| sosur facing in Span Space with Utmost Efficiency (1 SSUE)

Han-Wel ShenT Charles D. Hanszeni

f Department of Computer Science
University of Utah
Salt Lake City, UT

Abstract

We present efficient sequential and parallel algorithms
for isosurface extraction. Based on the Span Space data
representation, new data subdivision and searching meth-
ods are described. We also present a parallel implementa-
tion with an emphasison load balancing. The performance
of our sequential algorithmto locate the cell elementsin-
tersected by isosurfaces is faster than the Kd-tree search-
ing method originally used for the Span Space algorithm.
Theparalle algorithmcan achieve highload balancing for
massively parallel machines with distributed memory ar-
chitectures.

1 Introduction

Scientific visualization has played an important role
in understanding three-dimensional scalar data. As cost-
effective high performance computers with large amount
of memory and disk space become more accessible, the
sizes of these scalar data aso continue to increase. To vi-
sualize these large-scale data sets, generally two different
paradigms are used. One paradigm is to transfer the data
onto graphics workstations and perform the visualization
as a postprocessing step. Alternatively, visualization can
be performed on the same, typically parallel, machines that
run the simulation thereby providing the user faster feed-
back necessary for computational steering. In this paper,
we propose an efficient sequential isosurfacing algorithm
and aload bal anced parallel isosurfacing al gorithmto fulfill
the requirements of both visualization paradigms.

Isosurfacing is an effective technique to explore three-
dimensional scaar fields. A ssimpleand effective method is
the Marching Cubes algorithm, proposed by Lorensen and
Cline[1]. The agorithm has a complexity of O(N) since
it is necessary to visit each cell* in the three-dimensional

*Inauniformthree-dimensional field, acell issometimesreferred to as
avoxel. We use the term cell to indicate elements of athree-dimensional
grid that may be a uniform or regular structured grid or an unstructured

Yarden LivnatT

Christopher R. Johnson'

! Advanced Computing Laboratory
Los Alamos National Laboratory
Los Alamos, New Mexico

field. When the data set is large, visiting each cell is
too costly and recent research efforts have investigated
the acceleration of the isosurfacing process, namely Wil-
helms and Van Gelder’soctree spatial subdivision[2], Gal-
lengher’s span filter [3], Itoh and Koyamada's extreme
graph method[4], Shen and Johnson’s sweeping simplices
algorithm[5],and Livnat et a.’snear optimal isosurfaceex-
traction (NOISE) algorithm [6].

Among the above accelerating techniques, the NOISE
algorithmis near optimal. This algorithm has aworst case
complexity of O(v/N + K) to locate the cells that are in-
tersected by theisosurfaces, where NV isthetotal number of
cellsinthe scaar field, and A isthe number of isosurface
cells. The crux of thisalgorithmisanovel datarepresenta-
tion, termed the Span Space. Using thisrepresentation, the
isosurface extraction process can be reduced into a range
searching problem. Livnat et al. proposed a classical Kd-
tree searching method [7] to locate, in that space, the cells
that contain an isosurface.

In this paper, we use the Span Space as the underlying
representation to design high performance isosurface ex-
traction algorithms for both single processor workstations
and massively paralle machines with distributed mem-
ory architectures. Rather than using the Kd-tree search-
ing method, we subdivide the Span Space into a two-
dimensional regular lattice and propose a new searching
method. Our new sequential agorithm leads to a average
case time complexity of O(log(X) + YN + K) to lo-
cate theisosurface intersected cell elements, where L isan
user specified parameter, as explained in Section 3, with a
value typicaly between 200 to 500. In practice, this new
method is faster than the NOISE algorithm in locating the
isosurfacecells. Our parallel isosurfacing agorithm adopts
astaticload bal ancing scheme to distributethe cells among
Processing Elements (PES). Each PE executes the sequen-
tial agorithm locally leading to an average difference be-

grid. The cells may be tetrahedra, hexahedra, prisms or other polyhedra.
The methods described in this paper are useful for any type of grid.

Production Editor's Note
There are a number of supplemental TIFF images which accompany this file, located in PAPERS/shen/.

— X
\ Min

Figure 1: Span Space

tween the maxi mum and minimumworkloadsof lower than
2%.

We begin the paper by providing details of the Span
Space data representation. Next, we describe the new lat-
tice subdivision method with a fast searching algorithm.
We then discuss some implementation details. Building
uponthis, we present the parallel algorithmwith an empha-
sis on the load balancing. Finally, we conclude the paper
with severa experimental results.

2 Span Space

For each cell element in the three-dimensional scalar
field, there exists an interval [a, b] representing the scalar
range of the data at the cell’s vertices, where a isthe cell’s
minimum value and & is the cell’s maximum value. For a
given isovalue v, the cell C; that has interval [a;, b;] such
that a; < v, and b; > w isintersected by the isosur-
face. To accelerate the isosurfacing process, researchers
have proposed different methods to decompose the data do-
main such that for each isovalue, thereis only asmall num-
ber of subdomainsthat need to be examined [3, 5].

Livnat et al. provide an interesting perspective for the
isosurfacing problem [6]. For a cell with minimum vaue
a and maximum value b, instead of treating the [a, b] as an
interval, they map the cell into an unique point position,
(a,b), in an R? value space, termed the Span Space. Fig-
ure lillustratesthe Span Space. The horizontal axis X de-
picts a cell’s minimum value, and the vertical axis Y de-
picts a cell’s maximum value. Note that cell elements can
be mapped only to the half space abovethe X = Y line
because a cell’s maximum value is aways greater than or
equal toitsminimumvaue. Using the Span Space datarep-
resentation, theisosurfacing problemisthen reduced into a
classical range search problem. The problem is stated as
follow:

o For agivenisovalue v, thecel C; that has associated

Lattice Element(4,6)

Y X=Y
Max o
‘.
Ce Ve ... Lattice
g itad Element(8,8)
® e
X
- - Min
do dl\dN° . deé d7 ds= oo

Lattice
Element(1,1)

Figure 2: Lattice Subdivision

points («;, y;) in the Span Space, such that z; < v and
y; > v isanisosurface cdl.

In Figure 1, cells having points within the shaded area
aretheisosurface cdlls.

Unlike the interval representation for a cell that poses
difficulties for subdividing the cells in the scalar field, the
point representation in the Span Space provideamuch sim-
pler way to subdividethe datadomain. Thisadvantagelays
down the basis for us to develop an efficient searching al-
gorithm.

3 New Searching Algorithm

In this section, we describe a data subdivision scheme
and anew searching algorithmtolocatetheisosurfacecells.
Based on the Span Space representation, the new subdivi-
sion scheme organizes the cellsin such away that the iso-
surface cells can be easily located.

3.1 Lattice Subdivision

Our algorithm decomposesthe datadomain by subdivid-
ingthe Span Spaceintoatwodimensiona L x L lattice. As-
suming that the scalar field has agloba minimum value m,
and agloba maximum value M , we define aset of dividing
points{di}zzg suchthatdy = m, d; = oo0,d; < d;41, and
(&} € (m, M]. A lattice dlement(é, j),i = 1..L
and j = 1..L is defined as a square region in the Span
Space containing point (z, y) such that = € [d;—y, d;) and
y € [dj_1,d;). Figure2 showsa8 x 8 lattice subdivi-
sion imposed upon the Span Space. Notethat the X = Y
line crosses the diagonals of lattice element(:, ¢),i = 1..L.
Also, dl the lattice elements with indices (i, 7),7 > j are
empty because the minimum values can not be greater than
the maximum values.

Lattice element(p,p)

/
Max N NN V\:\t\ / /
:\\t\/ [Case 1
\Qll\ R? Case 2
v %é&é&%%% [cases

: N Case 4
! % Case 5
I
I
1 . X
\V2 Min

Figure 3: Lattice Classification

3.2 Searching Algorithm

Using the lattice subdivision, we can quickly locate the
candidate | attice elements that contain theisosurface cells.
Givenanisovauev, v € [d,_1, dp), we classify thelattice
elements in the Span Space into five cases based on their
indices (¢, j) asfollows:

1. i > porj < p: All thecdlsinthisregionhaveeither a
higher minimum value or lower maximum value than
theisovalue. Hence these lattice elements trivialy do
not contain any isosurface cells.

2. i < pandj > p: All thecdlsintheselattice elements
are isosurface cells.

3. i < pandj = p: All thecdlsin thisregion have a
lower minimum value than the isovalue. Hence only
those cellsthat have a higher maximum valuethan the
isovalue are isosurface cells.

4. i = pandj > p: All the céllsin thisregion have a
higher maximum value than theisovaue. Hence only
those cells that have alower minimum value than the
isovalue are isosurface cells.

5.1 = pandj = p: Thisisthe only lattice eement
that requiresamin-max search to locate theisosurface
cells. Any isosurfacing algorithm, such as a Kd-tree
searching method or sweeping simplices, will do.

Figure 3 shows the five cases in the Span Space.

From the above description, the lattice elements in case
1 can be immediately rejected. Locating isosurface cells
fromthe case 2 regi on requires no searching operation since
every cell intheregionisan isosurface cell. The cells can
be directly collected from the Lattice Element data struc-
tures that contain cell indices.

To locate isosurface cellsin the lattice elements of case
3, wedesignaRow datastructure. Row [R] containsindices

and maximum vaues of cellsin latticeelements (7, j), i <
R,j = R. Thecdl indices are sorted by their maximum
values. To collect the isosurface cells, we apply a binary
search to Row [p] and find the cells with maximum values
greater than theisovaue v.

To collect isosurface cellsin the lattice e ements of case
4, we design a Column data structure. Column [C] con-
tains indices and minimum values of cells in lattice ele-
ments (i, j), i = C,j > C. Thecdlsineach column struc-
ture are sorted by their minimum vaues. Those cells in
Column [p] with minimum valueslower than theisovauev
areisosurface cellsand can belocated with abinary search.

The lattice element in case 5 is the only region that we
need to employ regular isosurface searching, i.e., finding
cells with minimum values lower, and maximum values
higher than the isovalue. To achieve this, we can use any
efficient isosurface extraction algorithm. For instance, we
can build a Kd-tree structure for |attice element (p, p) and
apply Kd-tree search to locate the isosurface cells or we
could employ the Sweeping Simplices algorithm[5].

The search phase of our isosurfacing a gorithmincludes
two binary searches in the regions of case 3 and case 4,
and one min-max search in the lattice element of case 5.
Since the entire Span Space contains L rows, I, columns,
and w latticeelements abovethe X = Y haf space,
the average number of cellsin each row and columnis %
and the average number of cellsin each lattice element is

(L+1) The binary search for each row and column re-

quires O(log(%)), and the K d-tree mix-max search for the

lattice element in case 5 requir&O(@). Hence, theover-
all average case performance for our new algorithmisthen
O(log(¥) + \/_ + K), where K isthe number of theiso-
surface cel Is.

3.3 Implementation Details

In this section, we provide important implementation
details of our searching algorithm. First, we describe how
to determinethedividing points{d; }. Second, we describe
a sparse manipulation method to avoid visiting the empty
| attice elements when collecting the isosurface cells.

From the earlier description, we know that alattice ele-
ment (¢, j) isaregion in the Span Space containing points
(z,y)suchthat z € [d;_1,d;) andy € [d;_1,d;). Assum-
ing that the value range of thefidd is[m, M], m, M € R,
and that the Span Spaceissubdividedintoan . x L lattice,
a straightforward way to determine {d;} is to evenly cut

m)~i=L-1
theinterval [m, M],thatis, {d; = m + i x (ML)}

and d;, = oco. However, this method does not produce a
uniform data point distribution a each interval [d;, d;41]
which results in an uneven cell distribution among the

@ : Non—-empty lattice element

Figure 4: Sparse Manipulation

lattice elements. To avoid this, we find {d;}:=.~" in

such away that the number of data pointsat each interval
[di, d;+1] is approximately the same. We achieve this by
sorting al data pointsinto alist and dividingthelistinto L
sublistshaving approximately the same lengths. The scalar
values which bound those sublists are the dividing points.

Asmentioned earlier, only latticeelementsin cases 3, 4,
and 5 require searching operationsto locate the isosurface
cells. The finer we subdivide the Span Space, the smaller
the areas of the regions defined by those cases. Thisresults
in a greater number of cells which are located in the case
2 region and therefore can immediately be collected. How-
ever, aswe morefinely subdividethe Span Space, there can
be alarger number of empty lattice elements. Thishasthe
potential to degradethe al gorithm’ sperformance sincetime
woul d be spent checking those empty | attice el ementswhen
we collect the isosurface cells. To overcome this limita-
tion, we use a sparse manipulation method on the lattice.
Aswe pre-process thedatafield and distributethe cellsinto
the lattice, the non-empty lattice eementsare marked. The
lattice elements at each row are then connected together
with pointers. Figure 4 illustrates the sparse manipulation
method. We note that using sparse manipulation, the num-
ber of non-empty latticeelementsisbounded by thenumber
of cellsinthe 3D scalar field no matter how fine we subdi-
videthe Span Space. In theresults section, we show there-
lationship between the resolution of the | attice subdivision
and the performance of the searching algorithm.

4 Parallel Algorithm

In this section, we present a parallel isosurfacing ago-
rithm. The underlying architecture model ismassively par-
allel machines with distributed memory such as the Cray

Figure5: Lattice Distribution

T3D. The agorithm can be divided into three phases: cell
distribution, initialization, and isosurface extraction. In
the cell distribution phase, cellsare partitioned into several
subsetsand distributedto the processing elements (PESs). In
theinitialization phase, each PE buildslattice, row, and col -
umn data structures based on the local data. In the isosur-
face extraction phase, each PE locally employs our search-
ing agorithm to extract the isosurfaces.

Our emphasis is on paradigms of cell distribution
achieving load balancing. For any given isovalue, we want
the PEsto spend a balanced amount of timeinisosurfacing
and to produce balanced amount of triangles. In thisway,
not only does our isosurfacing a gorithm exhibit good scal -
ability, it can aso bedirectly connected to aparallel render-
ing process, which requires an even distribution of primi-
tivesfor theinitial geometry processing[8].

We achieve the load balancing by carefully designing a
cell distribution scheme. Idedly, if cellswithin any scalar
range [a, b] are evenly scattered, each PE would have ap-
proximately the same number of isosurface cells for any
isovalue. To achievethis, we useacdll distributionmethod
built on top of thelattice subdivisionof the Span Space. As-
suming that there are 1. x L lattice elements in the Span
Space, and that thereare N PEs available, numbering from
PE[0] to PE[N — 1], we unfold the | attice elements in the
half space abovethe X = Y line column by column into a
1D list and distributethese Méill elementsinto the PEs
using around-robinmethod. Figure5 showsalattice distri-
bution of 8 x 8 latticewith 4 avail able PEs. To express our
round-robin method in terms of indices of lattice el ements
and PEs, our method distributesthe cellsin thelattice(i,)
intoPE[(j—1+ %)modl\f} Asaresult, each PE
receives abalanced work |oad because the | attice el ements
in cases 2,3,4,5 are evenly distributed.

The resolution of the lattice subdivision is crucia to
the load-balance of the algorithm since a finer subdivision
exhibits better cell scattering. However, in the isosurfac-
ing agorithm, creating a fine subdivision implies that we
have to create more | attice data objects, which would incur
higher memory overhead. To overcome this, we decouple
thelattice subdivisionused for the cell distributionfromthe
one used for isosurfacing algorithm. Initially, afiner lattice
subdivisionisused for the round-robindistributionscheme,
After each PE receives itslocal data, a coarser |attice sub-
divisionis used to creste the lattice, row, and column data
structures. In thisway, we can exploit a fine subdivision
which achieves good cell scattering, but not invoke exces-
sive memory overhead in performing isosurfacing. We re-
fer to the elements of this subdivision for the cell distribu-
tion as buckets to distinguishfrom | attice el ements used for
the isosurfacing al gorithm.

5 Resultsand Discussion

In this section, we present empirical resultsto evaluate
our algorithms. The sequential agorithm was tested on a
150 MHz MIPS R4400 processor. The paralel agorithm
was tested on a Cray T3D parallel machine. All the results
presented were obtained by averaging one thousand execu-
tionswith randomly assigned isoval ues.

5.1 Sequential Algorithm

We used three unstructured grid data sets to test our se-
guentia agorithm. These data were generated from bio-
electric field problems solved using finite el ement meth-
ods. The data sizes range from 69 thousand to 1.3 mil-
lion elements. Table 1 gives a summary of the data sets.
Figures 11-13 depict a single iso-surfaced image for each
of the data sets. The performance of the searching phase
of the algorithm is affected by the resolution of the lattice
subdivision. The finer we subdivide the Span Space, the
smaller the area of the regions covered by case 3,4,5 while
the greater the area of the region covered by case 2. How-
ever, Thisismitigated by the overhead of constructing the
necessary data structures. Figure 6 demonstrates the rela-
tionship between the time to search for isosurface cellsand
theresolution of thelattice subdivision. We can seethat the
search time dramatically decreases asweincrease the num-
ber lattice elements up to 256 x 256. After that, the per-
formance degraded dlightly due the overhead incurred by
using a very fine lattice structure. Figure 7 shows the to-
tal isosurfacing time, including the time for triangulation,
verses the resol ution of thelattice subdivision. Because we
used the sparse mani pul ation method mentioned in the sec-

DataSet | Vertices Cdls
Heart 11,504 69,892
Torso 201,142 | 1,290,072
Brain 74,217 471,770

Table 1: Data Sets

Method | Heart | Torso | Brain
Lattice | 0.017 | 0.129 | 0.052
Kd-tree | 0.4 2.2 15

Table 2: Comparison of thelattice method withthe Kd-tree
method in locating the isosurface cells.(in msecs)

tion 3.3, the overhead incured by a very fine subdivisionis
not overwhel ming.

512x512 | attice el ements were used in our experiments.
Table 2 showsthetimesfor locating which cells contain an
isosurface for both the L attice based algorithm and the Kd-
tree algorithm. Note that the time to locate the isosurface
cellsisan order of magnitude faster. Table 3 compares the
total isosurfacing time: locating which cells contain an iso-
surface, traversing those cellsto perform triangul ation, and
the triangulationtime. It can be seen that the L attice based
search improvesthe overall performance by approximately
25%. The triangulation time begins to dominate which is
why the time to locate the isosurface cells is an order of
magnitudefaster but overall the system exhibitsonly a25%
increase in performance.

The initialization complex-
ity for our algorithmis O(2L x % log(%) + n), where L
is the number of bins used at each dimension of the span
space, and n isthe number of cells. The isbecause that we
need to sort the cells at each row and column based on their
minimum or maximum va ues, and put the cell indicesinto
appropriatelattice elements. Table 4 givestheinitialization
timefor the test data sets.

The memory requirement for our agorithm is O(n).
This includes cell indices , minimum, and maximum val-

Method | Heart | Torso | Bran
Lattice | 4.65 | 33.47 | 41.33
Kd-tree | 7.0 43.8 53.9

Table 3: Comparison of thelattice method withthe Kd-tree
method in total isosurfacing time.(in msecs)

100

uuuuuuu

Execution Time(ms:

L L L L L
[200 400 600 800 1000 1200
K

Figure 6: Searching Timev.s. K x K Lattice Subdivision

1000

rrrrrrrr

100

,,,,,,,,,,,,,,,,,,,,,,,,,,

Execution Time(msecs)
&
£

L L L L L
[200 400 600 800 1000 1200
K

Figure 7: Tota Isosurfacing Timev.s. K x K Lattice Sub-
division

ues stored in the row and column date structures, cell in-
dices stored in | attice elements, and memory consumed by
the algorithm applied to cellsin thelattice e ements of case
5. We assume that the memory requirement for the algo-
rithm chosen to extract isosurfaces from cellsin case 5 is
bound by O(n), which is true if we use either KD-tree or
Sweeping Simplices searching methods.

5.2 Paralle Algorithm

We have implemented our parallel agorithmusing C++
on aCray T3D supercomputer inthe Advanced Computing
Laboratory at Los Alamos National Laboratory. The Cray
T3D is a massively paralel computer with a distributed
memory architecture. Each processing element has a 64 bit
DEC Alphamicroprocessor and 8M words local memory.

Method | Heart | Torso | Bran
Time 1.88 | 53.19 | 13.01

Table 4: Initialization Time.(in secs)

Load Imbalance

Ty

L L L L L
[200 400 600 800 1000 1200
K

Figure8: Load Imbalance for K x K Bucket Subdivision

Our implementation uses the message passing paradigm
by employing the ACLMPL message passing library [9]
which is a high throughput, low latency communications
library.t In this section, we show the load balancing char-
acteristics of our parallel algorithm and give the speedup
factors obtained from executions using 4 to 64 processing
elements. Weused thebraindataset which has471,770 cell
elements.

To messure the load balance of our parallel agorithm,
we use two different metrics. Oneisaformulaof load im-
balance used by Ma[10Q]:

e Load Imbalance=1 — ‘24daverage

loadprazx

The other is aload difference formula

o Load Difference = (100 x (4darac=loadasin)7

loadrotal

Two different measurements are used to define thework-
load for each PE. Oneistheisosurfacing timesfor each PE,
the other is the number of triangles produced by each PE.
We present both of the workload measurements to evaluate
our agorithm.

From our earlier discussion, we know that the load bal-
ance is affected by the resolution of bucket subdivision.
Figure 8 and Figure 9 show the load imbalance and load
difference, for both workload measurements, using 32 PEs.
Weincreased the resol ution of the bucket subdivisionfrom
16 x 16101024 x 1024. Theresultsshow that we can obtain
ahighly balanced load, namely under 0.2 of load imbalance
and 2% of load differencefor a1024 x 1024 bucket subdi-
vision. Remember that the bucket subdivisionisa subdivi-
sion of the Span Space used to distributethe cell e ements,
which is different from the lattice subdivision used to per-
form the isosurfacing algorithm.

tWe used ACLMPL since the MPI implementation on the T3D is not
yet mature. The message passing library employed will effect the perfor-
mance but isindependent of the isosurfacing algorithm.

T
Number of Triangles e—
Isosurfacing Time -+~

Load Difference

L L L L L
[200 400 600 800 1000 1200
K

Speedup

L L
10 20 30 40
Number of processors

Figure 10: Speedup Factors

Figure 10 gives the speedup factors for T3D partitions
with 4to 64 PEs. Thetest was performed witha256 x 256
lattice subdivision.

6 Concluson and Summary

We have presented a high performance isosurfacing al-
gorithmusingaregular L x L | attice subdivisionof the Span
Space. The algorithm has a average case time complexity
of O(log(X) + YN + K), wherethe N isthe total num-
ber of cellsin the scalar field, X isthe number of isosur-
face cells, and L isauser specified parameter. In practice,
it isfaster than the Kd-tree searching method. Empirically,
the algorithm has its best performance when the value of
L isabout 200 to 500 for scalar data sets with sizes rang-
ing from hundredsof thousandsto millionsof cell elements.
We have a so presented aload balanced parallel isosurfac-
ing agorithm. In additionto thelattice subdivision, we use
a bucket subdivision of the Span Space and a round-robin
method to distribute the cell elements. Our experimental
resultsshow that thehigher theresol ution of the bucket sub-
division, the better the load balance. Our sequential and
parallel isosurfacing al gorithm can satisfy the needs of both

post-processing and computationa steering visualization.

Acknowledgments

The work was performed under the auspices of the
United State Department of Energy, Los Alamos National
Laboratory and was supported in part by the National Sci-
ence Foundation and the National Institutesof Health. The
research was performed in part using the resources located
in the Department of Computer Science at the University
of Utah and at the Advanced Computing Laboratory of Los
Alamos National Laboratory. Furthermore, the authors ap-
preciate accessto facilitiesthat are part of theNSF STC for
Computer Graphics and Scientific Visualization.

References

[1] W.E. Lorensen and H. E. Cline. Marching cubes:
A high resolution 3d surface construction algorithm.
Computer Graphics, 21(4):163-169, July 1987.

[2] J. Wilhedmsand A. Van Gelder. Octreesfor faster iso-
surface generation. ACM Transactions on Graphics,
11(3):201-227, July 1992.

[3] R.S. Galagher. Span filter: An optimization scheme
for volume visualization of large finite e ement mod-
els. In Proceedings of Visualization '91, pages 68—
75. |[EEE Computer Society Press, Los Alamitos, CA,
1991.

[4] T.Itohand K. Koyyamada. 1sosurface generation by
using extreme graphs. In Proceedings of Visualization
'94, pages 77-83. |EEE Computer Society Press, Los
Alamitos, CA, 1994.

[5] H.W. Shen and C.R. Johnson. Sweeping simplices:
A fast isosurface extraction algorithm for unstructure
grids. In Proceedings of Visualization '95. IEEE
Computer Society Press, Los Alamitos, CA, 1995.

[6] Y. Livnat, HW. Shen, and C.R. Johnson. A near op-
timal isosurface extraction algorithm using the span
space. |EEE Transaction on Visualization and Com-
puter Graphics, 2(1), March 1996.

[7] E.P. Preparata and M.I. Shamos. Computational Ge-
ometry, an introduction. Springer-Verlag Publishing
Company, 1985.

[8] S. Molnar, M. Cox, D Ellsworth, and H. Fuchs. A
sorting classification of parald rendering. 1EEE
Computer Graphics and Applications, pages 23-32,
July 1994.

Figure 11: A yelow isosurface within a multi-colored
semi-transparent heart model

[9] J. Painter, P McCormick, M. Krogh, C. Hansen, and
G. Colinde Verdiere. Theacl message passing library.
EPFL Supercomputing Review, 7, November 1995.

[10] K.-L. Ma Pardlel volume ray-casting for
unstructured-grid data on distributed-memory archi-
tectures. In Proceedings of 1995 Parallel Rendering
Symposium, pages 23-30, 1995.

Figure 13: A yelow isosurface within a multi-colored
semi-transparent torso model

Figure12: A green isosurface within amulti-col ored semi-
transparent head model

