(30]

(31]

(32]

(33]

(34]

B.L. Yeo and B. Liu. Volume rendering of dct-based com-
pressed 3-d scalar data. IEEE trans on Visualization and
Computer Graphics, 1(1):29-42, March 1995.

S.-Y. Chen and X. Shan. High-Resolution turbulent sim-
ulations using the Connection Machine-2. Computers in
Physics, 6(6):643-646, 1992.

V. M. Fernandez, N. J. Zabusky, S. Bhat, D. Silver, and S.-
Y. Chen. Visualization and feature extraction in isotropic
navier-strokes turbulence. In Proceedings of the AVS95 con-
ference, Boston, April 1995.

X. Wang and D. Sil-
ver. Volume Tracking — Video Animation, 1995. MPEG
version on http://www.caip.rutgers.edu/vizlab.html.

Arunava Banerjee, Haym Hirsh, and Tom Ellman. Inductive
learning of feature-tracking rules for scientific visualization.
Workship on Machine Learning in Engineering(IJCAI-95),
March 1995.

Search Window

Figure 15: A search window to catch drifting objects. A4; is
from t;, a1 and a2 are from #;y1.

to Dr. N. Zabusky, Dr. V. Fernandez, J. Ray, D. Ep-
stein, B. Yeo and R. Samtaney for some valuable discus-
sions. The authors are grateful to Dr. V. Fernandez and
S.Y. Chen for providing the data set. The lab acknowledges
the support of ARPA HPCD (DABT-63-93-C-0064), DOE
(DE-FGO02-93ER25179.A000), NASA (NAG 2-829), and the
CAIP Center. The parallel computations were performed on
the CM5 at the National Center for Supercomputing Appli-
cations. The video animations can be seen on our web site,
hitp: / /www.caip.rutgers. edu/vizlab. html

References

[1] Al Globus. A software model for visualization of unsteady
3-D computational fluid dynamics results. AIAA 95-0115,
ATAA 33rd Aerospace Sciences Meeting and Exhibit, Reno,
NV, January 1995.

[2] O.N. Boratav, R.B. Pelz, and N.J. Zabusky. Reconnection
in Orthogonally Interacting Vortex Tubes: Direct Numeri-
cal Simulations and Quantifications. Physics of Fluids A,
4(3):581-605, 1992.

[38] R. Samtaney, D. Silver, N. Zabusky, and J. Cao. Visualizing
Features and Tracking Their Evolution. IEEE Computer,
27(7):20-27, July 1994.

[4] P. Woodward. Interactive Scientific Visualization of Fluid
Flow. IEEE Computer, 26(10), October 1993.

[5] J. Jimenez, A. Wray, P. Saffman, and R. Rogallo. The struc-
ture of Intense Vorticity in Isotropic Turbulence. J. Fluid
Mech., pages 65-90, 1993.

[6] J. G. Brasseur and Wen-Quei Lin. Structure and Statistics
of Intermittency in Homogeneous Turbulent Shear Flow. Ad-
vances 1 Turbulence, 3, 1991.

[7] D.H.Ballard. Computer Vision. Prentice-Hall,Inc, Engle-
wood, New Jersey, 1982.

[8] B. Jahne. Digital Image Processing. Springer Verlag, 1991.

[9] I. Carlbom, I. Chakravarty, and W. Hsu. Integrating Com-
puter Graphics, Computer Vision, and Image Processing in

Scientific Applications. Computer Graphics, 26(1):8-16, Jan-
uary 1992. SIGGRAPH '91 Workshop Report.

[10] A. Pentland and B. Horowitz. Recovery of nonrigid motion
and structure. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 13(7):730-742, 1991.

[11] D. Metaxas and D. Terzopoulos. Shape and nonrigid mo-
tion estimation through physics-based synthesis. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
15(6):5807591, June 1993.

[12] Stan Sclaroff and Alex Pentland. Modal matching for corre-
spondence and recognition. Technical Report 201, The Me-
dia Laboratory, Massachusetts Institute of Technology, May
1993.

[13] Gabriel Taubin and David B. Cooper. Recognition and po-
sitioning of rigid objects using algebraic moment invariants.
volume 1570, pages 175-186. SPIE-The International Soci-
ety for Optical Engineering, SPIE, 1991.

[14] Y. Arnaud, M. Desbois, and J. Maizi. Automatic tracking
and characterization of african convective systems on me-
teosat pictures. Journal of Applied Meteorology, 31(5):443—
453, May 1992.

[15] J. Villasenor and A. Vincent. An Algorithm for Space Recog-
nition and Time Tracking of Vorticity Tubes in Turbulence.
CVGIP: Image Understanding, 55(1):27-35, January 1992.

[16] D. Silver, N. J. Zabusky, V. Fernandez, M. Gao, and R. Sam-
taney. Ellipsoidal Quantification of Evolving Phenomena. In
N. M. Patrikalakis, editor, Visualization of Physical Phe-
nomena. Proceedings of Computer Graphics International
’91 Symposium, pages 573—-588. Springer-Verlag, June 1991.

[17] T van Walsum. Selective Visualization on Curvilinear Grids.
PhD thesis, Delft University of Technology, 1995.

[18] Deborah Silver. Object-oriented visualization. IEEE com-
puter graphics and applications, 15(3), May 1995.

[19] Baining Guo. Interval set: A volume rendering technique
generalizing isosurface extraction. In Proceedings Visu-
alization ’95, pages 3-10, Atlanta, Georgia, October 29-
November 3 1995. IEEE Computer Society Technical Com-
mittee on Computer Graphics, IEEE Computer Society
Press.

[20] B. Singer and D. Banks. Predictor-Corrector Scheme for Vor-
tex Identification. Technical report, NASA Langley, March
1993.

[21] J. D. Buntine and D. I. Pullin. Merger and Cancellation of
Strained Vortices. J. Fluid Mech., 205:263-295, 1989.

[22] J. Helman and L. Hesselink. Visualization of Vector Field
Topology in Fluid Flows. IEEE Computer Graphics and
Applications, 11:36—46, May 1991.

[23] M. Gao. Data Extraction and Abstraction in 3D Visualiza-
tion. Master’s thesis, Graduate School - New Brunswick,
Rutgers, The State University of New Jersey, March 1992.

[24] Xin Wang, Deborah Silver, and Smitha Bhat. Visualiza-
tion Tools for Feature Extraction and Quantification in 3D
Dataset:User Manual. Technical Report TR-199, CAIP cen-
ter, Rutgers University, CoRE Building-Frelinghuysen Road,
Rutgers University, Piscataway, NJ 08855-1390, 1996.

[25] D. Silver and N. J. Zabusky. Quantifying visualizations for
reduced modeling in nonlinear science: Extracting structures
from data sets. Journal of Visual Communaication and Image
Representation, 4(1):46-61, 1993.

[26] H. Samet. The Design and Analysis of Spatial Data Struc-
ture. Addison-Wesley, Reading, Massachusetts, 1989.

[27] Jane Wilhelms and Allen V. Gelder. Octrees for Faster Iso-
surface Generation. ACM Trans. on Computer Graphics,
11(3):201-227, July 1992.

[28] Frank J. Post, Theo van Walsum, Frits H. Post, and Deb-
orah Silver. Iconic techniques for feature visualization. In
Proceedings Visualization ’95, pages 288—295, Atlanta, Geor-
gia, October 29-November 3 1995. IEEE Computer Society
Technical Committee on Computer Graphics, IEEE Com-
puter Society Press.

[29] Al Globus. Octree optimization. In Symposium on Electronic
Imaging Science and Technology, SPIE/SPSE. SPIE/SPSE,
1991.

Overall RMSvariation of Object vs Time

360 — T

I I I I I I I time

Figure 12: RMS variation of red feature.

coded visualization, the evolutionary history of features can
be represented as a directed acyclic graph or arrow plot.

7 Conclusions and Future Work

The algorithm presented in this paper is dependent upon a
high sampling rate. However, this condition is not always
available. Furthermore, to reduce the total size of time-
varying datasets, we may want to use fewer time steps. We
are investigating methods which can relax the basic assump-
tion on the sampling frequency. Obviously, the tolerance is
sensitive to At, and is also domain dependent. Because of
the dependence upon overlapping between datasets, objects
which drift will not be tagged as continuing. A search win-
dow around the object being tested can be used to locate
non-overlapping neighboring objects (See Figure 15), which
can be added to the candidates for a best matching test.
The objects must then be transformed (by their centroid
and moments) before a difference is computed. This type
of operation would also be useful to compute a true RMS
between evolving features. The size of the search window is
based on the sampling frequency.

Ideally, if we can obtain heuristics about how the object
evolve or interact in subsequent datasets, we can use that
information to perform a correlation test. The potential
candidates of correlated objects in the next dataset may be
predicted with an inductive learning algorithm and the in-

=64

“ Creation
fz« -
S— Dissipation

=~ continuation
350

00| — e |
Tolerance (%)

Figure 13: Events vs tolerance.

formation lost by sub-sampling can be recaptured. We have
started experimenting with some inductive learning meth-
ods [34]. We hope we can relax the sampling assumptions
and make the program more robust.

The process of feature extraction and feature tracking is
an intensive computational process. To deal with high reso-
lution datasets, parallel or distributed algorithms are needed
to speed up the process and meet the huge memory require-
ment. We have been working on the implementation of the
feature tracking while the simulation is being computed.

In this paper, we have presented a volume tracking algo-
rithm for 3D time varying datasets and have shown how it
can substantially improve the quality of the visualization.
The work we presented here is an expansion of our previous
work [3] and we have succeeded in producing more accurate
tracking results. We exploited the octree data structure to
improve the performance of the algorithm. In addition, be-
cause of the exhaustive nature of the tracking, all features
are categorized and all events are labeled. This catalogue
of information can now be used for event classification and
searching of massive 4D data sets.

8 Acknowledgment

The work presented here was done with the help of the
members of the Laboratory for Visiometrics and Modeling
and the CAIP center at Rutgers University. Special thanks

t=1 =4

& W
AN ¥ YA VRS
\ t=16 \4 =21
“
W .
Y]
"
o t=314 =35

=56

t=10

=67

Figure 7: Feature tracking (Simulation I). The evolution of the light green feature (from t=1) is highlighted. All other features
are colored grey. When an object is about to merge with the light green one it is given a different color (as in t=4).

| Events | Number of events |
Continuation 3722
Creation 658
Dissipation 652
Bifurcation 108
Amalgamation 7

Table 1: Number of events classified for Simulation I of 100
turbulent datasets with 1283 resolution.

the RMS variation for the object tracked in Figure 11 over
time. Between ¢; and t¢ the feature barely changes (which
can be seen in both the mass plot and RMS plot). It then
breaks up before dissipating. Features can also be trans-
formed (translated by their centroids and rotated) to get
better results.

6.1 Tolerance

The tolerance is sensitive to the rate of change in the vol-
ume of features in the time-varying datasets and the drifting
speed of these features. The tolerance chosen depends on the
nature of the datasets being investigated, as well as the sam-
pling time. For the datasets used in this section, we found
that choosing the tolerance between 50% - 60% can best ac-
count for the event classification. Some errors exist when
small objects are moving too fast. Either the tolerance is
too low, or the overlapping condition is not satisfied. This
can be easily overcome with a higher sampling frequency.
(Determining the “correct” tracking is difficult without do-
ing exhaustive testing. Visual testing, while useful, is not
always accurate.)

We studied the sensitivity of our algorithm to the toler-
ance by changing the tolerance and counting events. If the
tolerance is too low, many more features will be tagged as
dissipation/creation instead of continuation. The number of

Integrated Content of Object vs Time
1cx 103
70,00 T T =

I I I I I I I time

Figure 11: Mass change of red feature from ¢ = 1. Split line
indicates bifurcation.

events as a function of tolerance is shown in Figure 13. Sim-
ilarly, when the tolerance is set too high, regions get marked
as continuation when they are not.

6.2 Example 2

Simulation 2 is another pseudo-spectral simulation of co-
herent turbulent vortex structures. The variable being visu-
alized is vorticity magnitude at 48% of maximum threshold
value. This simulation runs from #30 to #30. Six datasets
from this simulation are given in Figure 14. (The full ani-
mation is in [33]). All of the features are tracked and the
events are classified. Note the breakup of the large purple
region.

We have also redone the tracking for the simulation pre-
sented in [3] with improved results [33]. In addition to a color

color of a feature is inherited from its parent. When features
merge, different schemes can be employed for the coloring of
the merged region. Generally, the dominant feature gets to
chose the color. The dominance can be calculated using vol-
ume, mass, or a local extremal value. For example, if we are
interested in understanding the behavior of volume in the
evolutionary process, and two features merge, the one with
the larger volume assigns the color. Alternately, colors can
be added when two features merge. With the color-coded in-
formation, the interaction of objects can be understood and
detected. In Figure 6 and in the animation [33] the feature
with the larger volume assigns the color. The statistics of the
different events for the entire simulation (tolerance=60%)
are shown in Table 1.

£=16 =21 =28 £=33

=34 £=35 t=40 £=51

=56 t=65 =67 =71

Figure 8: Simulation I: Light green feature is isolated.

Since all regions are tracked and all events are classified,
any of one of these can be mapped back to the visualization.
In Figure 7, the light green feature of Figure 6 is tracked.
Here, 16/100 datasets are shown with one feature colored
and all others in grey. When a feature is about to merge
with the green omne, it is given another color, as in ¢t = 4,
where a blue object is visible. Because the green is larger,
the final merged feature gets the green color. This process
can easily be seen in Figure 8 where this event has been iso-
lated. Another complicated process can be observed in t33.
The green object in ¢33 splits into three objects in ¢34. One of
which then merges with other objects in ¢35. The two smaller
green objects dissipate in t35. In addition to the visualiza-
tion, important quantifications can be represented. These
are necessary for any thorough understanding of the ongo-
ing evolutionary processes. In Figure 9, the mass change of
the green object as a function of time is presented. The split
lines indicate bifurcation. A sharp rise in mass can generally
be attributed to amalgamation. The number of features as
a function of time is shown in Figure 10. This is depen-
dent upon the threshold values chosen for the segmentation
process. In this example, the absolute thresholds change as
a function of the maximum value in the dataset. Another
example of mass tracking is shown in Figure 11. The red
cone shaped feature from Figure 6 is tracked. It has a short
life and breaks up before dissipating. This type of quantifi-
cation will help elucidate the energy transfer mechanisms in
turbulence as well as the characteristics of turbulent mixing.

In addition to the volume difference between features, a

Mass of Object vs Time
massx 103

150.00 =7 T graph.dat

140.00 — —

130.00 — —

120.00 — —

110.00 — -

100.00 — —

40.00 — —

30.00 —

20.00 — —

10.00 — L Lﬁ -
0.00 —

1 1 1 1 1 1
0.00 20.00 40.00 60.00 80.00 100.00

time

Figure 9: Track of light green feature, mass vs time. The
split lines indicate bifurcation. When mass decreases to zero
this indicates that the feature has dissipated.

Number of Objectsvs Time
#objects

UM _of _obj
64.00
62.00
60.00
58.00
56.00
54.00
52.00
50.00
48.00
46,00
44.00
42.00
40,00
3800
36.00
3400
3200
3000
2800
26.00
2400

time

°
8
8
8
8
8
2
8
8
8
o
SL
8

Figure 10: Simulation I: Number of features vs time.

modified root mean squared (RMS) difference can be calcu-
lated, to highlight the change in the actual values (vorticity
values). The RMS difference is calculated between the cor-
responding voxels in the same position of the two objects in
two time steps (the value to value overlap). It provides us
with the rate of evolving vorticity distribution between the
isolated objects in different time steps and can be computed
while the difference is being determined. The RMS variation

is defined as: . .
2 (04l — 05
Vozels(O, U Og’l)

— OB;i'l) is:

N

)
where (OAZ‘,'
Ag, if 27 € Object A and z; ¢ Object B

= B, if 27 € Object A and z; € Object B
Ag — By, if £ € Object A and £; € Object B

Az, and By, denote the scalar value of the data point at
Z; in object A and object B respectively. Figure 12 shows

W u 2
A a
S B BN

(@) t1 t2

=D = | =D|| =

® “ ©
A

4‘—<<§D ayb

(4 tl t2

Result: A=an

Figure 4: Bifurcation: In this example, feature A4 in ¢; over-
laps with a and b in ¢2. Therefore, the corresponding test
is performed between object A in ¢; and all combinations of
object @ and object b in to.

it can still be exponential for very large regions breaking up
into many small ones). For the turbulent simulation in Sec-
tion 6, regions are localized and large overlaps do not occur.
The ambiguous cases present in our previous algorithm [3],
are also resolved because full volume matching is performed.

5 Memory Optimization

The octree implementation involves memory overhead.
There have been approaches to reduce the memory over-
head [29, 27]. The advantage of an octree, besides the ease
at which difference and overlap can be computed, is that
only a part of the octree needs to be in the main memory.
The nodes in the memory can serve as a look-up table which
can be used to obtain the knowledge of its subregion from
the summarized information stored in it. The actual data in
the octree is loaded into memory only when it is needed for
computation.

Storage, manipulation and rendering of 3D time varying
datasets is difficult because of the immense amount of data
to be processed. Generally, more than one dataset cannot
be loaded into main memory. Furthermore, storage of these
large datasets is also a major difficulty. A number of different
techniques can be incorporated to reduce the memory over-
head. Segmentation and tracking can be performed while the
computation is progressing (on the supercomputer), and the
octree scheme outlined above could be employed. To reduce
overhead, the datasets can be stored in a compressed format.
Using a lossy compression scheme, we have compressed the
datasets shown in Section 6, with a DCT-base compression
scheme [30]. With the compression ratio of 24, the errors of
attributes between compressed and uncompressed dataset
were minimal. For mass, the average error was 0.17%, and
for volume the average error was 0.2%. Larger errors were
observed with small objects. When the feature tracking algo-
rithm was applied to the compressed datasets, no differences
were detected.

6 Examples

We demonstrate our algorithm on two problems from Com-
putational Fluid Dynamics (CFD): both are pseudo-spectral
simulations of coherent turbulent vortex structures with
128* resolution. Simulation I consists of one hundred
datasets which were generated on a Connection Machine
(CM5). The datasets contain vorticity. For the visualization
and tracking, we use the scalar vorticity magnitude. (The
simulation consists of an initial condition of six vortex tubes
in parallel and orthogonal positions. A forcing scheme is ap-
plied to maintain the energy of the low wave number modes
constant [31, 32].) In this example, the features represented
are extracted at a threshold of 48% of the maximum vor-
ticity magnitude in each dataset (each feature has its own
threshold interval). In Figures 5, four of the one hundred
datasets are shown. Note that it is difficult to identify in-
teractions and follow regions (this is especially true in the
animation [33]).

Figure 5: Simulation I: pseudo-spectral simulation of coher-
ent turbulent vortex structures with 128° resolution (vortic-
ity magnitude), isosurface threshold=48%. 4/100 time steps
are shown.

Figure 6: Simulation I: 4/100 time steps. All features are
tracked and color coded.

Once the features are identified and color coded, evolu-
tions can be followed. This is demonstrated in Figure 6. The

Figure 1: Corresponding objects overlap in consecutive time
steps. (a) two features which overlap. (b) one large feature
splits into three smaller ones.

we perform a volume difference test. Features O’ and O;;H
are considered matched if

O + 0y
maz((0%), (05))

< Tolerance

The difference, x—, is defined as
Oy x —0F" = maz (0 — O, 05" — 0Y)

The tolerance is a percentage value normalized to the max-
imum volume of objects being tested. It can be chosen by
the user and it is domain dependent. A tolerance is needed
to catch for varying sampling frequencies. In Section 6, we
discuss the sensitivity of the algorithm to the tolerance.
The difference function is a volume based operation and
it is performed on the voxels of O’y and Og’l . Since each of
the features are stored in octrees, this is defined operation
[26] which involves traversing both trees and detecting the
differences. The difference operation, is shown in Figure 2.

A and B

Figure 2: Boolean set operation: Difference

Features must overlap to be matched, so we only compute
the difference operation on features which overlap. Since
each extracted feature is stored as an octree, Oy, an overlap
can be detected by “merging” an octree from t; with the
octree forest of ¢;11. For example, if O in ¢; overlaps with
O*! and O;‘H in t;41, the correspondence is determined
among the combination of O with O, O with O;;+1,
and O with OJ*! | JO3t!.

The first step of the feature tracking algorithm is to find
out the features in one step which overlap the features in a
subsequent time step to obtain potential candidates for test-
ing. These are stored in an overlap list for each feature. The
number of nodes of intersection (the difference) is also com-
puted during the overlap test. The best matching test is per-
formed only among the candidates found in the overlapping

A

' {

0
t2

| .
i
B

9

Figure 3: The difference test is performed only on overlap-
ping regions.

test. The best matching proceeds by testing first for bifurca-
tion and continuation and then amalgamation. For bifurca-
tion and continuation, the difference between the template
feature (from dataset t;) and all combinations in the overlap
list is computed. The combination with the smallest dif-
ference (and still satisfying the tolerance) is chosen, and all
features are removed from the search space. Because an oc-
tree is used, the overlap test and all the difference calculation
can be computed at the same time. The entire algorithm can
be summarized as follows:

Feature Tracking

For two consecutive time steps t; and #;41
Extract all the features from the two datasets and
store each feature in its own octree.
Construct the octree fqrests F; = Upeti O;,
and F,'.+1 = quti+1 O;+1 ;
Use O,, as a template for matching
For each feature O;, € F; merge it into the octree
forest, Fi41 to
identify all the overlapping regions of O;, in
ti+1. Store this in a list called OverLa.pO;, -
For each feature O;, in F;
Determane bifurcation and continuation:
For all combinations of features in OverLapO}[],
Compute O;, * — U OveTLapO;,.
If the lowest difference s below the tolerance,
mark O;, as bifurcating into the object or
and remove them all from the search space.
Next O;,.
Else, Determine Amalgamation:
For each remaining feature in Ofl+1 merge it into the
octree forest, F; and test for amalgamation
This is the same as bifurcation with the inputs
Take the remaining O;, in ¢; as dissipation;
Take the remaining O:I+1 in ;41 as creation.

Since the algorithm is running through many time steps,
only one octree forest gets created and ¢; is carried over from
the previous iteration. Note that amalgamation is the “op-
posite” of bifurcation and can be detected using the same
process as amalgamation, but in reverse. Using this heuris-
tic, the number of corresponding test can be significantly re-
duced since only overlapping regions are tested. (However,

handling topological changes. Some simplified representa-
tion approaches have also been proposed to extract prop-
erties from features [13, 14, 15] to ease the task of feature
tracking.

In our previous work [3], features were tracked using their
centroids and second order moments [16]. These parameters
work well in describing most of the shapes of objects encoun-
tered in many turbulent simulations. However, this scheme
was not always reliable, since this is a reduced model. As
a result, errors can occur with concave features and small
regions [3].

In this paper, many of these problems have been corrected
by taking a full volumetric approach and performing tem-
plate matching. Furthermore, all events are classified, and
all parameters are computed and plotted (e.g. mass change
over time, see Section 6). Finally, the information gathered,
because it is global and pertains to each object and event,
can be used to improve the rendering and visualization.

3 Feature Extraction

An important part of feature tracking is defining what fea-
tures need to be tracked. Every domain has a different
definition for features, regions of interest, or objects. Gen-
eral methods to define features include selective visualization
[17], segmentation [18], volume intervals [19]. (Specific fea-
tures include vortex cores [20, 15, 21], and critical points
for vector fields [22], etc.) In many of these definitions, the
features are defined with some sort of connectivity criteria
which enable the method to partition the dataset into “im-
portant regions” and background. In this work, we assume
features are regions of interest consisting of voxels satisfy-
ing a set of pre-defined criteria. The criteria can be based
on any quantities, such as threshold interval, shape, vector
direction, and neighborhood connectivity. For the examples
presented in Section 6, features are defined using a segmen-
tation routine [23, 24, 25, 18] which divides the dataset into
connected components above the threshold value and back-
ground. (A region filling algorithm with a starting “seed” is
used. The seeds are local extremal values.) Each feature (set
of voxels) is stored in an octree [26, 27]. Interior nodes of
the octree contain the extremal value of that node’s subtree.
This property can be utilized as a time-saving strategy when
performing the segmentation process for various thresholds.
An advantage of the octree data structure is its simple and
efficient set operations (union, intersection, and difference
calculations, adjacency and membership testing, and trans-
formations such as translation, rotation, and scaling). The
efficiency comes from the octree’s spatial indexing feature.
The octree can also be used for memory optimization and
object-oriented parallel computing. In addition to the ac-
tual voxels, global properties such as the centroid, mass,
moments, volume, etc.. are computed and stored for each
separate feature [16, 28].

Octree features can be visualized using volume rendering
or fitting a surface around the boundary. An example is
shown in Figure 5 and 6. The upper left image of Figure 5
shows a 128 turbulent dataset visualized using standard iso-
surfaces. In Figure 6, the same dataset is shown. However,
segmentation was first performed so that each connected re-
gion has its own identifiable surface. The segmentation was
based upon a threshold value, so an isosurface also results,
however, now the surfaces can be colored by one of the com-
puted properties of the feature such as mass, volume, local
maxima, etc. (For other examples see [3, 18].)

The union of all the features in a particular dataset, ¢;,

where each feature, O;,, ! is stored as an octree, is an Octree
Forest, F* and can be represented by

F=|]Jo,

PEN

where N is the number of distinct extracted features from
dataset ;. An octree forest can be computed using a union
operation [26].

4 Feature Tracking

Once we have defined features, we can characterize the evo-
lutionary events present in time-varying scientific simula-
tions as Continuation, Creation, Dissipation, Bifurcation and
Amalgamation[3]. Continuationis where one feature contin-
ues from a dataset at time ¢; to the next dataset at time ¢;41.
Rotation or translation of the feature may occur and its size
may remain the same, intensify (become larger - grow), or
weaken (become smaller and begin to dissipate); Creation
is where a new feature appears (i.e. cannot be matched
to a feature in the previous dataset); Dissipation is when a
feature weakens and becomes part of the background; Bifur-
cationis when a feature separates in two or more features in
the next time step; and Amalgamation is where two or more
features merge from one time step to the next.

The next step is to define how to classify each feature
into the characterization above. This is known as the cor-
respondence problem, where one has to match a feature in
one dataset to one or more features in the next. A brute-
force approach to the correspondence problem is to perform
a matching test on features extracted from one dataset with
all of the features extracted from the subsequent dataset,
i.e. for each feature from dataset ¢;, test it against all fea-
tures from dataset ¢;4+1 and all combinations of features from
dataset t;41 (for amalgamation/bifurcation) and choose the
best match. The number of tests is exponential. Each do-
main may have different criteria for matching, and these are
generally based upon volume, shape, distribution of values
within the regions, and neighborhood.

In this work, we take a general definition for both the cor-
respondence problem and the matching test, i.e. one that is
derived from viewing animations of 3D datasets. For our def-
initions, we make the basic assumption that we have a suffi-
cient sampling to guarantee that matching features overlap
in 3D space. We can therefore state the following observa-
tions:

Observation 1 If feature Of;'l corresponds to 0};, then
O} overlaps O'g.

Observation 2 If an feature in t; splits into a group of N
features (N > 1) in ti41, then O;z}\, overlaps with O%.
Observation 3 If a group of N features (N > 1) int; merge
into an feature in tiy1, then Ojcn overlap with O?l .

These cases are illustrated in Figure 1.
Since a feature may overlap with many features in a sub-
sequent dataset, to choose which one is the best matching

lNotation:Og‘, refers to a particular object, labeled X, ex-
tracted from dataset, ¢;. For a time-dependent simulation the
datasets are referred to with their time stamp, so dataset t; : t = 7.

Volume Tracking

D. Silver and X. Wang

Dept. of Electrical and Computer Engineering and CAIP, Rutgers University

ABSTRACT

3D time-varying datasets are difficult to visualize and ana-
lyze because of the immense amount of data involved. This
is especially true when the datasets are turbulent with many
evolving amorphous regions, as it is difficult to observe pat-
terns and follow regions of interest. In this paper, we present
our volume based feature tracking algorithm and discuss
how it can be used to help visualize and analyze large time-
varying datasets. We also address efficiency issues in dealing
with massive time-varying datasets.

Keywords: Scientific Visualization, Multi-dimensional
Visualization, Feature Tracking, Computer Vision, CFD

1 Introduction

Visualization techniques provide tools that help scientists
identify observed phenomena in scientific simulation. To be
useful, these tools must allow the user to extract regions,
classify and visualize them, abstract them for simplified rep-
resentations, and track their evolution. Studying the evo-
lution and interaction of coherent amorphous objects is an
essential part of understanding time-varying data sets. It is
quite common for scientists in various disciplines to describe
the evolution of objects over time. For example, scientists
track a storm’s progress for weather prediction, the change in
the ozone “hole” for knowledge about the greenhouse effect,
and the movement of air over an aircraft or automobile for
better aerodynamic design. Coherent objects are easily rec-
ognizable when the data sets are viewed, because they are
localized in space and persist over finite intervals of time.
The overwhelming size of time-dependent datasets result-
ing from CFD simulation complicates the visualization task.
The total size of time-dependent data sets in 3D CFD do-
main ranges from five to sixteen Gigabytes, and may involve
thousands of time steps [1].

A feature based approach can greatly ease the process
of investigating large datasets efficiently. Each domain has
it own set of important features. Since they do appear in
consecutive time steps, tracking them can enhance the vi-
sualization and provide a valuable analytical tool to study
the behavior of these features. Furthermore, tracking can
help automate searching for events and interactions. For
example, part of the motivation for this research is to iden-
tify the reconnection event in turbulent CFD datasets [2].
Searching through hundreds (possibly thousands) of large
3D scalar and vector datasets where each data set can con-
tain many amorphous structures (sometimes up to 1000 or
more) is impractical (see Figure 5 for sample datasets from

IDept. of Electrical and Computer Engineering and CAIP,
Rutgers University, P.O. Box 209, Piscataway, NJ 08855-0909.
Email: silver, xswang@vizlab.rutgers.edu
Web: http://www.caip.rutgers.edu/vizlab.html

a turbulent simulation, in this example the structures are
isosurfaces). While there are many criteria defining the re-
connection event, tracking can help identify time-intervals
for further investigation and reduce the amount of data to
analyze.

Automatically tracking features is difficult because the
features are continually evolving and interacting. Initial ef-
forts in feature tracking have been presented [3] where the
tracking was performed using approximations to features.
In this paper, we present a different method for tracking us-
ing a volume based approach which takes a template from
one datasets and correlates it to features in the subsequent
dataset. We show how it is more robust and how it can be
used for complex simulations. In Section 2, we give a short
overview of related work. In Section 3, 4 and 5 we present
our new algorithm for feature tracking and discuss efficiency
issues. Three different examples are discussed in Section 6,
including a 128* with over 100 time steps. The examples are
taken from studies in turbulence (CFD). These are good can-
didates for tracking because the large number of amorphous
evolving regions make it difficult to observe what is happen-
ing in the dataset. Other examples of turbulent datasets can
be seen in [4, 5, 6].

2 Related Work

The computer vision community has been very concerned
with 2D tracking (for introductions see [7, 8]), and many of
the techniques developed in Computer Vision can be used
in this domain to extract, identify and track features (these
are discussed in [3, 9]). The main difference arises in the
domain-specific knowledge needed to accurately analyze the
data and the type of data available. The goal of visualization
is to help understand and analyze the underlying physics
or mathematical model. Because of this, the criteria for
tracking features in a scientific domain are different than for
most computer vision applications. In a scientific simulation,
evolving features may split, merge or disappear. All the
properties of these features must be computed, such as mass,
volume, moments and their change over time. Furthermore,
all the features must be tracked to identify interaction events
and automate searching. Finally, the tracking information
and computed properties should be used to provide better
renderings of the datasets.

An important issue is feature representation. The repre-
sentation should be general enough to handle a wide variety
of shapes of features, yet simple enough to be usable for
tracking and quantification. Many representation schemes
have been proposed for object recognition and motion es-
timation. A polyhedral representation is one of the most
general and intuitive methods in 3D object modeling, and
they can be derived using isosurface contours. They must be
connected to be tracked, but it is still difficult. Physically-
based models have been used for tracking in computer vi-
sion and for 3D representations [10, 11, 12]. However, they
generally do not classify all events and may have difficulty

