero because a Frenet frame is used.

The curvature is visualized by the velocity arrow of the
probe (fig. 4): the velocity arrow is an arc of the osculating
circle. The arrow thus shows a first order approximation of
a streamline through the origin of the frame. The angle /3
over which the arc extends follows from:

B = Atu/|q] = Atv,, . (11

particle
trace

Figure 4: Visualization of curvature

4.4 Acceleration

The value of u, determines the acceleration of a particle
released at the origin of the reference frame, This acceler-
ation is visualized by a “membrane” perpendicular to the
flow. The value of the acceleration is mapped to the dis-
placement of the center of the membrane. Zero acceleration

(See color plates, p. CP-5.)
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results in a flat membrane. If the acceleration is positive,
a half ellipsoid in the direction of the velocity is shown,
if it is negative (deceleration), the center of the membrane
is stretched in the opposite direction. Thus, it shows the
difference in velocity between the current position and at
end of the velocity arrow. The displacement a of the center
of the membrane is given by:

a=u;At?u. (12)
The square in the timestep At is caused by the fact that
both the length of the arrow and the duration of the velocity
change has to be taken in account.

4.5 Torsion

The torsion r around the velocity axis is the component
of the rotation of the velocity gradient tensor in the direction
of the r-axis:

=Wy — U, .

13)

The torsion is visualized as candy stripes on the surface of
the velocity arrow. The total torsion angle o around the
axis is given by:

a=rAt. (14

Torsion is closely related to helicity of the flow, helicity
is the product of torsion and velocity: u -V x u.

4.6 Shear

The shear in the direction of the flow can be interpreted
as the change of orientation of the plane perpendicular to
the flow over time (fig. 5). This shear-plane is visualized
by a ring resulting from clipping the plane to two spheres
of different size. The equation of the plane of the ring is:

= At(uyy + u,z) . 15)

shear-ring

Figure 5: Visualization of shear
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convergence divergence

Figure 6: Visualization of convergence

4.7 Convergence

Velocity changes in the plane perpendicular to the flow
are related to convergence and divergence of the flow. They
affect the size and orientation of a circle released perpen-
dicular to the flow. For visualization a surface that is ev-
erywhere perpendicular to the flow is used. This surface
can be interpreted as a “lens” that focuses the flow (fig. 6).
Here we use the osculating paraboloid [3] to this surface to
represent its curvature, just as we used an osculating cir-
cle to represent the curvature of a streamline. The distance
6(n, ) of an osculating paraboloid to the tangent plane with
unit normal N is given by:

8(n,€) = %(Ldnz + 2Mdndé + Nd€*) (16)
where
L = —(xy - Ny) ,
M = —%[(Xf “N,) + (x, -N¢)} and
N = —(x¢ - Ne)

77 and £ are the parameters of the normal plane. For the os-
culating paraboloid to the surface perpendicular to velocity
[(x, - u) = (x¢ - u) = 0], L is given by:

111

a] an

L=-x, Ny=-x,-
M and N can be determined similarly. If y and z of the
reference frame are chosen as the surface parameters 7 and
¢, then the equation for the surface perpendicular to the
velocity reduces to:

Yy 2 _ (v: +wy)
u y u
This equation is used to construct the surface. Rendering
the surface as a disc with a fixed radius as domain poses
problems when the differentials are large: the edges will be
far from the probe. To prevent this, the surface is clipped
against a sphere around the origin.

r=— z - (18)

W, o
: .



5 Implementation

To test the concept of the probe an interactive application
was written. The application was implemented on a SGI
workstation using the C programming language. The user
interface was built using ‘Forms’ [S], a public domain user
interface toolkit. For testing purposes simple artificial data
sets [12], and a data set generated by Robert Wilhelmson
of NCSA were used. This set is the result of a numerical
simulation of a tornado generated assuming symmetry in
the azimuthal direction.

5.1 User interface

The application provides the user with two views on the
flow area (fig. 7). The first is a global view, which shows
the position of the probe in the flow area. The second view
gives an enlarged view of the probe. The user can interact
with the probe in both views. In the global view the user can
position the probe at a certain location. Its position in the
flow area is indicated by two lines connected to the bounds
of the area. In the enlarged view the user can choose a point
of view to the probe.

If the user is not interested in certain aspects of the flow,
the corresponding primitives can be turned off. Copies
of the probe or components of it can be left behind at
interesting positions (fig. 8).

Figure 7: User interface of the application

In the program, animations of a probe moving along a
stream line can be generated in real time. The user can
select a position in the flow and start the animation of the
probe. The path of the probe is shown during the animation.
With these additional tools a more global impression of the
flow can be achieved.

Figure 8 is an example of how the probe can be applied

Figure 8: Interactively built image of the simple tornado
set (data: Robert Wilhelmson, NCSA)

to a data set. The storm data set is portrayed by several
probes. These probes are interactively placed by the user
to show interesting locations in the flow. The changes of
velocity in the vertical direction along the eye of the torado
are clearly visible. Furthermore, a strecamline with several
probes along it is shown.

5.2 Display of other data

To show other data at the location of the probe, such
as temperature or pressure, a “valucbox” is used. The
valuebox is a small display with a constant positionrelative
to the probe on the screen. If the probe is moving or moved
the box moves along with it on the screen. The value of
the property is updated according to the current position of
the probe. This valuebox can also be used for the values
already visualized by the shape of the probe, so the exact
value of the property at a certain point can be determined
easily.

(See color plates, p. CP-5,)
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6 Discussion

In this paper a probing tool for the interactive visual-
ization of local flow is presented. It gives a researcher the
possibility to investigate details of the flow and is comple-
mentary to other methods of flow visualization. Additional
tools such as animation and the visibility of multiple probes
offer the possibility of global insight in the flow. Mapping
of the tensor on geometric objects simplifies understanding
of the abstract data. Because current graphics hardware
allows fast rendering of polygons, interactive speeds are
easily achieved. The same principle could be applied to
other types of multi-variate data sets, but possibly requires
the design of appropriate sets of primitives.

Some features of the tensor cannot yet be extracted from
the probe. An example is dilatation. A valuebox could be
used for that, but a solution where those values are rep-
resented in the probe would be better. In this paper we
assumed time independent flow. In practice many simula-
tions produce time dependent data. Extending the probe for
use in such data requires that spatial and temporal deriva-
tives are considered.

At critical points (6], where the magnitude of the ve-
locity vanishes, it is impossible to construct a local frame
of reference. In these points another representation for the
local flow has to be used. A possibility is the use of special
types of icons for each type of critical point (vortex, sink,
source, saddle or combination of those).

The probe can be used in combination with other visual-
ization techniques. A global visualization technique could
be used to show the overall structure of the data while the
probe is used to investigate certain regions of the data in
detail.
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