PHYSICALLY-BASED SIMULATION FINAL PROJECT: AMONG US

Crewmates: Tianhong Gan, Yelan Tao

Group 6

1. model the avatar

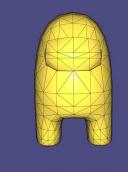
- 2. add avatar to the screen
- 3. add basic real-time motion simulation (walking)
- 4. rigid-body collision between avatars
- 5. soft-body (MSS) collisions between avatars (bonus)
- 6. basic kill simulation (bonus)

7. sound effects (bonus)

1. model the avatar

2. add avatar to the screen

- 3. add basic real-time motion simulation (walking)
- 4. rigid-body collision between avatars
- 5. soft-body (MSS) collisions between avatars (bonus)
- 6. basic kill simulation (bonus)
- 7. sound effects (bonus)



fin

start

3/11

- 1. model the avatar
- 2. add avatar to the screen

- 3. add basic real-time motion simulation (walking)
- 4. rigid-body collision between avatars
- 5. soft-body (MSS) collisions between avatars (bonus)
- 6. basic kill simulation (bonus)
- 7. sound effects (bonus)

1. model the avatar

2. add avatar to the screen

- 3. add basic real-time motion simulation (walking)
- 4. rigid-body collision between avatars
- 5. soft-body (MSS) collisions between avatars (bonus)
- 6. basic kill simulation (bonus)

7. sound effects (bonus)

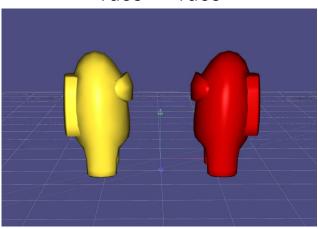
1. model the avatar

2. add avatar to the screen

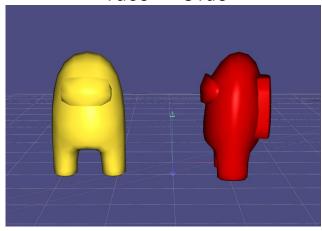
3. add basic real-time motion simulation (walking)

4. rigid-body collision between avatars

5. soft-body (MSS) collisions between avatars (bonus)

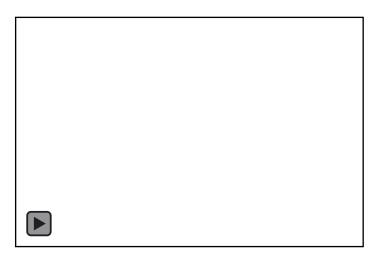

6. basic kill simulation (bonus)

7. sound effects (bonus)

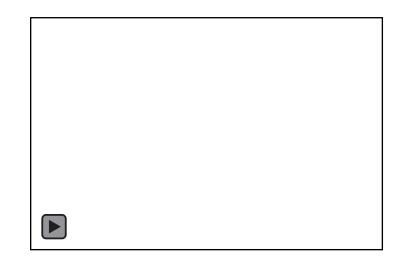


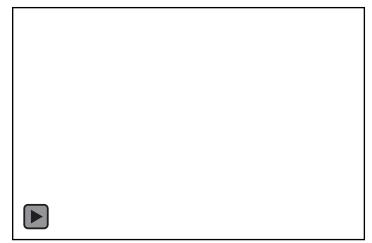
PROBLEM 1: COLLISION

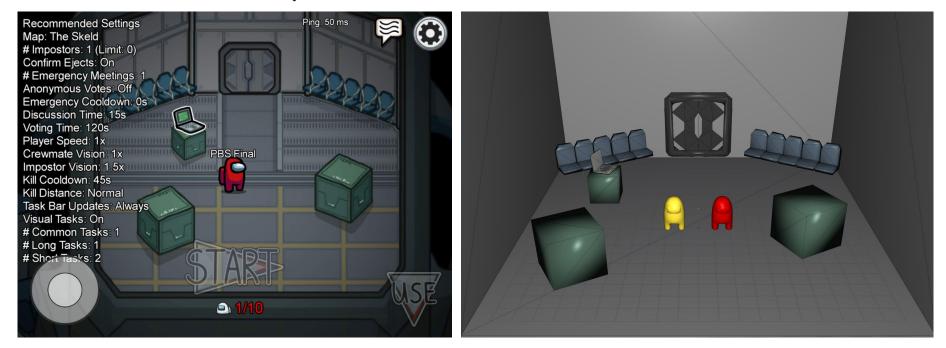
- collision computation on full mesh is too slow:
 - $\circ~$ use instead an AABB bounding volume around the mesh
 - \circ $\,$ compute collision and impulse with the AABB bounding volume $\,$
 - \circ $% \ \$ rectangle is sufficient due to how real-time movement is implemented



face - side


PROBLEM 2: COLLISION


- avatars move through each other and walls when too fast:
 - \circ limit the speed of the avatars
 - \circ reduce the time-steps
 - increase size of collision elements


PROBLEM 3: RESTING CONTACTS

- avatars sometimes sink into the ground when standing still:
 - apply upwards force to counteract gravity when avatars are still (did not work)
 - remove gravity when the avatars are still (did not work)
 - apply upwards force to counteract gravity when avatar is on the ground (worked)

AMONG US MAP (BONUS!)

SUMMARY + GRADING CRITERIA

- stability:
 - collision works mostly between 'avatar ⇔ avatar' and 'avatar ⇔ environment'
- complexity:
 - avatar and map both implemented in 3D
 - \circ $\,$ collision detection uses bounding volume to speed up process
- performance:

 - fast!
- results + presentation

FINAL VIDEO

THANKS FOR LISTENING!